PrusaSlicer-NonPlainar/src/libslic3r/JumpPointSearch.cpp
PavelMikus 8c290a2f85 Fix integration of curled filament avoidance -
Invalidate the estiamtion step on option switch
Also, improve cases where either start or end lays on curled edge.
2022-11-18 13:16:54 +01:00

368 lines
15 KiB
C++

#include "JumpPointSearch.hpp"
#include "BoundingBox.hpp"
#include "Point.hpp"
#include "libslic3r/AStar.hpp"
#include "libslic3r/KDTreeIndirect.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/libslic3r.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <optional>
#include <string>
#include <unordered_map>
#include <vector>
//#define DEBUG_FILES
#ifdef DEBUG_FILES
#include "libslic3r/SVG.hpp"
#endif
namespace Slic3r {
// execute fn for each pixel on the line. If fn returns false, terminate the iteration
template<typename PointFn> void dda(coord_t x0, coord_t y0, coord_t x1, coord_t y1, const PointFn &fn)
{
coord_t dx = abs(x1 - x0);
coord_t dy = abs(y1 - y0);
coord_t x = x0;
coord_t y = y0;
coord_t n = 1 + dx + dy;
coord_t x_inc = (x1 > x0) ? 1 : -1;
coord_t y_inc = (y1 > y0) ? 1 : -1;
coord_t error = dx - dy;
dx *= 2;
dy *= 2;
for (; n > 0; --n) {
if (!fn(x, y)) return;
if (error > 0) {
x += x_inc;
error -= dy;
} else {
y += y_inc;
error += dx;
}
}
}
// will draw the line twice, second time with and offset of 1 in the direction of normal
// may call the fn on the same coordiantes multiple times!
template<typename PointFn> void double_dda_with_offset(coord_t x0, coord_t y0, coord_t x1, coord_t y1, const PointFn &fn)
{
Vec2d normal = Point{y1 - y0, x1 - x0}.cast<double>().normalized();
normal.x() = ceil(normal.x());
normal.y() = ceil(normal.y());
Point start_offset = Point(x0, y0) + (normal).cast<coord_t>();
Point end_offset = Point(x1, y1) + (normal).cast<coord_t>();
dda(x0, y0, x1, y1, fn);
dda(start_offset.x(), start_offset.y(), end_offset.x(), end_offset.y(), fn);
}
template<typename CellPositionType, typename CellQueryFn> class JPSTracer
{
public:
// Use incoming_dir [0,0] for starting points, so that all directions are checked from that point
struct Node
{
CellPositionType position;
CellPositionType incoming_dir;
};
JPSTracer(CellPositionType target, CellQueryFn is_passable) : target(target), is_passable(is_passable) {}
private:
CellPositionType target;
CellQueryFn is_passable; // should return boolean whether the cell is passable or not
CellPositionType find_jump_point(CellPositionType start, CellPositionType forward_dir) const
{
CellPositionType next = start + forward_dir;
while (next != target && is_passable(next) && !(is_jump_point(next, forward_dir))) { next = next + forward_dir; }
if (is_passable(next)) {
return next;
} else {
return start;
}
}
bool is_jump_point(CellPositionType pos, CellPositionType forward_dir) const
{
if (abs(forward_dir.x()) + abs(forward_dir.y()) == 2) {
// diagonal
CellPositionType horizontal_check_dir = CellPositionType{forward_dir.x(), 0};
CellPositionType vertical_check_dir = CellPositionType{0, forward_dir.y()};
if (!is_passable(pos - horizontal_check_dir) && is_passable(pos + forward_dir - 2 * horizontal_check_dir)) { return true; }
if (!is_passable(pos - vertical_check_dir) && is_passable(pos + forward_dir - 2 * vertical_check_dir)) { return true; }
if (find_jump_point(pos, horizontal_check_dir) != pos) { return true; }
if (find_jump_point(pos, vertical_check_dir) != pos) { return true; }
return false;
} else { // horizontal or vertical
CellPositionType side_dir = CellPositionType(forward_dir.y(), forward_dir.x());
if (!is_passable(pos + side_dir) && is_passable(pos + forward_dir + side_dir)) { return true; }
if (!is_passable(pos - side_dir) && is_passable(pos + forward_dir - side_dir)) { return true; }
return false;
}
}
public:
template<class Fn> void foreach_reachable(const Node &from, Fn &&fn) const
{
const CellPositionType &pos = from.position;
const CellPositionType &forward_dir = from.incoming_dir;
std::vector<CellPositionType> dirs_to_check{};
if (abs(forward_dir.x()) + abs(forward_dir.y()) == 0) { // special case for starting point
dirs_to_check = all_directions;
} else if (abs(forward_dir.x()) + abs(forward_dir.y()) == 2) {
// diagonal
CellPositionType horizontal_check_dir = CellPositionType{forward_dir.x(), 0};
CellPositionType vertical_check_dir = CellPositionType{0, forward_dir.y()};
if (!is_passable(pos - horizontal_check_dir) && is_passable(pos + forward_dir - 2 * horizontal_check_dir)) {
dirs_to_check.push_back(forward_dir - 2 * horizontal_check_dir);
}
if (!is_passable(pos - vertical_check_dir) && is_passable(pos + forward_dir - 2 * vertical_check_dir)) {
dirs_to_check.push_back(forward_dir - 2 * vertical_check_dir);
