PrusaSlicer-NonPlainar/lib/Slic3r/TriangleMesh.pm
2012-05-10 19:07:20 +01:00

551 lines
20 KiB
Perl

package Slic3r::TriangleMesh;
use Moo;
use Slic3r::Geometry qw(X Y Z A B unscale same_point);
# public
has 'vertices' => (is => 'ro', required => 1); # id => [$x,$y,$z]
has 'facets' => (is => 'ro', required => 1); # id => [ $normal, $v1_id, $v2_id, $v3_id ]
# private
has 'edges' => (is => 'ro', default => sub { [] }); # id => [ $v1_id, $v2_id ]
has 'facets_edges' => (is => 'ro', default => sub { [] }); # id => [ $e1_id, $e2_id, $e3_id ]
has 'edges_facets' => (is => 'ro', default => sub { [] }); # id => [ $f1_id, $f2_id, (...) ]
use constant MIN => 0;
use constant MAX => 1;
use constant I_B => 0;
use constant I_A_ID => 1;
use constant I_B_ID => 2;
use constant I_FACET_INDEX => 3;
use constant I_PREV_FACET_INDEX => 4;
use constant I_NEXT_FACET_INDEX => 5;
use constant I_FACET_EDGE => 6;
use constant FE_TOP => 0;
use constant FE_BOTTOM => 1;
# always make sure BUILD is idempotent
sub BUILD {
my $self = shift;
@{$self->edges} = ();
@{$self->facets_edges} = ();
@{$self->edges_facets} = ();
my %table = (); # edge_coordinates => edge_id
for (my $facet_id = 0; $facet_id <= $#{$self->facets}; $facet_id++) {
my $facet = $self->facets->[$facet_id];
$self->facets_edges->[$facet_id] = [];
# reorder vertices so that the first one is the one with lowest Z
# this is needed to get all intersection lines in a consistent order
# (external on the right of the line)
{
my @z_order = sort { $self->vertices->[$facet->[$a]][Z] <=> $self->vertices->[$facet->[$b]][Z] } 1..3;
@$facet[1..3] = (@$facet[$z_order[0]..3], @$facet[1..($z_order[0]-1)]);
}
# ignore the normal if provided
my @vertices = @$facet[-3..-1];
foreach my $edge ($self->_facet_edges($facet_id)) {
my $edge_coordinates = join ';', sort @$edge;
my $edge_id = $table{$edge_coordinates};
if (!defined $edge_id) {
# Note that the order of vertices in $self->edges is *casual* because it is only
# good for one of the two adjacent facets. For this reason, it must not be used
# when dealing with single facets.
push @{$self->edges}, $edge;
$edge_id = $#{$self->edges};
$table{$edge_coordinates} = $edge_id;
$self->edges_facets->[$edge_id] = [];
}
push @{$self->facets_edges->[$facet_id]}, $edge_id;
push @{$self->edges_facets->[$edge_id]}, $facet_id;
}
}
}
sub clone {
my $self = shift;
return (ref $self)->new(
vertices => [ map [ @$_ ], @{$self->vertices} ],
facets => [ map [ @$_ ], @{$self->facets} ],
);
}
sub _facet_edges {
my $self = shift;
my ($facet_id) = @_;
my $facet = $self->facets->[$facet_id];
return (
[ $facet->[1], $facet->[2] ],
[ $facet->[2], $facet->[3] ],
[ $facet->[3], $facet->[1] ],
);
