PrusaSlicer-NonPlainar/xs/include/boost/polygon/detail/voronoi_robust_fpt.hpp

507 lines
15 KiB
C++

// Boost.Polygon library detail/voronoi_robust_fpt.hpp header file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT
#define BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT
#include <cmath>
// Geometry predicates with floating-point variables usually require
// high-precision predicates to retrieve the correct result.
// Epsilon robust predicates give the result within some epsilon relative
// error, but are a lot faster than high-precision predicates.
// To make algorithm robust and efficient epsilon robust predicates are
// used at the first step. In case of the undefined result high-precision
// arithmetic is used to produce required robustness. This approach
// requires exact computation of epsilon intervals within which epsilon
// robust predicates have undefined value.
// There are two ways to measure an error of floating-point calculations:
// relative error and ULPs (units in the last place).
// Let EPS be machine epsilon, then next inequalities have place:
// 1 EPS <= 1 ULP <= 2 EPS (1), 0.5 ULP <= 1 EPS <= 1 ULP (2).
// ULPs are good for measuring rounding errors and comparing values.
// Relative errors are good for computation of general relative
// error of formulas or expressions. So to calculate epsilon
// interval within which epsilon robust predicates have undefined result
// next schema is used:
// 1) Compute rounding errors of initial variables using ULPs;
// 2) Transform ULPs to epsilons using upper bound of the (1);
// 3) Compute relative error of the formula using epsilon arithmetic;
// 4) Transform epsilon to ULPs using upper bound of the (2);
// In case two values are inside undefined ULP range use high-precision
// arithmetic to produce the correct result, else output the result.
// Look at almost_equal function to see how two floating-point variables
// are checked to fit in the ULP range.
// If A has relative error of r(A) and B has relative error of r(B) then:
// 1) r(A + B) <= max(r(A), r(B)), for A * B >= 0;
// 2) r(A - B) <= B*r(A)+A*r(B)/(A-B), for A * B >= 0;
// 2) r(A * B) <= r(A) + r(B);
// 3) r(A / B) <= r(A) + r(B);
// In addition rounding error should be added, that is always equal to
// 0.5 ULP or at most 1 epsilon. As you might see from the above formulas
// subtraction relative error may be extremely large, that's why
// epsilon robust comparator class is used to store floating point values
// and compute subtraction as the final step of the evaluation.
// For further information about relative errors and ULPs try this link:
// http://docs.sun.com/source/806-3568/ncg_goldberg.html
namespace boost {
namespace polygon {
namespace detail {
template <typename T>
T get_sqrt(const T& that) {
return (std::sqrt)(that);
}
template <typename T>
bool is_pos(const T& that) {
return that > 0;
}
template <typename T>
bool is_neg(const T& that) {
return that < 0;
}
template <typename T>
bool is_zero(const T& that) {
return that == 0;
}
template <typename _fpt>
class robust_fpt {
public:
typedef _fpt floating_point_type;
typedef _fpt relative_error_type;
// Rounding error is at most 1 EPS.
