7d4b3f2992
Fixes Solid infill where there should be none #6482 Also the safety offsetting was revised to be enabled only where needed, the "do safety offset" is now easy to discover by a new ApplySafetyOffset::Yes enum, and safety offset over union, which is better done by offset() / offset_ex() has been replaced with new union_safety_offset() / union_safety_offset_ex() functions, which better convey their meaning and which could be better optimized than union() with the safety offset applied.
561 lines
28 KiB
C++
561 lines
28 KiB
C++
#include "PerimeterGenerator.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ExtrusionEntityCollection.hpp"
|
|
#include "ShortestPath.hpp"
|
|
|
|
#include <cmath>
|
|
#include <cassert>
|
|
|
|
namespace Slic3r {
|
|
|
|
static ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, const Flow &flow, const float tolerance)
|
|
{
|
|
ExtrusionPaths paths;
|
|
ExtrusionPath path(role);
|
|
ThickLines lines = thick_polyline.thicklines();
|
|
|
|
for (int i = 0; i < (int)lines.size(); ++i) {
|
|
const ThickLine& line = lines[i];
|
|
|
|
const coordf_t line_len = line.length();
|
|
if (line_len < SCALED_EPSILON) continue;
|
|
|
|
double thickness_delta = fabs(line.a_width - line.b_width);
|
|
if (thickness_delta > tolerance) {
|
|
const unsigned int segments = (unsigned int)ceil(thickness_delta / tolerance);
|
|
const coordf_t seg_len = line_len / segments;
|
|
Points pp;
|
|
std::vector<coordf_t> width;
|
|
{
|
|
pp.push_back(line.a);
|
|
width.push_back(line.a_width);
|
|
for (size_t j = 1; j < segments; ++j) {
|
|
pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
|
|
|
|
coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
|
|
width.push_back(w);
|
|
width.push_back(w);
|
|
}
|
|
pp.push_back(line.b);
|
|
width.push_back(line.b_width);
|
|
|
|
assert(pp.size() == segments + 1u);
|
|
assert(width.size() == segments*2);
|
|
}
|
|
|
|
// delete this line and insert new ones
|
|
lines.erase(lines.begin() + i);
|
|
for (size_t j = 0; j < segments; ++j) {
|
|
ThickLine new_line(pp[j], pp[j+1]);
|
|
new_line.a_width = width[2*j];
|
|
new_line.b_width = width[2*j+1];
|
|
lines.insert(lines.begin() + i + j, new_line);
|
|
}
|
|
|
|
-- i;
|
|
continue;
|
|
}
|
|
|
|
const double w = fmax(line.a_width, line.b_width);
|
|
if (path.polyline.points.empty()) {
|
|
path.polyline.append(line.a);
|
|
path.polyline.append(line.b);
|
|
// Convert from spacing to extrusion width based on the extrusion model
|
|
// of a square extrusion ended with semi circles.
|
|
Flow new_flow = flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
|
|
#ifdef SLIC3R_DEBUG
|
|
printf(" filling %f gap\n", flow.width);
|
|
#endif
|
|
path.mm3_per_mm = new_flow.mm3_per_mm();
|
|
path.width = new_flow.width();
|
|
path.height = new_flow.height();
|
|
} else {
|
|
thickness_delta = fabs(scale_(flow.width()) - w);
|
|
if (thickness_delta <= tolerance) {
|
|
// the width difference between this line and the current flow width is
|
|
// within the accepted tolerance
|
|
path.polyline.append(line.b);
|
|
} else {
|
|
// we need to initialize a new line
|
|
paths.emplace_back(std::move(path));
|
|
path = ExtrusionPath(role);
|
|
-- i;
|
|
}
|
|
}
|
|
}
|
|
if (path.polyline.is_valid())
|
|
paths.emplace_back(std::move(path));
|
|
return paths;
|
|
}
|
|
|
|
static void variable_width(const ThickPolylines& polylines, ExtrusionRole role, const Flow &flow, std::vector<ExtrusionEntity*> &out)
|
|
{
|
|
// This value determines granularity of adaptive width, as G-code does not allow
|
|
// variable extrusion within a single move; this value shall only affect the amount
|
|
// of segments, and any pruning shall be performed before we apply this tolerance.
|
|
const float tolerance = float(scale_(0.05));
|
|
for (const ThickPolyline &p : polylines) {
|
|
ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance);
|
|
// Append paths to collection.