}
# This method is supposed to remove narrow triangles, but it actually doesn't
# work much; I'm committing it for future reference but I'm going to remove it later.
# Note: a 'clean' method should actually take care of non-manifold facets and remove
# them.
sub clean {
my $self = shift;
# retrieve all edges shared by more than two facets;
my @weird_edges = grep { @{$self->edge_facets->{$_}} != 2 } keys %{$self->edge_facets};
# usually most of these facets are very narrow triangles whose two edges
# are detected as collapsed, and thus added twice to the edge in edge_fasets table
# let's identify these triangles
my @narrow_facets_indexes = ();
foreach my $edge_id (@weird_edges) {
my %facet_count = ();
$facet_count{$_}++ for @{$self->edge_facets->{$edge_id}};
@{$self->edge_facets->{$edge_id}} = grep $facet_count{$_} == 1, keys %facet_count;
push @narrow_facets_indexes, grep $facet_count{$_} > 1, keys %facet_count;
}
# remove identified narrow facets
foreach my $facet_id (@narrow_facets_indexes) {last;
splice @{$self->facets}, $facet_id, 1;
splice @{$self->facets_edges}, $facet_id, 1;
foreach my $facet_ides (values %{$self->edge_facets}) {
@$facet_ides = map { $_ > $facet_id ? ($_-1) : $_ } @$facet_ides;
}
}
Slic3r::debugf "%d narrow facets removed\n", scalar(@narrow_facets_indexes)
if @narrow_facets_indexes;
}
sub check_manifoldness {
my $self = shift;
# look for edges not connected to exactly two facets
if (grep { @$_ != 2 } @{$self->edges_facets}) {
my ($first_bad_edge_id) = grep { @{ $self->edges_facets->[$_] } != 2 } 0..$#{$self->edges_facets};
warn sprintf "Warning: The input file is not manifold near edge %f-%f. "
. "You might want to check the resulting G-code before printing.\n",
@{$self->edges->[$first_bad_edge_id]};
}
}
sub make_loops {
my $self = shift;
my ($layer) = @_;
my @lines = @{$layer->lines};
# remove tangent edges
{
for (my $i = 0; $i <= $#lines; $i++) {
next unless defined $lines[$i] && defined $lines[$i][I_FACET_EDGE];
# if the line is a facet edge, find another facet edge
# having the same endpoints but in reverse order
for (my $j = $i+1; $j <= $#lines; $j++) {
next unless defined $lines[$j] && defined $lines[$j][I_FACET_EDGE];
# are these facets adjacent? (sharing a common edge on this layer)
if ($lines[$i][I_A_ID] == $lines[$j][I_B_ID] && $lines[$i][I_B_ID] == $lines[$j][I_A_ID]) {
# if they are both oriented upwards or downwards (like a 'V')
# then we can remove both edges from this layer since it won't
# affect the sliced shape
if ($lines[$j][I_FACET_EDGE] == $lines[$i][I_FACET_EDGE]) {
$lines[$i] = undef;
$lines[$j] = undef;
last;
}
# if one of them is oriented upwards and the other is oriented
# downwards, let's only keep one of them (it doesn't matter which
# one since all 'top' lines were reversed at slicing)
if ($lines[$i][I_FACET_EDGE] == FE_TOP && $lines[$j][I_FACET_EDGE] == FE_BOTTOM) {
$lines[$j] = undef;
last;
}
}
}
}
}
@lines = grep $_, @lines;
# count relationships
my %prev_count = (); # how many lines have the same prev_facet_index
my %a_count = (); # how many lines have the same a_id
foreach my $line (@lines) {
if (defined $line->[I_PREV_FACET_INDEX]) {
$prev_count{$line->[I_PREV_FACET_INDEX]}++;
}
if (defined $line->[I_A_ID]) {
$a_count{$line->[I_A_ID]}++;
}
}
foreach my $point_id (grep $a_count{$_} > 1, keys %a_count) {