enum {
ROUNDING_ERROR = 1
};
robust_fpt() : fpv_(0.0), re_(0.0) {}
explicit robust_fpt(floating_point_type fpv) :
fpv_(fpv), re_(0.0) {}
robust_fpt(floating_point_type fpv, relative_error_type error) :
fpv_(fpv), re_(error) {}
floating_point_type fpv() const { return fpv_; }
relative_error_type re() const { return re_; }
relative_error_type ulp() const { return re_; }
robust_fpt& operator=(const robust_fpt& that) {
this->fpv_ = that.fpv_;
this->re_ = that.re_;
return *this;
}
bool has_pos_value() const {
return is_pos(fpv_);
}
bool has_neg_value() const {
return is_neg(fpv_);
}
bool has_zero_value() const {
return is_zero(fpv_);
}
robust_fpt operator-() const {
return robust_fpt(-fpv_, re_);
}
robust_fpt& operator+=(const robust_fpt& that) {
floating_point_type fpv = this->fpv_ + that.fpv_;
if ((!is_neg(this->fpv_) && !is_neg(that.fpv_)) ||
(!is_pos(this->fpv_) && !is_pos(that.fpv_))) {
this->re_ = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
} else {
floating_point_type temp =
(this->fpv_ * this->re_ - that.fpv_ * that.re_) / fpv;
if (is_neg(temp))
temp = -temp;
this->re_ = temp + ROUNDING_ERROR;
}
this->fpv_ = fpv;
return *this;
}
robust_fpt& operator-=(const robust_fpt& that) {
floating_point_type fpv = this->fpv_ - that.fpv_;
if ((!is_neg(this->fpv_) && !is_pos(that.fpv_)) ||
(!is_pos(this->fpv_) && !is_neg(that.fpv_))) {
this->re_ = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
} else {
floating_point_type temp =
(this->fpv_ * this->re_ + that.fpv_ * that.re_) / fpv;
if (is_neg(temp))
temp = -temp;
this->re_ = temp + ROUNDING_ERROR;
}
this->fpv_ = fpv;
return *this;
}
robust_fpt& operator*=(const robust_fpt& that) {
this->re_ += that.re_ + ROUNDING_ERROR;
this->fpv_ *= that.fpv_;
return *this;
}
robust_fpt& operator/=(const robust_fpt& that) {
this->re_ += that.re_ + ROUNDING_ERROR;
this->fpv_ /= that.fpv_;
return *this;
}
robust_fpt operator+(const robust_fpt& that) const {
floating_point_type fpv = this->fpv_ + that.fpv_;
relative_error_type re;
if ((!is_neg(this->fpv_) && !is_neg(that.fpv_)) ||
(!is_pos(this->fpv_) && !is_pos(that.fpv_))) {
re = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
} else {
floating_point_type temp =
(this->fpv_ * this->re_ - that.fpv_ * that.re_) / fpv;
if (is_neg(temp))
temp = -temp;
re = temp + ROUNDING_ERROR;
}
return robust_fpt(fpv, re);
}
robust_fpt operator-(const robust_fpt& that) const {
floating_point_type fpv = this->fpv_ - that.fpv_;
relative_error_type re;
if ((!is_neg(this->fpv_) && !is_pos(that.fpv_)) ||
(!is_pos(this->fpv_) && !is_neg(that.fpv_))) {
re = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
} else {
floating_point_type temp =
(this->fpv_ * this->re_ + that.fpv_ * that.re_) / fpv;
if (is_neg(temp))
temp = -temp;
re = temp + ROUNDING_ERROR;
}
return robust_fpt(fpv, re);
}
robust_fpt operator*(const robust_fpt& that) const {
floating_point_type fpv = this->fpv_ * that.fpv_;
relative_error_type re = this->re_ + that.re_ + ROUNDING_ERROR;
return robust_fpt(fpv, re);
}
robust_fpt operator/(const robust_fpt& that) const {
floating_point_type fpv = this->fpv_ / that.fpv_;
relative_error_type re = this->re_ + that.re_ + ROUNDING_ERROR;
return robust_fpt(fpv, re);
}
robust_fpt sqrt() const {
return robust_fpt(get_sqrt(fpv_),
re_ * static_cast<relative_error_type>(0.5) +
ROUNDING_ERROR);
}
private:
floating_point_type fpv_;
relative_error_type re_;
};
template <typename T>
robust_fpt<T> get_sqrt(const robust_fpt<T>& that) {
return that.sqrt();
}
template <typename T>
bool is_pos(const robust_fpt<T>& that) {
return that.has_pos_value();
}
template <typename T>
bool is_neg(const robust_fpt<T>& that) {
return that.has_neg_value();
}
template <typename T>
bool is_zero(const robust_fpt<T>& that) {
return that.has_zero_value();
}
// robust_dif consists of two not negative values: value1 and value2.
// The resulting expression is equal to the value1 - value2.