|
|
if (! paths.empty()) {
|
|
if (paths.front().first_point() == paths.back().last_point())
|
|
out.emplace_back(new ExtrusionLoop(std::move(paths)));
|
|
else {
|
|
for (ExtrusionPath &path : paths)
|
|
out.emplace_back(new ExtrusionPath(std::move(path)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Hierarchy of perimeters.
|
|
class PerimeterGeneratorLoop {
|
|
public:
|
|
// Polygon of this contour.
|
|
Polygon polygon;
|
|
// Is it a contour or a hole?
|
|
// Contours are CCW oriented, holes are CW oriented.
|
|
bool is_contour;
|
|
// Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
|
|
unsigned short depth;
|
|
// Should this contur be fuzzyfied on path generation?
|
|
bool fuzzify;
|
|
// Children contour, may be both CCW and CW oriented (outer contours or holes).
|
|
std::vector<PerimeterGeneratorLoop> children;
|
|
|
|
PerimeterGeneratorLoop(const Polygon &polygon, unsigned short depth, bool is_contour, bool fuzzify) :
|
|
polygon(polygon), is_contour(is_contour), depth(depth), fuzzify(fuzzify) {}
|
|
// External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
|
|
bool is_external() const { return this->depth == 0; }
|
|
// An island, which may have holes, but it does not have another internal island.
|
|
bool is_internal_contour() const;
|
|
};
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_polygon(Polygon &poly, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
|
|
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
|
|
Point* p0 = &poly.points.back();
|
|
Points out;
|
|
out.reserve(poly.points.size());
|
|
for (Point &p1 : poly.points)
|
|
{ // 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1 - *p0).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
// so that p0p1_size - dist_last_point evaulates to dist_left_over - p0p1_size
|
|
double dist_last_point = dist_left_over + p0p1_size * 2.;
|
|
for (double p0pa_dist = dist_left_over; p0pa_dist < p0p1_size;
|
|
p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX))
|
|
{
|
|
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
|
|
out.emplace_back(*p0 + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>());
|
|
dist_last_point = p0pa_dist;
|
|
}
|
|
dist_left_over = p0p1_size - dist_last_point;
|
|
p0 = &p1;
|
|
}
|
|
while (out.size() < 3) {
|
|
size_t point_idx = poly.size() - 2;
|
|
out.emplace_back(poly[point_idx]);
|
|
if (point_idx == 0)
|
|
break;
|
|
-- point_idx;
|
|
}
|
|
if (out.size() >= 3)
|
|
poly.points = std::move(out);
|
|
}
|
|
|
|
using PerimeterGeneratorLoops = std::vector<PerimeterGeneratorLoop>;
|
|
|
|
static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perimeter_generator, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls)
|
|
{
|
|
// loops is an arrayref of ::Loop objects
|
|
// turn each one into an ExtrusionLoop object
|
|
ExtrusionEntityCollection coll;
|
|
Polygon fuzzified;
|
|
for (const PerimeterGeneratorLoop &loop : loops) {
|
|
bool is_external = loop.is_external();
|
|
|
|
ExtrusionRole role;
|
|
ExtrusionLoopRole loop_role;
|
|
role = is_external ? erExternalPerimeter : erPerimeter;
|
|
if (loop.is_internal_contour()) {
|
|
// Note that we set loop role to ContourInternalPerimeter
|
|
// also when loop is both internal and external (i.e.
|
|
// there's only one contour loop).