my @lines_starting_here = grep defined $_->[I_A_ID] && defined $_[I_FACET_EDGE] && $_->[I_A_ID] == $point_id, @lines;
Slic3r::debugf "%d lines start at point %d\n", scalar(@lines_starting_here), $point_id;
# if two lines start at this point, one being a 'top' facet edge and the other being a 'bottom' one,
# then remove the top one and those following it (removing the top or the bottom one is an arbitrary
# choice)
if (@lines_starting_here == 2 && join('', sort map $_->[I_FACET_EDGE], @lines_starting_here) eq FE_TOP.FE_BOTTOM) {
my @to_remove = grep $_->[I_FACET_EDGE] == FE_TOP, @lines_starting_here;
while (!grep defined $_->[I_B_ID] && $_->[I_B_ID] == $to_remove[-1]->[I_B_ID] && $_ ne $to_remove[-1], @lines) {
push @to_remove, grep defined $_->[I_A_ID] && $_->[I_A_ID] == $to_remove[-1]->[I_B_ID], @lines;
}
my %to_remove = map {$_ => 1} @to_remove;
@lines = grep !$to_remove{$_}, @lines;
} else {
Slic3r::debugf " this shouldn't happen and should be further investigated\n";
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "same_point.svg",
lines => [ map $_->line, grep !defined $_->[I_FACET_EDGE], @lines ],
red_lines => [ map $_->line, grep defined $_->[I_FACET_EDGE], @lines ],
points => [ $self->vertices->[$point_id] ],
no_arrows => 0,
);
}
}
}
# optimization: build indexes of lines
my %by_facet_index = map { $lines[$_][I_FACET_INDEX] => $_ }
grep defined $lines[$_][I_FACET_INDEX],
(0..$#lines);
my %by_a_id = map { $lines[$_][I_A_ID] => $_ }
grep defined $lines[$_][I_A_ID],
(0..$#lines);
my (@polygons, %visited_lines) = ();
CYCLE: for (my $i = 0; $i <= $#lines; $i++) {
my $line = $lines[$i];
next if $visited_lines{$line};
my @points = ();
my $first_facet_index = $line->[I_FACET_INDEX];
do {
my $next_line;
if (defined $line->[I_NEXT_FACET_INDEX] && exists $by_facet_index{$line->[I_NEXT_FACET_INDEX]}) {
$next_line = $lines[$by_facet_index{$line->[I_NEXT_FACET_INDEX]}];
} elsif (defined $line->[I_B_ID] && exists $by_a_id{$line->[I_B_ID]}) {
$next_line = $lines[$by_a_id{$line->[I_B_ID]}];
} else {
Slic3r::debugf " line has no next_facet_index or b_id\n";
$layer->slicing_errors(1);
next CYCLE;
}
if (!$next_line || $visited_lines{$next_line}) {
Slic3r::debugf " failed to close this loop\n";
$layer->slicing_errors(1);
next CYCLE;
} elsif (defined $next_line->[I_PREV_FACET_INDEX] && $next_line->[I_PREV_FACET_INDEX] != $line->[I_FACET_INDEX]) {
Slic3r::debugf " wrong prev_facet_index\n";
$layer->slicing_errors(1);
next CYCLE;
} elsif (defined $next_line->[I_A_ID] && $next_line->[I_A_ID] != $line->[I_B_ID]) {
Slic3r::debugf " wrong a_id\n";
$layer->slicing_errors(1);
next CYCLE;
}
push @points, $next_line->[I_B];
$visited_lines{$next_line} = 1;
$line = $next_line;
} while ($first_facet_index != $line->[I_FACET_INDEX]);
push @polygons, Slic3r::Polygon->new(@points);
Slic3r::debugf " Discovered %s polygon of %d points\n",
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@points)
if $Slic3r::debug;
}
return [@polygons];
}
sub rotate {
my $self = shift;
my ($deg) = @_;
return if $deg == 0;
my $rad = Slic3r::Geometry::deg2rad($deg);
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
@$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, undef, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]);
}
}
sub scale {
my $self = shift;
my ($factor) = @_;