}
dirs_to_check.push_back(horizontal_check_dir);
dirs_to_check.push_back(vertical_check_dir);
dirs_to_check.push_back(forward_dir);
} else { // horizontal or vertical
CellPositionType side_dir = CellPositionType(forward_dir.y(), forward_dir.x());
if (!is_passable(pos + side_dir) && is_passable(pos + forward_dir + side_dir)) {
dirs_to_check.push_back(forward_dir + side_dir);
}
if (!is_passable(pos - side_dir) && is_passable(pos + forward_dir - side_dir)) {
dirs_to_check.push_back(forward_dir - side_dir);
}
dirs_to_check.push_back(forward_dir);
}
for (const CellPositionType &dir : dirs_to_check) {
CellPositionType jp = find_jump_point(pos, dir);
if (jp != pos) fn(Node{jp, dir});
}
}
float distance(Node a, Node b) const { return (a.position - b.position).template cast<double>().norm(); }
float goal_heuristic(Node n) const { return n.position == target ? -1.f : (target - n.position).template cast<double>().norm(); }
size_t unique_id(Node n) const
{
return (static_cast<size_t>(uint16_t(n.position.x())) << 16) + static_cast<size_t>(uint16_t(n.position.y()));
}
const std::vector<CellPositionType> all_directions{{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
};
void JPSPathFinder::clear()
{
inpassable.clear();
obstacle_max = Pixel(std::numeric_limits<coord_t>::min(), std::numeric_limits<coord_t>::min());
obstacle_min = Pixel(std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max());
}
void JPSPathFinder::add_obstacles(const Lines &obstacles)
{
auto store_obstacle = [&](coord_t x, coord_t y) {
obstacle_max.x() = std::max(obstacle_max.x(), x);
obstacle_max.y() = std::max(obstacle_max.y(), y);
obstacle_min.x() = std::min(obstacle_min.x(), x);
obstacle_min.y() = std::min(obstacle_min.y(), y);
inpassable.insert(Pixel{x, y});
return true;
};
for (const Line &l : obstacles) {
Pixel start = pixelize(l.a);
Pixel end = pixelize(l.b);
double_dda_with_offset(start.x(), start.y(), end.x(), end.y(), store_obstacle);
}
}
void JPSPathFinder::add_obstacles(const Layer *layer, const Point &global_origin)
{
if (layer == nullptr) return;
this->print_z = layer->print_z;
Lines obstacles;
obstacles.reserve(layer->malformed_lines.size());
for (const Line &l : layer->malformed_lines) { obstacles.push_back(Line{l.a + global_origin, l.b + global_origin}); }
add_obstacles(obstacles);
}
Polyline JPSPathFinder::find_path(const Point &p0, const Point &p1)
{
Pixel start = pixelize(p0);
Pixel end = pixelize(p1);
if (inpassable.empty() || (start - end).cast<float>().norm() < 3.0) { return Polyline{p0, p1}; }
if (inpassable.find(start) != inpassable.end()) {
dda(start.x(), start.y(), end.x(), end.y(), [&](coord_t x, coord_t y) {
if (inpassable.find(Pixel(x, y)) == inpassable.end() || start == end) { // new start not found yet, and xy passable
start = Pixel(x, y);
return false;
}
return true;
});
}
if (inpassable.find(end) != inpassable.end()) {
dda(end.x(), end.y(), start.x(), start.y(), [&](coord_t x, coord_t y) {
if (inpassable.find(Pixel(x, y)) == inpassable.end() || start == end) { // new start not found yet, and xy passable
end = Pixel(x, y);
return false;
}
return true;
});
}
BoundingBox search_box({start, end, obstacle_max, obstacle_min});
search_box.max += Pixel(1, 1);
search_box.min -= Pixel(1, 1);
BoundingBox bounding_square(Points{start, end});
bounding_square.max += Pixel(5, 5);
bounding_square.min -= Pixel(5, 5);
coord_t bounding_square_size = 2 * std::max(bounding_square.size().x(), bounding_square.size().y());
bounding_square.max.x() += (bounding_square_size - bounding_square.size().x()) / 2;
bounding_square.min.x() -= (bounding_square_size - bounding_square.size().x()) / 2;
bounding_square.max.y() += (bounding_square_size - bounding_square.size().y()) / 2;
bounding_square.min.y() -= (bounding_square_size - bounding_square.size().y()) / 2;
// Intersection - limit the search box to a square area around the start and end, to fasten the path searching
search_box.max = search_box.max.cwiseMin(bounding_square.max);
search_box.min = search_box.min.cwiseMax(bounding_square.min);
auto cell_query = [&](Pixel pixel) {
return search_box.contains(pixel) && (pixel == start || pixel == end || inpassable.find(pixel) == inpassable.end());
};
JPSTracer<Pixel, decltype(cell_query)> tracer(end, cell_query);
using QNode = astar::QNode<JPSTracer<Pixel, decltype(cell_query)>>;
std::unordered_map<size_t, QNode> astar_cache{};
std::vector<Pixel> out_path;
std::vector<decltype(tracer)::Node> out_nodes;
if (!astar::search_route(tracer, {start, {0, 0}}, std::back_inserter(out_nodes), astar_cache)) {
// path not found - just reconstruct the best path from astar cache.