|
|
loop_role = elrContourInternalPerimeter;
|
|
} else {
|
|
loop_role = elrDefault;
|
|
}
|
|
|
|
// detect overhanging/bridging perimeters
|
|
ExtrusionPaths paths;
|
|
const Polygon &polygon = loop.fuzzify ? fuzzified : loop.polygon;
|
|
if (loop.fuzzify) {
|
|
fuzzified = loop.polygon;
|
|
fuzzy_polygon(fuzzified, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_dist.value));
|
|
}
|
|
if (perimeter_generator.config->overhangs && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers
|
|
&& ! ((perimeter_generator.object_config->support_material || perimeter_generator.object_config->support_material_enforce_layers > 0) &&
|
|
perimeter_generator.object_config->support_material_contact_distance.value == 0)) {
|
|
// get non-overhang paths by intersecting this loop with the grown lower slices
|
|
extrusion_paths_append(
|
|
paths,
|
|
intersection_pl({ polygon }, perimeter_generator.lower_slices_polygons()),
|
|
role,
|
|
is_external ? perimeter_generator.ext_mm3_per_mm() : perimeter_generator.mm3_per_mm(),
|
|
is_external ? perimeter_generator.ext_perimeter_flow.width() : perimeter_generator.perimeter_flow.width(),
|
|
(float)perimeter_generator.layer_height);
|
|
|
|
// get overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
extrusion_paths_append(
|
|
paths,
|
|
diff_pl({ polygon }, perimeter_generator.lower_slices_polygons()),
|
|
erOverhangPerimeter,
|
|
perimeter_generator.mm3_per_mm_overhang(),
|
|
perimeter_generator.overhang_flow.width(),
|
|
perimeter_generator.overhang_flow.height());
|
|
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
chain_and_reorder_extrusion_paths(paths, &paths.front().first_point());
|
|
} else {
|
|
ExtrusionPath path(role);
|
|
path.polyline = polygon.split_at_first_point();
|
|
path.mm3_per_mm = is_external ? perimeter_generator.ext_mm3_per_mm() : perimeter_generator.mm3_per_mm();
|
|
path.width = is_external ? perimeter_generator.ext_perimeter_flow.width() : perimeter_generator.perimeter_flow.width();
|
|
path.height = (float)perimeter_generator.layer_height;
|
|
paths.push_back(path);
|
|
}
|
|
|
|
coll.append(ExtrusionLoop(std::move(paths), loop_role));
|
|
}
|
|
|
|
// Append thin walls to the nearest-neighbor search (only for first iteration)
|
|
if (! thin_walls.empty()) {
|
|
variable_width(thin_walls, erExternalPerimeter, perimeter_generator.ext_perimeter_flow, coll.entities);
|
|
thin_walls.clear();
|
|
}
|
|
|
|
// Traverse children and build the final collection.
|
|
Point zero_point(0, 0);
|
|
std::vector<std::pair<size_t, bool>> chain = chain_extrusion_entities(coll.entities, &zero_point);
|
|
ExtrusionEntityCollection out;
|
|
for (const std::pair<size_t, bool> &idx : chain) {
|
|
assert(coll.entities[idx.first] != nullptr);
|
|
if (idx.first >= loops.size()) {
|
|
// This is a thin wall.
|
|
out.entities.reserve(out.entities.size() + 1);
|
|
out.entities.emplace_back(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (idx.second)
|
|
out.entities.back()->reverse();
|
|
} else {
|
|
const PerimeterGeneratorLoop &loop = loops[idx.first];
|
|
assert(thin_walls.empty());
|
|
ExtrusionEntityCollection children = traverse_loops(perimeter_generator, loop.children, thin_walls);
|
|
out.entities.reserve(out.entities.size() + children.entities.size() + 1);
|
|
ExtrusionLoop *eloop = static_cast<ExtrusionLoop*>(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (loop.is_contour) {
|
|
eloop->make_counter_clockwise();
|
|
out.append(std::move(children.entities));
|
|
out.entities.emplace_back(eloop);
|
|
} else {
|
|
eloop->make_clockwise();
|
|
out.entities.emplace_back(eloop);
|
|
out.append(std::move(children.entities));
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void PerimeterGenerator::process()
|
|
{
|
|
// other perimeters
|
|
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
|
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
|
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
|
|
|
// external perimeters
|
|
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
|
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
|
|
|
|
// overhang perimeters
|
|
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
|
|
|
// solid infill
|
|
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
|
|
|
// Calculate the minimum required spacing between two adjacent traces.
|
|
// This should be equal to the nominal flow spacing but we experiment
|
|
// with some tolerance in order to avoid triggering medial axis when
|
|
// some squishing might work. Loops are still spaced by the entire
|
|
// flow spacing; this only applies to collapsing parts.
|
|
// For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
|
|
// external loops (which is the correct way) instead of using ext_perimeter_spacing2
|
|
// which is the spacing between external and internal, which is not correct
|
|
// and would make the collapsing (thus the details resolution) dependent on
|
|
// internal flow which is unrelated.
|
|
coord_t min_spacing = coord_t(perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
coord_t ext_min_spacing = coord_t(ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
bool has_gap_fill = this->config->gap_fill_enabled.value && this->config->gap_fill_speed.value > 0;
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
if (this->lower_slices != NULL && this->config->overhangs) {
|
|
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
|
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
|
// in the current layer
|
|
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
|
|
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
|
|
}
|
|
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
for (const Surface &surface : this->slices->surfaces) {
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = this->config->perimeters + surface.extra_perimeters - 1; // 0-indexed loops
|
|
ExPolygons last = union_ex(surface.expolygon.simplify_p(SCALED_RESOLUTION));
|
|
ExPolygons gaps;
|
|
if (loop_number >= 0) {
|
|
// In case no perimeters are to be generated, loop_number will equal to -1.