return if $factor == 1;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] *= $factor for X,Y,Z;
}
}
sub move {
my $self = shift;
my (@shift) = @_;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] += $shift[$_] || 0 for X,Y,Z;
}
}
sub align_to_origin {
my $self = shift;
# calculate the displacements needed to
# have lowest value for each axis at coordinate 0
my @extents = $self->bounding_box;
$self->move(map -$extents[$_][MIN], X,Y,Z);
}
sub duplicate {
my $self = shift;
my (@shifts) = @_;
my @new_facets = ();
foreach my $facet (@{$self->facets}) {
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
foreach my $shift (@shifts) {
push @new_facets, [ $normal ];
foreach my $vertex (@vertices) {
push @{$self->vertices}, [ map $self->vertices->[$vertex][$_] + ($shift->[$_] || 0), (X,Y,Z) ];
push @{$new_facets[-1]}, $#{$self->vertices};
}
}
}
push @{$self->facets}, @new_facets;
$self->BUILD;
}
sub bounding_box {
my $self = shift;
my @extents = (map [undef, undef], X,Y,Z);
foreach my $vertex (@{$self->vertices}) {
for (X,Y,Z) {
$extents[$_][MIN] = $vertex->[$_] if !defined $extents[$_][MIN] || $vertex->[$_] < $extents[$_][MIN];
$extents[$_][MAX] = $vertex->[$_] if !defined $extents[$_][MAX] || $vertex->[$_] > $extents[$_][MAX];
}
}
return @extents;
}
sub size {
my $self = shift;
my @extents = $self->bounding_box;
return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z);
}
sub slice_facet {
my $self = shift;
my ($print_object, $facet_id) = @_;
my ($normal, @vertices) = @{$self->facets->[$facet_id]};
Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n",
$facet_id, map @{$self->vertices->[$_]}, @vertices
if $Slic3r::debug;
# find the vertical extents of the facet
my ($min_z, $max_z) = (99999999999, -99999999999);
foreach my $vertex (@vertices) {
my $vertex_z = $self->vertices->[$vertex][Z];
$min_z = $vertex_z if $vertex_z < $min_z;
$max_z = $vertex_z if $vertex_z > $max_z;
}
Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z;
if ($max_z == $min_z) {
Slic3r::debugf "Facet is horizontal; ignoring\n";
return;
}
# calculate the layer extents
my $first_layer_height = $Slic3r::layer_height * $Slic3r::first_layer_height_ratio;
my $min_layer = int((unscale($min_z) - ($first_layer_height + $Slic3r::layer_height / 2)) / $Slic3r::layer_height) - 2;
$min_layer = 0 if $min_layer < 0;
my $max_layer = int((unscale($max_z) - ($first_layer_height + $Slic3r::layer_height / 2)) / $Slic3r::layer_height) + 2;
Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer;
my $lines = {}; # layer_id => [ lines ]
for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) {
my $layer = $print_object->layer($layer_id);
$lines->{$layer_id} ||= [];
push @{ $lines->{$layer_id} }, $self->intersect_facet($facet_id, $layer->slice_z);
}
return $lines;
}
sub intersect_facet {
my $self = shift;
my ($facet_id, $z) = @_;
my @vertices_ids = @{$self->facets->[$facet_id]}[1..3];
my @edge_ids = @{$self->facets_edges->[$facet_id]};
my @edge_vertices_ids = $self->_facet_edges($facet_id);
my (@lines, @points, @intersection_points, @points_on_layer) = ();
for my $e (0..2) {
my $edge_id = $edge_ids[$e];
my ($a_id, $b_id) = @{$edge_vertices_ids[$e]};
my ($a, $b) = map $self->vertices->[$_], ($a_id, $b_id);
#printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z;
if ($a->[Z] == $b->[Z] && $a->[Z] == $z) {