// Note that astar_cache is NOT empty - at least the starting point should always be there
auto coordiante_func = [&astar_cache](size_t idx, size_t dim) { return float(astar_cache[idx].node.position[dim]); };
std::vector<size_t> keys;
keys.reserve(astar_cache.size());
for (const auto &pair : astar_cache) { keys.push_back(pair.first); }
KDTreeIndirect<2, float, decltype(coordiante_func)> kd_tree(coordiante_func, keys);
size_t closest_qnode = find_closest_point(kd_tree, end.cast<float>());
out_path.push_back(end);
while (closest_qnode != astar::Unassigned) {
out_path.push_back(astar_cache[closest_qnode].node.position);
closest_qnode = astar_cache[closest_qnode].parent;
}
} else {
for (const auto &node : out_nodes) { out_path.push_back(node.position); }
out_path.push_back(start);
}
#ifdef DEBUG_FILES
auto scaled_points = [](const Points &ps) {
Points r;
for (const Point &p : ps) { r.push_back(Point::new_scale(p.x(), p.y())); }
return r;
};
auto scaled_point = [](const Point &p) { return Point::new_scale(p.x(), p.y()); };
::Slic3r::SVG svg(debug_out_path(("path_jps" + std::to_string(print_z) + "_" + std::to_string(rand() % 1000)).c_str()).c_str(),
BoundingBox(scaled_point(search_box.min), scaled_point(search_box.max)));
for (const auto &p : inpassable) { svg.draw(scaled_point(p), "black", scale_(0.4)); }
for (const auto &qn : astar_cache) { svg.draw(scaled_point(qn.second.node.position), "blue", scale_(0.3)); }
svg.draw(Polyline(scaled_points(out_path)), "yellow", scale_(0.25));
svg.draw(scaled_point(end), "purple", scale_(0.4));
svg.draw(scaled_point(start), "green", scale_(0.4));
#endif
std::vector<Pixel> tmp_path;
tmp_path.reserve(out_path.size());
// Some path found, reverse and remove points that do not change direction
std::reverse(out_path.begin(), out_path.end());
{
tmp_path.push_back(out_path.front()); // first point
for (size_t i = 1; i < out_path.size() - 1; i++) {
if ((out_path[i] - out_path[i - 1]).cast<float>().normalized() != (out_path[i + 1] - out_path[i]).cast<float>().normalized()) {
tmp_path.push_back(out_path[i]);
}
}
tmp_path.push_back(out_path.back()); // last_point
out_path = tmp_path;
}
#ifdef DEBUG_FILES
svg.draw(Polyline(scaled_points(out_path)), "orange", scale_(0.20));
#endif
tmp_path.clear();
// remove redundant jump points - there are points that change direction but are not needed - this inefficiency arises from the
// usage of grid search The removal alg tries to find the longest Px Px+k path without obstacles. If Px Px+k+1 is blocked, it will
// insert the Px+k point to result and continue search from Px+k
{
tmp_path.push_back(out_path.front()); // first point
size_t index_of_last_stored_point = 0;
for (size_t i = 1; i < out_path.size(); i++) {
if (i - index_of_last_stored_point < 2) continue;
bool passable = true;
auto store_obstacle = [&](coord_t x, coord_t y) {
if (Pixel(x, y) != start && Pixel(x, y) != end && inpassable.find(Pixel(x, y)) != inpassable.end()) {
passable = false;
return false;
}
return true;
};
dda(tmp_path.back().x(), tmp_path.back().y(), out_path[i].x(), out_path[i].y(), store_obstacle);
if (!passable) {
tmp_path.push_back(out_path[i - 1]);
index_of_last_stored_point = i - 1;
}
}
tmp_path.push_back(out_path.back()); // last_point
out_path = tmp_path;
}
#ifdef DEBUG_FILES
svg.draw(Polyline(scaled_points(out_path)), "red", scale_(0.15));
svg.Close();
#endif
// before returing the path, transform it from pixels back to points.
// Also replace the first and last pixel by input points so that result path patches input params exactly.
for (Pixel &p : out_path) { p = unpixelize(p); }
out_path.front() = p0;
out_path.back() = p1;
return Polyline(out_path);
}
} // namespace Slic3r