PrusaSlicer-NonPlainar/src/libslic3r/Print.hpp

414 lines
20 KiB
C++

#ifndef slic3r_Print_hpp_
#define slic3r_Print_hpp_
#include "PrintBase.hpp"
#include "BoundingBox.hpp"
#include "Flow.hpp"
#include "Point.hpp"
#include "Layer.hpp"
#include "Model.hpp"
#include "Slicing.hpp"
#include "GCode/ToolOrdering.hpp"
#include "GCode/WipeTower.hpp"
namespace Slic3r {
class Print;
class PrintObject;
class ModelObject;
class GCode;
class GCodePreviewData;
// Print step IDs for keeping track of the print state.
enum PrintStep {
psSkirt, psBrim, psWipeTower, psGCodeExport, psCount,
};
enum PrintObjectStep {
posSlice, posPerimeters, posPrepareInfill,
posInfill, posSupportMaterial, posCount,
};
// A PrintRegion object represents a group of volumes to print
// sharing the same config (including the same assigned extruder(s))
class PrintRegion
{
friend class Print;
// Methods NOT modifying the PrintRegion's state:
public:
const Print* print() const { return m_print; }
const PrintRegionConfig& config() const { return m_config; }
// 1-based extruder identifier for this region and role.
unsigned int extruder(FlowRole role) const;
Flow flow(FlowRole role, double layer_height, bool bridge, bool first_layer, double width, const PrintObject &object) const;
// Average diameter of nozzles participating on extruding this region.
coordf_t nozzle_dmr_avg(const PrintConfig &print_config) const;
// Average diameter of nozzles participating on extruding this region.
coordf_t bridging_height_avg(const PrintConfig &print_config) const;
// Collect extruder indices used to print this region's object.
void collect_object_printing_extruders(std::vector<unsigned int> &object_extruders) const;
static void collect_object_printing_extruders(const PrintConfig &print_config, const PrintRegionConfig &region_config, std::vector<unsigned int> &object_extruders);
// Methods modifying the PrintRegion's state:
public:
Print* print() { return m_print; }
void set_config(const PrintRegionConfig &config) { m_config = config; }
void set_config(PrintRegionConfig &&config) { m_config = std::move(config); }
void config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false)
{ this->m_config.apply_only(other, keys, ignore_nonexistent); }
protected:
size_t m_refcnt;
private:
Print *m_print;
PrintRegionConfig m_config;
PrintRegion(Print* print) : m_refcnt(0), m_print(print) {}
PrintRegion(Print* print, const PrintRegionConfig &config) : m_refcnt(0), m_print(print), m_config(config) {}
~PrintRegion() {}
};
typedef std::vector<Layer*> LayerPtrs;
typedef std::vector<SupportLayer*> SupportLayerPtrs;
class BoundingBoxf3; // TODO: for temporary constructor parameter
class PrintObject : public PrintObjectBaseWithState<Print, PrintObjectStep, posCount>
{
private: // Prevents erroneous use by other classes.
typedef PrintObjectBaseWithState<Print, PrintObjectStep, posCount> Inherited;
public:
// vector of (layer height ranges and vectors of volume ids), indexed by region_id
std::vector<std::vector<std::pair<t_layer_height_range, int>>> region_volumes;
// this is set to true when LayerRegion->slices is split in top/internal/bottom
// so that next call to make_perimeters() performs a union() before computing loops
bool typed_slices;
Vec3crd size; // XYZ in scaled coordinates
const PrintObjectConfig& config() const { return m_config; }
const LayerPtrs& layers() const { return m_layers; }
const SupportLayerPtrs& support_layers() const { return m_support_layers; }
const Transform3d& trafo() const { return m_trafo; }
const Points& copies() const { return m_copies; }
const Point copy_center(size_t idx) const { return m_copies[idx] + m_copies_shift + Point(this->size.x() / 2, this->size.y() / 2); }
// since the object is aligned to origin, bounding box coincides with size
BoundingBox bounding_box() const { return BoundingBox(Point(0,0), to_2d(this->size)); }
// adds region_id, too, if necessary
void add_region_volume(unsigned int region_id, int volume_id, const t_layer_height_range &layer_range) {
if (region_id >= region_volumes.size())
region_volumes.resize(region_id + 1);
region_volumes[region_id].emplace_back(layer_range, volume_id);
}
// This is the *total* layer count (including support layers)
// this value is not supposed to be compared with Layer::id
// since they have different semantics.