# edge is horizontal and belongs to the current layer
my $edge_type = (grep $self->vertices->[$_][Z] < $z, @vertices_ids) ? FE_TOP : FE_BOTTOM;
if ($edge_type == FE_TOP) {
($a, $b) = ($b, $a);
($a_id, $b_id) = ($b_id, $a_id);
}
push @lines, [
[$b->[X], $b->[Y]], # I_B
$a_id, # I_A_ID
$b_id, # I_B_ID
$facet_id, # I_FACET_INDEX
undef, # I_PREV_FACET_INDEX
undef, # I_NEXT_FACET_INDEX
$edge_type, # I_FACET_EDGE
# Unused data:
# a => [$a->[X], $a->[Y]],
];
#print "Horizontal edge at $z!\n";
} elsif ($a->[Z] == $z) {
#print "A point on plane $z!\n";
push @points, [ $a->[X], $a->[Y], $a_id ];
push @points_on_layer, $#points;
} elsif ($b->[Z] == $z) {
#print "B point on plane $z!\n";
push @points, [ $b->[X], $b->[Y], $b_id ];
push @points_on_layer, $#points;
} elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) {
# edge intersects the current layer; calculate intersection
push @points, [
$b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
undef,
$edge_id,
];
push @intersection_points, $#points;
#print "Intersects at $z!\n";
}
}
return @lines if @lines;
if (@points_on_layer == 2 && @intersection_points == 1) {
$points[ $points_on_layer[1] ] = undef;
@points = grep $_, @points;
}
if (@points_on_layer == 2 && @intersection_points == 0) {
if (same_point(map $points[$_], @points_on_layer)) {
return ();
}
}
if (@points) {
# defensive programming:
die "Facets must intersect each plane 0 or 2 times" if @points != 2;
# connect points:
my ($prev_facet_index, $next_facet_index) = (undef, undef);
$prev_facet_index = +(grep $_ != $facet_id, @{$self->edges_facets->[$points[B][3]]})[0]
if defined $points[B][3];
$next_facet_index = +(grep $_ != $facet_id, @{$self->edges_facets->[$points[A][3]]})[0]
if defined $points[A][3];
return [
[$points[A][X], $points[A][Y]], # I_B
$points[B][2], # I_A_ID
$points[A][2], # I_B_ID
$facet_id, # I_FACET_INDEX
$prev_facet_index, # I_PREV_FACET_INDEX
$next_facet_index, # I_NEXT_FACET_INDEX
undef, # I_FACET_EDGE
# Unused data:
# a => [$points[B][X], $points[B][Y]],
# prev_edge_id => $points[B][3],
# next_edge_id => $points[A][3],
];
#printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points;
}
return ();
}
sub get_connected_facets {
my $self = shift;
my ($facet_id) = @_;
my %facets = ();
foreach my $edge_id (@{$self->facets_edges->[$facet_id]}) {
$facets{$_} = 1 for @{$self->edges_facets->[$edge_id]};
}
delete $facets{$facet_id};
return keys %facets;
}
sub split_mesh {
my $self = shift;
my @meshes = ();
# loop while we have remaining facets
while (1) {
# get the first facet
my @facet_queue = ();
my @facets = ();
for (my $i = 0; $i <= $#{$self->facets}; $i++) {
if (defined $self->facets->[$i]) {
push @facet_queue, $i;
last;
}
}
last if !@facet_queue;
while (defined (my $facet_id = shift @facet_queue)) {
next unless defined $self->facets->[$facet_id];
push @facets, map [ @$_ ], $self->facets->[$facet_id];
push @facet_queue, $self->get_connected_facets($facet_id);
$self->facets->[$facet_id] = undef;
}
my %vertices = map { $_ => 1 } map @$_[1,2,3], @facets;
my @new_vertices = keys %vertices;
my %new_vertices = map { $new_vertices[$_] => $_ } 0..$#new_vertices;
foreach my $facet (@facets) {
$facet->[$_] = $new_vertices{$facet->[$_]} for 1,2,3;
}
push @meshes, Slic3r::TriangleMesh->new(
facets => \@facets,
vertices => [ map $self->vertices->[$_], keys %vertices ],
);
}
return @meshes;
}
1;