// Subtraction of a positive value is equivalent to the addition to value2
// and subtraction of a negative value is equivalent to the addition to
// value1. The structure implicitly avoids difference computation.
template <typename T>
class robust_dif {
public:
robust_dif() :
positive_sum_(0),
negative_sum_(0) {}
explicit robust_dif(const T& value) :
positive_sum_((value > 0)?value:0),
negative_sum_((value < 0)?-value:0) {}
robust_dif(const T& pos, const T& neg) :
positive_sum_(pos),
negative_sum_(neg) {}
T dif() const {
return positive_sum_ - negative_sum_;
}
T pos() const {
return positive_sum_;
}
T neg() const {
return negative_sum_;
}
robust_dif<T> operator-() const {
return robust_dif(negative_sum_, positive_sum_);
}
robust_dif<T>& operator+=(const T& val) {
if (!is_neg(val))
positive_sum_ += val;
else
negative_sum_ -= val;
return *this;
}
robust_dif<T>& operator+=(const robust_dif<T>& that) {
positive_sum_ += that.positive_sum_;
negative_sum_ += that.negative_sum_;
return *this;
}
robust_dif<T>& operator-=(const T& val) {
if (!is_neg(val))
negative_sum_ += val;
else
positive_sum_ -= val;
return *this;
}
robust_dif<T>& operator-=(const robust_dif<T>& that) {
positive_sum_ += that.negative_sum_;
negative_sum_ += that.positive_sum_;
return *this;
}
robust_dif<T>& operator*=(const T& val) {
if (!is_neg(val)) {
positive_sum_ *= val;
negative_sum_ *= val;
} else {
positive_sum_ *= -val;
negative_sum_ *= -val;
swap();
}
return *this;
}
robust_dif<T>& operator*=(const robust_dif<T>& that) {
T positive_sum = this->positive_sum_ * that.positive_sum_ +
this->negative_sum_ * that.negative_sum_;
T negative_sum = this->positive_sum_ * that.negative_sum_ +
this->negative_sum_ * that.positive_sum_;
positive_sum_ = positive_sum;
negative_sum_ = negative_sum;
return *this;
}
robust_dif<T>& operator/=(const T& val) {
if (!is_neg(val)) {
positive_sum_ /= val;
negative_sum_ /= val;
} else {
positive_sum_ /= -val;
negative_sum_ /= -val;
swap();
}
return *this;
}
private:
void swap() {
(std::swap)(positive_sum_, negative_sum_);
}
T positive_sum_;
T negative_sum_;
};
template<typename T>
robust_dif<T> operator+(const robust_dif<T>& lhs,
const robust_dif<T>& rhs) {
return robust_dif<T>(lhs.pos() + rhs.pos(), lhs.neg() + rhs.neg());
}
template<typename T>
robust_dif<T> operator+(const robust_dif<T>& lhs, const T& rhs) {
if (!is_neg(rhs)) {
return robust_dif<T>(lhs.pos() + rhs, lhs.neg());
} else {
return robust_dif<T>(lhs.pos(), lhs.neg() - rhs);
}
}
template<typename T>
robust_dif<T> operator+(const T& lhs, const robust_dif<T>& rhs) {
if (!is_neg(lhs)) {
return robust_dif<T>(lhs + rhs.pos(), rhs.neg());
} else {
return robust_dif<T>(rhs.pos(), rhs.neg() - lhs);
}
}
template<typename T>
robust_dif<T> operator-(const robust_dif<T>& lhs,
const robust_dif<T>& rhs) {
return robust_dif<T>(lhs.pos() + rhs.neg(), lhs.neg() + rhs.pos());
}
template<typename T>
robust_dif<T> operator-(const robust_dif<T>& lhs, const T& rhs) {
if (!is_neg(rhs)) {
return robust_dif<T>(lhs.pos(), lhs.neg() + rhs);
} else {
return robust_dif<T>(lhs.pos() - rhs, lhs.neg());
}
}
template<typename T>
robust_dif<T> operator-(const T& lhs, const robust_dif<T>& rhs) {