|
|
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
|
|
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
|
|
ThickPolylines thin_walls;
|
|
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
|
for (int i = 0;; ++ i) { // outer loop is 0
|
|
// Calculate next onion shell of perimeters.
|
|
ExPolygons offsets;
|
|
if (i == 0) {
|
|
// the minimum thickness of a single loop is:
|
|
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
|
offsets = this->config->thin_walls ?
|
|
offset2_ex(
|
|
last,
|
|
- float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
|
|
+ float(ext_min_spacing / 2. - 1)) :
|
|
offset_ex(last, - float(ext_perimeter_width / 2.));
|
|
// look for thin walls
|
|
if (this->config->thin_walls) {
|
|
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
|
// (actually, something larger than that still may exist due to mitering or other causes)
|
|
coord_t min_width = coord_t(scale_(this->ext_perimeter_flow.nozzle_diameter() / 3));
|
|
ExPolygons expp = offset2_ex(
|
|
// medial axis requires non-overlapping geometry
|
|
diff_ex(last, offset(offsets, float(ext_perimeter_width / 2.) + ClipperSafetyOffset)),
|
|
- float(min_width / 2.), float(min_width / 2.));
|
|
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
|
for (ExPolygon &ex : expp)
|
|
ex.medial_axis(ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
|
|
}
|
|
if (m_spiral_vase && offsets.size() > 1) {
|
|
// Remove all but the largest area polygon.
|
|
keep_largest_contour_only(offsets);
|
|
}
|
|
} else {
|
|
//FIXME Is this offset correct if the line width of the inner perimeters differs
|
|
// from the line width of the infill?
|
|
coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
offsets = this->config->thin_walls ?
|
|
// This path will ensure, that the perimeters do not overfill, as in
|
|
// prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
|
|
// excessively, creating gaps, which then need to be filled in by the not very
|
|
// reliable gap fill algorithm.
|
|
// Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
|
|
// the original.
|
|
offset2_ex(last,
|
|
- float(distance + min_spacing / 2. - 1.),
|
|
float(min_spacing / 2. - 1.)) :
|
|
// If "detect thin walls" is not enabled, this paths will be entered, which
|
|
// leads to overflows, as in prusa3d/Slic3r GH #32
|
|
offset_ex(last, - float(distance));
|
|
// look for gaps
|
|
if (has_gap_fill)
|
|
// not using safety offset here would "detect" very narrow gaps
|
|
// (but still long enough to escape the area threshold) that gap fill
|
|
// won't be able to fill but we'd still remove from infill area
|
|
append(gaps, diff_ex(
|
|
offset(last, - float(0.5 * distance)),
|
|
offset(offsets, float(0.5 * distance + 10)))); // safety offset
|
|
}
|
|
if (offsets.empty()) {
|
|
// Store the number of loops actually generated.
|
|
loop_number = i - 1;
|
|
// No region left to be filled in.
|
|
last.clear();
|
|
break;
|
|
} else if (i > loop_number) {
|
|
// If i > loop_number, we were looking just for gaps.
|
|
break;
|
|
}
|
|
{
|
|
const bool fuzzify_contours = this->config->fuzzy_skin != FuzzySkinType::None && i == 0 && this->layer_id > 0;
|
|
const bool fuzzify_holes = fuzzify_contours && this->config->fuzzy_skin == FuzzySkinType::All;
|
|
for (const ExPolygon &expolygon : offsets) {
|
|
// Outer contour may overlap with an inner contour,
|
|
// inner contour may overlap with another inner contour,
|
|
// outer contour may overlap with itself.
|
|
//FIXME evaluate the overlaps, annotate each point with an overlap depth,
|
|
// compensate for the depth of intersection.
|
|
contours[i].emplace_back(expolygon.contour, i, true, fuzzify_contours);
|
|
|
|
if (! expolygon.holes.empty()) {
|
|
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
|
for (const Polygon &hole : expolygon.holes)
|
|
holes[i].emplace_back(hole, i, false, fuzzify_holes);
|
|
}
|
|
}
|
|
}
|
|
last = std::move(offsets);
|
|
if (i == loop_number && (! has_gap_fill || this->config->fill_density.value == 0)) {
|
|
// The last run of this loop is executed to collect gaps for gap fill.
|
|
// As the gap fill is either disabled or not
|
|
break;
|
|
}
|
|
}
|
|
|
|
// nest loops: holes first
|
|
for (int d = 0; d <= loop_number; ++ d) {
|
|
PerimeterGeneratorLoops &holes_d = holes[d];
|
|
// loop through all holes having depth == d
|
|
for (int i = 0; i < (int)holes_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = holes_d[i];
|
|
// find the hole loop that contains this one, if any
|
|
for (int t = d + 1; t <= loop_number; ++ t) {
|
|
for (int j = 0; j < (int)holes[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
// if no hole contains this hole, find the contour loop that contains it
|
|
for (int t = loop_number; t >= 0; -- t) {
|
|
for (int j = 0; j < (int)contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
NEXT_LOOP: ;
|
|
}
|
|
}
|
|
// nest contour loops
|
|
for (int d = loop_number; d >= 1; -- d) {
|
|
PerimeterGeneratorLoops &contours_d = contours[d];
|
|
// loop through all contours having depth == d
|
|
for (int i = 0; i < (int)contours_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = contours_d[i];
|
|
// find the contour loop that contains it
|
|
for (int t = d - 1; t >= 0; -- t) {
|
|
for (size_t j = 0; j < contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
contours_d.erase(contours_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_CONTOUR;
|
|
}
|
|
}
|
|
}
|
|
NEXT_CONTOUR: ;
|
|
}
|
|
}
|
|
// at this point, all loops should be in contours[0]
|
|
ExtrusionEntityCollection entities = traverse_loops(*this, contours.front(), thin_walls);
|
|
// if brim will be printed, reverse the order of perimeters so that
|
|
// we continue inwards after having finished the brim
|
|
// TODO: add test for perimeter order
|
|
if (this->config->external_perimeters_first ||
|
|
(this->layer_id == 0 && this->object_config->brim_width.value > 0))
|
|
entities.reverse();
|
|
// append perimeters for this slice as a collection
|
|
if (! entities.empty())
|
|
this->loops->append(entities);
|
|
} // for each loop of an island
|
|
|
|
// fill gaps
|
|
if (! gaps.empty()) {
|
|
// collapse
|
|
double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
|
|
double max = 2. * perimeter_spacing;
|
|
ExPolygons gaps_ex = diff_ex(
|
|
//FIXME offset2 would be enough and cheaper.
|
|
offset2_ex(gaps, - float(min / 2.), float(min / 2.)),
|
|
offset2_ex(gaps, - float(max / 2.), float(max / 2. + ClipperSafetyOffset)));
|
|
ThickPolylines polylines;
|
|
for (const ExPolygon &ex : gaps_ex)
|
|
ex.medial_axis(max, min, &polylines);
|
|
if (! polylines.empty()) {
|
|
ExtrusionEntityCollection gap_fill;
|
|
variable_width(polylines, erGapFill, this->solid_infill_flow, gap_fill.entities);
|
|
/* Make sure we don't infill narrow parts that are already gap-filled
|
|
(we only consider this surface's gaps to reduce the diff() complexity).
|
|
Growing actual extrusions ensures that gaps not filled by medial axis
|
|
are not subtracted from fill surfaces (they might be too short gaps
|
|
that medial axis skips but infill might join with other infill regions
|
|
and use zigzag). */
|
|
//FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
|
|
// therefore it may cover the area, but no the volume.
|
|
last = diff_ex(last, gap_fill.polygons_covered_by_width(10.f));
|
|
this->gap_fill->append(std::move(gap_fill.entities));
|
|
}
|
|
}
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t inset =
|
|
(loop_number < 0) ? 0 :
|
|
(loop_number == 0) ?
|
|
// one loop
|
|
ext_perimeter_spacing / 2 :
|
|
// two or more loops?
|
|
perimeter_spacing / 2;
|
|
// only apply infill overlap if we actually have one perimeter
|
|
if (inset > 0)
|
|
inset -= coord_t(scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2))));
|
|
// simplify infill contours according to resolution
|
|
Polygons pp;
|
|
for (ExPolygon &ex : last)
|
|
ex.simplify_p(SCALED_RESOLUTION, &pp);
|
|
// collapse too narrow infill areas
|
|
coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
// append infill areas to fill_surfaces
|
|
this->fill_surfaces->append(
|
|
offset2_ex(
|
|
union_ex(pp),
|
|
float(- inset - min_perimeter_infill_spacing / 2.),
|
|
float(min_perimeter_infill_spacing / 2.)),
|
|
stInternal);
|
|
} // for each island
|
|
}
|
|
|
|
bool PerimeterGeneratorLoop::is_internal_contour() const
|
|
{
|
|
// An internal contour is a contour containing no other contours
|
|
if (! this->is_contour)
|
|
return false;
|
|
for (const PerimeterGeneratorLoop &loop : this->children)
|
|
if (loop.is_contour)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
}
|