size_t total_layer_count() const { return this->layer_count() + this->support_layer_count(); }
size_t layer_count() const { return m_layers.size(); }
void clear_layers();
Layer* get_layer(int idx) { return m_layers[idx]; }
const Layer* get_layer(int idx) const { return m_layers[idx]; }
// print_z: top of the layer; slice_z: center of the layer.
Layer* add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z);
size_t support_layer_count() const { return m_support_layers.size(); }
void clear_support_layers();
SupportLayer* get_support_layer(int idx) { return m_support_layers[idx]; }
SupportLayer* add_support_layer(int id, coordf_t height, coordf_t print_z);
SupportLayerPtrs::const_iterator insert_support_layer(SupportLayerPtrs::const_iterator pos, size_t id, coordf_t height, coordf_t print_z, coordf_t slice_z);
void delete_support_layer(int idx);
// Initialize the layer_height_profile from the model_object's layer_height_profile, from model_object's layer height table, or from slicing parameters.
// Returns true, if the layer_height_profile was changed.
static bool update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile);
// Collect the slicing parameters, to be used by variable layer thickness algorithm,
// by the interactive layer height editor and by the printing process itself.
// The slicing parameters are dependent on various configuration values
// (layer height, first layer height, raft settings, print nozzle diameter etc).
const SlicingParameters& slicing_parameters() const { return m_slicing_params; }
static SlicingParameters slicing_parameters(const DynamicPrintConfig &full_config, const ModelObject &model_object, float object_max_z);
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
std::vector<unsigned int> object_extruders() const;
// Called when slicing to SVG (see Print.pm sub export_svg), and used by perimeters.t
void slice();
// Helpers to slice support enforcer / blocker meshes by the support generator.
std::vector<ExPolygons> slice_support_volumes(const ModelVolumeType &model_volume_type) const;
std::vector<ExPolygons> slice_support_blockers() const { return this->slice_support_volumes(ModelVolumeType::SUPPORT_BLOCKER); }
std::vector<ExPolygons> slice_support_enforcers() const { return this->slice_support_volumes(ModelVolumeType::SUPPORT_ENFORCER); }
protected:
// to be called from Print only.
friend class Print;
PrintObject(Print* print, ModelObject* model_object, bool add_instances = true);
~PrintObject() {}
void config_apply(const ConfigBase &other, bool ignore_nonexistent = false) { this->m_config.apply(other, ignore_nonexistent); }
void config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false) { this->m_config.apply_only(other, keys, ignore_nonexistent); }
void set_trafo(const Transform3d& trafo) { m_trafo = trafo; }
PrintBase::ApplyStatus set_copies(const Points &points);
// Invalidates the step, and its depending steps in PrintObject and Print.
bool invalidate_step(PrintObjectStep step);
// Invalidates all PrintObject and Print steps.
bool invalidate_all_steps();
// Invalidate steps based on a set of parameters changed.
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
// If ! m_slicing_params.valid, recalculate.
void update_slicing_parameters();
static PrintObjectConfig object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders);
static PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders);
private:
void make_perimeters();
void prepare_infill();
void infill();
void generate_support_material();
void _slice(const std::vector<coordf_t> &layer_height_profile);
std::string _fix_slicing_errors();
void _simplify_slices(double distance);
bool has_support_material() const;
void detect_surfaces_type();
void process_external_surfaces();
void discover_vertical_shells();
void bridge_over_infill();
void clip_fill_surfaces();
void discover_horizontal_shells();
void combine_infill();
void _generate_support_material();
PrintObjectConfig m_config;
// Translation in Z + Rotation + Scaling / Mirroring.
Transform3d m_trafo = Transform3d::Identity();
// Slic3r::Point objects in scaled G-code coordinates
Points m_copies;
// scaled coordinates to add to copies (to compensate for the alignment
// operated when creating the object but still preserving a coherent API
// for external callers)
Point m_copies_shift;
SlicingParameters m_slicing_params;
LayerPtrs m_layers;
SupportLayerPtrs m_support_layers;
std::vector<ExPolygons> slice_region(size_t region_id, const std::vector<float> &z) const;
std::vector<ExPolygons> slice_modifiers(size_t region_id, const std::vector<float> &z) const;
std::vector<ExPolygons> slice_volumes(const std::vector<float> &z, const std::vector<const ModelVolume*> &volumes) const;
std::vector<ExPolygons> slice_volume(const std::vector<float> &z, const ModelVolume &volume) const;
std::vector<ExPolygons> slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, const ModelVolume &volume) const;
};
struct WipeTowerData
{
// Following section will be consumed by the GCodeGenerator.
// Tool ordering of a non-sequential print has to be known to calculate the wipe tower.
// Cache it here, so it does not need to be recalculated during the G-code generation.
ToolOrdering tool_ordering;
// Cache of tool changes per print layer.
std::unique_ptr<std::vector<WipeTower::ToolChangeResult>> priming;
std::vector<std::vector<WipeTower::ToolChangeResult>> tool_changes;
std::unique_ptr<WipeTower::ToolChangeResult> final_purge;
std::vector<float> used_filament;
int number_of_toolchanges;
// Depth of the wipe tower to pass to GLCanvas3D for exact bounding box:
float depth;
float brim_width;
void clear() {
tool_ordering.clear();
priming.reset(nullptr);
tool_changes.clear();
final_purge.reset(nullptr);
used_filament.clear();
number_of_toolchanges = -1;
depth = 0.f;
brim_width = 0.f;
}
};
struct PrintStatistics
{
PrintStatistics() { clear(); }
std::string estimated_normal_print_time;
std::string estimated_silent_print_time;
std::vector<std::string> estimated_normal_color_print_times;
std::vector<std::string> estimated_silent_color_print_times;
double total_used_filament;
double total_extruded_volume;
double total_cost;
double total_weight;
double total_wipe_tower_cost;
double total_wipe_tower_filament;
std::map<size_t, float> filament_stats;
// Config with the filled in print statistics.
DynamicConfig config() const;
// Config with the statistics keys populated with placeholder strings.
static DynamicConfig placeholders();
// Replace the print statistics placeholders in the path.
std::string finalize_output_path(const std::string &path_in) const;
void clear() {
estimated_normal_print_time.clear();
estimated_silent_print_time.clear();
estimated_normal_color_print_times.clear();
estimated_silent_color_print_times.clear();
total_used_filament = 0.;
total_extruded_volume = 0.;
total_cost = 0.;
total_weight = 0.;
total_wipe_tower_cost = 0.;
total_wipe_tower_filament = 0.;
filament_stats.clear();
}
};
typedef std::vector<PrintObject*> PrintObjectPtrs;
typedef std::vector<PrintRegion*> PrintRegionPtrs;
// The complete print tray with possibly multiple objects.
class Print : public PrintBaseWithState<PrintStep, psCount>
{
private: // Prevents erroneous use by other classes.
typedef PrintBaseWithState<PrintStep, psCount> Inherited;
public:
Print() {}
virtual ~Print() { this->clear(); }
PrinterTechnology technology() const noexcept { return ptFFF; }
// Methods, which change the state of Print / PrintObject / PrintRegion.
// The following methods are synchronized with process() and export_gcode(),
// so that process() and export_gcode() may be called from a background thread.
// In case the following methods need to modify data processed by process() or export_gcode(),
// a cancellation callback is executed to stop the background processing before the operation.
void clear() override;
bool empty() const override { return m_objects.empty(); }
ApplyStatus apply(const Model &model, DynamicPrintConfig config) override;
void process() override;
// Exports G-code into a file name based on the path_template, returns the file path of the generated G-code file.
// If preview_data is not null, the preview_data is filled in for the G-code visualization (not used by the command line Slic3r).
std::string export_gcode(const std::string &path_template, GCodePreviewData *preview_data);
// methods for handling state
bool is_step_done(PrintStep step) const { return Inherited::is_step_done(step); }
// Returns true if an object step is done on all objects and there's at least one object.
bool is_step_done(PrintObjectStep step) const;
// Returns true if the last step was finished with success.
bool finished() const override { return this->is_step_done(psGCodeExport); }
bool has_infinite_skirt() const;
bool has_skirt() const;
// Returns an empty string if valid, otherwise returns an error message.
std::string validate() const override;
BoundingBox bounding_box() const;
BoundingBox total_bounding_box() const;
double skirt_first_layer_height() const;
Flow brim_flow() const;
Flow skirt_flow() const;
std::vector<unsigned int> object_extruders() const;
std::vector<unsigned int> support_material_extruders() const;
std::vector<unsigned int> extruders() const;
double max_allowed_layer_height() const;
bool has_support_material() const;
// Make sure the background processing has no access to this model_object during this call!
void auto_assign_extruders(ModelObject* model_object) const;
const PrintConfig& config() const { return m_config; }
const PrintObjectConfig& default_object_config() const { return m_default_object_config; }
const PrintRegionConfig& default_region_config() const { return m_default_region_config; }
const PrintObjectPtrs& objects() const { return m_objects; }
PrintObject* get_object(size_t idx) { return m_objects[idx]; }
const PrintObject* get_object(size_t idx) const { return m_objects[idx]; }
const PrintRegionPtrs& regions() const { return m_regions; }
// How many of PrintObject::copies() over all print objects are there?
// If zero, then the print is empty and the print shall not be executed.
unsigned int num_object_instances() const;
// Returns extruder this eec should be printed with, according to PrintRegion config:
static int get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion &region);
const ExtrusionEntityCollection& skirt() const { return m_skirt; }
const ExtrusionEntityCollection& brim() const { return m_brim; }
const PrintStatistics& print_statistics() const { return m_print_statistics; }
// Wipe tower support.
bool has_wipe_tower() const;
const WipeTowerData& wipe_tower_data(size_t extruders_cnt = 0, double first_layer_height = 0., double nozzle_diameter = 0.) const;
std::string output_filename(const std::string &filename_base = std::string()) const override;
// Accessed by SupportMaterial
const PrintRegion* get_region(size_t idx) const { return m_regions[idx]; }
protected:
// methods for handling regions
PrintRegion* get_region(size_t idx) { return m_regions[idx]; }
PrintRegion* add_region();
PrintRegion* add_region(const PrintRegionConfig &config);
// Invalidates the step, and its depending steps in Print.
bool invalidate_step(PrintStep step);
private:
void config_diffs(
const DynamicPrintConfig &new_full_config,
t_config_option_keys &print_diff, t_config_option_keys &object_diff, t_config_option_keys &region_diff,
t_config_option_keys &full_config_diff,
DynamicPrintConfig &placeholder_parser_overrides,
DynamicPrintConfig &filament_overrides) const;
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
void _make_skirt();
void _make_brim();
void _make_wipe_tower();
// Declared here to have access to Model / ModelObject / ModelInstance
static void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_src);
PrintConfig m_config;
PrintObjectConfig m_default_object_config;
PrintRegionConfig m_default_region_config;
PrintObjectPtrs m_objects;
PrintRegionPtrs m_regions;
// Ordered collections of extrusion paths to build skirt loops and brim.
ExtrusionEntityCollection m_skirt;
ExtrusionEntityCollection m_brim;
// Following section will be consumed by the GCodeGenerator.
WipeTowerData m_wipe_tower_data;
// Estimated print time, filament consumed.
PrintStatistics m_print_statistics;
// To allow GCode to set the Print's GCodeExport step status.
friend class GCode;
// Allow PrintObject to access m_mutex and m_cancel_callback.
friend class PrintObject;
};
} /* slic3r_Print_hpp_ */
#endif