if (!is_neg(lhs)) {
return robust_dif<T>(lhs + rhs.neg(), rhs.pos());
} else {
return robust_dif<T>(rhs.neg(), rhs.pos() - lhs);
}
}
template<typename T>
robust_dif<T> operator*(const robust_dif<T>& lhs,
const robust_dif<T>& rhs) {
T res_pos = lhs.pos() * rhs.pos() + lhs.neg() * rhs.neg();
T res_neg = lhs.pos() * rhs.neg() + lhs.neg() * rhs.pos();
return robust_dif<T>(res_pos, res_neg);
}
template<typename T>
robust_dif<T> operator*(const robust_dif<T>& lhs, const T& val) {
if (!is_neg(val)) {
return robust_dif<T>(lhs.pos() * val, lhs.neg() * val);
} else {
return robust_dif<T>(-lhs.neg() * val, -lhs.pos() * val);
}
}
template<typename T>
robust_dif<T> operator*(const T& val, const robust_dif<T>& rhs) {
if (!is_neg(val)) {
return robust_dif<T>(val * rhs.pos(), val * rhs.neg());
} else {
return robust_dif<T>(-val * rhs.neg(), -val * rhs.pos());
}
}
template<typename T>
robust_dif<T> operator/(const robust_dif<T>& lhs, const T& val) {
if (!is_neg(val)) {
return robust_dif<T>(lhs.pos() / val, lhs.neg() / val);
} else {
return robust_dif<T>(-lhs.neg() / val, -lhs.pos() / val);
}
}
// Used to compute expressions that operate with sqrts with predefined
// relative error. Evaluates expressions of the next type:
// sum(i = 1 .. n)(A[i] * sqrt(B[i])), 1 <= n <= 4.
template <typename _int, typename _fpt, typename _converter>
class robust_sqrt_expr {
public:
enum MAX_RELATIVE_ERROR {
MAX_RELATIVE_ERROR_EVAL1 = 4,
MAX_RELATIVE_ERROR_EVAL2 = 7,
MAX_RELATIVE_ERROR_EVAL3 = 16,
MAX_RELATIVE_ERROR_EVAL4 = 25
};
// Evaluates expression (re = 4 EPS):
// A[0] * sqrt(B[0]).
_fpt eval1(_int* A, _int* B) {
_fpt a = convert(A[0]);
_fpt b = convert(B[0]);
return a * get_sqrt(b);
}
// Evaluates expression (re = 7 EPS):
// A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]).
_fpt eval2(_int* A, _int* B) {
_fpt a = eval1(A, B);
_fpt b = eval1(A + 1, B + 1);
if ((!is_neg(a) && !is_neg(b)) ||
(!is_pos(a) && !is_pos(b)))
return a + b;
return convert(A[0] * A[0] * B[0] - A[1] * A[1] * B[1]) / (a - b);
}
// Evaluates expression (re = 16 EPS):
// A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) + A[2] * sqrt(B[2]).
_fpt eval3(_int* A, _int* B) {
_fpt a = eval2(A, B);
_fpt b = eval1(A + 2, B + 2);
if ((!is_neg(a) && !is_neg(b)) ||
(!is_pos(a) && !is_pos(b)))
return a + b;
tA[3] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] - A[2] * A[2] * B[2];
tB[3] = 1;
tA[4] = A[0] * A[1] * 2;
tB[4] = B[0] * B[1];
return eval2(tA + 3, tB + 3) / (a - b);
}
// Evaluates expression (re = 25 EPS):
// A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) +
// A[2] * sqrt(B[2]) + A[3] * sqrt(B[3]).
_fpt eval4(_int* A, _int* B) {
_fpt a = eval2(A, B);
_fpt b = eval2(A + 2, B + 2);
if ((!is_neg(a) && !is_neg(b)) ||
(!is_pos(a) && !is_pos(b)))
return a + b;
tA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] -
A[2] * A[2] * B[2] - A[3] * A[3] * B[3];
tB[0] = 1;
tA[1] = A[0] * A[1] * 2;
tB[1] = B[0] * B[1];
tA[2] = A[2] * A[3] * -2;
tB[2] = B[2] * B[3];
return eval3(tA, tB) / (a - b);
}
private:
_int tA[5];
_int tB[5];
_converter convert;
};
} // detail
} // polygon
} // boost
#endif // BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT