PrusaSlicer-NonPlainar/lib/Slic3r/TriangleMesh.pm
2013-08-26 17:58:37 +02:00

572 lines
19 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package Slic3r::TriangleMesh;
use Moo;
use List::Util qw(reduce min max first);
use Slic3r::Geometry qw(X Y Z A B unscale same_point);
use Slic3r::Geometry::Clipper qw(union_ex offset);
use Storable;
# public
has 'vertices' => (is => 'ro', required => 1); # id => [$x,$y,$z]
has 'facets' => (is => 'ro', required => 1); # id => [ $v1_id, $v2_id, $v3_id ]
# private
has 'edges' => (is => 'rw'); # id => [ $v1_id, $v2_id ]
has 'facets_edges' => (is => 'rw'); # id => [ $e1_id, $e2_id, $e3_id ]
has 'edges_facets' => (is => 'rw'); # id => [ $f1_id, $f2_id, (...) ]
use constant MIN => 0;
use constant MAX => 1;
use constant I_FMT => 'ffffllllc';
use constant I_A => 0;
use constant I_B => 1;
use constant I_A_ID => 2;
use constant I_B_ID => 3;
use constant I_EDGE_A_ID => 4;
use constant I_EDGE_B_ID => 5;
use constant I_FACET_EDGE => 6;
use constant FE_TOP => 0;
use constant FE_BOTTOM => 1;
sub analyze {
my $self = shift;
return if defined $self->edges;
$self->edges([]);
$self->facets_edges([]);
$self->edges_facets([]);
my %table = (); # edge_coordinates => edge_id
my $vertices = $self->vertices; # save method calls
for (my $facet_id = 0; $facet_id <= $#{$self->facets}; $facet_id++) {
my $facet = $self->facets->[$facet_id];
$self->facets_edges->[$facet_id] = [];
# reorder vertices so that the first one is the one with lowest Z
# this is needed to get all intersection lines in a consistent order
# (external on the right of the line)
{
my $lowest_vertex_idx = reduce {
$vertices->[ $facet->[$a] ][Z] < $vertices->[ $facet->[$b] ][Z] ? $a : $b
} -3 .. -1;
@$facet[-3..-1] = (@$facet[$lowest_vertex_idx..-1], @$facet[-3..($lowest_vertex_idx-1)]);
}
# ignore the normal if provided
my @vertices = @$facet[-3..-1];
foreach my $edge ($self->_facet_edges($facet_id)) {
my $edge_coordinates = join ';', sort @$edge;
my $edge_id = $table{$edge_coordinates};
if (!defined $edge_id) {
# Note that the order of vertices in $self->edges is *casual* because it is only
# good for one of the two adjacent facets. For this reason, it must not be used
# when dealing with single facets.
push @{$self->edges}, $edge;
$edge_id = $#{$self->edges};
$table{$edge_coordinates} = $edge_id;
$self->edges_facets->[$edge_id] = [];
}
push @{$self->facets_edges->[$facet_id]}, $edge_id;
push @{$self->edges_facets->[$edge_id]}, $facet_id;
}
}
}
sub merge {
my $class = shift;
my @meshes = @_;
my $vertices = [];
my $facets = [];
foreach my $mesh (@meshes) {
my $v_offset = @$vertices;
push @$vertices, @{$mesh->vertices};
push @$facets, map {
my $f = [@$_];
$f->[$_] += $v_offset for -3..-1;
$f;
} @{$mesh->facets};
}
return $class->new(vertices => $vertices, facets => $facets);
}
sub clone {
Storable::dclone($_[0])
}
sub _facet_edges {
my $self = shift;
my ($facet_id) = @_;
my $facet = $self->facets->[$facet_id];
return (
[ $facet->[-3], $facet->[-2] ],
[ $facet->[-2], $facet->[-1] ],
[ $facet->[-1], $facet->[-3] ],
);
}
# This method is supposed to remove narrow triangles, but it actually doesn't
# work much; I'm committing it for future reference but I'm going to remove it later.
# Note: a 'clean' method should actually take care of non-manifold facets and remove
# them.
sub clean {
my $self = shift;
# retrieve all edges shared by more than two facets;
my @weird_edges = grep { @{$self->edge_facets->{$_}} != 2 } keys %{$self->edge_facets};
# usually most of these facets are very narrow triangles whose two edges
# are detected as collapsed, and thus added twice to the edge in edge_fasets table
# let's identify these triangles
my @narrow_facets_indexes = ();
foreach my $edge_id (@weird_edges) {
my %facet_count = ();
$facet_count{$_}++ for @{$self->edge_facets->{$edge_id}};
@{$self->edge_facets->{$edge_id}} = grep $facet_count{$_} == 1, keys %facet_count;
push @narrow_facets_indexes, grep $facet_count{$_} > 1, keys %facet_count;
}
# remove identified narrow facets
foreach my $facet_id (@narrow_facets_indexes) {last;
splice @{$self->facets}, $facet_id, 1;
splice @{$self->facets_edges}, $facet_id, 1;
foreach my $facet_ides (values %{$self->edge_facets}) {
@$facet_ides = map { $_ > $facet_id ? ($_-1) : $_ } @$facet_ides;
}
}
Slic3r::debugf "%d narrow facets removed\n", scalar(@narrow_facets_indexes)
if @narrow_facets_indexes;
}
sub check_manifoldness {
my $self = shift;
$self->analyze;
# look for any edges belonging to an odd number of facets
# we should actually check that each pair of facets belonging to this edge
# has compatible winding order
my ($first_bad_edge_id) =
grep { @{ $self->edges_facets->[$_] } % 2 } 0..$#{$self->edges_facets};
if (defined $first_bad_edge_id) {
warn sprintf "Warning: The input file contains a hole near edge %f,%f,%f-%f,%f,%f (not manifold). "
. "You might want to repair it and retry, or to check the resulting G-code before printing anyway.\n",
map @{$self->vertices->[$_]}, @{$self->edges->[$first_bad_edge_id]};
return 0;
}
# empty the edges array as we don't really need it anymore
@{$self->edges} = ();
return 1;
}
sub unpack_line {
my ($packed) = @_;
my $data = [ unpack I_FMT, $packed ];
splice @$data, 0, 4, [ @$data[0,1] ], [ @$data[2,3] ];
$data->[$_] = undef for grep $data->[$_] == -1, I_A_ID, I_B_ID, I_EDGE_A_ID, I_EDGE_B_ID, I_FACET_EDGE;
return $data;
}
sub make_loops {
my ($lines) = @_;
my @lines = map unpack_line($_), @$lines;
# remove tangent edges
for my $i (0 .. $#lines) {
next unless defined $lines[$i] && defined $lines[$i][I_FACET_EDGE];
# if the line is a facet edge, find another facet edge
# having the same endpoints but in reverse order
for my $j ($i+1 .. $#lines) {
next unless defined $lines[$j] && defined $lines[$j][I_FACET_EDGE];
# are these facets adjacent? (sharing a common edge on this layer)
if ($lines[$i][I_A_ID] == $lines[$j][I_A_ID] && $lines[$i][I_B_ID] == $lines[$j][I_B_ID]) {
# if they are both oriented upwards or downwards (like a 'V')
# then we can remove both edges from this layer since it won't
# affect the sliced shape
if ($lines[$j][I_FACET_EDGE] == $lines[$i][I_FACET_EDGE]) {
$lines[$i] = undef;
$lines[$j] = undef;
last;
}
# if one of them is oriented upwards and the other is oriented
# downwards, let's only keep one of them (it doesn't matter which
# one since all 'top' lines were reversed at slicing)
if ($lines[$i][I_FACET_EDGE] != $lines[$j][I_FACET_EDGE]) {
$lines[$j] = undef;
last;
}
}
}
}
@lines = grep $_, @lines;
# build a map of lines by EDGE_A_ID and A_ID
my %by_edge_a_id = my %by_a_id = ();
for (0..$#lines) {
if (defined(my $edge_a_id = $lines[$_][I_EDGE_A_ID])) {
$by_edge_a_id{$edge_a_id} //= [];
push @{ $by_edge_a_id{$edge_a_id} }, $_;
}
if (defined(my $a_id = $lines[$_][I_A_ID])) {
$by_a_id{$a_id} //= [];
push @{ $by_a_id{$a_id} }, $_;
}
}
my (@polygons, @failed_loops) = ();
my %used_lines = ();
CYCLE: while (1) {
# take first spare line and start a new loop
my $first_idx = first { !exists $used_lines{$_} } 0..$#lines;
last if !defined $first_idx;
$used_lines{$first_idx} = 1;
my @loop = ($lines[$first_idx]);
while (1) {
# find a line starting where last one finishes
my $line_idx;
$line_idx = first { !exists $used_lines{$_} } @{ $by_edge_a_id{$loop[-1][I_EDGE_B_ID]} // [] }
if defined $loop[-1][I_EDGE_B_ID];
$line_idx //= first { !exists $used_lines{$_} } @{ $by_a_id{$loop[-1][I_B_ID]} // [] }
if defined $loop[-1][I_B_ID];
if (!defined $line_idx) {
# check whether we closed this loop
if ((defined $loop[0][I_EDGE_A_ID] && defined $loop[-1][I_EDGE_B_ID] && $loop[0][I_EDGE_A_ID] == $loop[-1][I_EDGE_B_ID])
|| (defined $loop[0][I_A_ID] && defined $loop[-1][I_B_ID] && $loop[0][I_A_ID] == $loop[-1][I_B_ID])) {
# loop is complete!
push @polygons, Slic3r::Polygon->new(map $_->[I_A], @loop);
Slic3r::debugf " Discovered %s polygon of %d points\n",
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@{$polygons[-1]})
if $Slic3r::debug;
next CYCLE;
}
# we can't close this loop!
push @failed_loops, [@loop];
next CYCLE;
}
push @loop, $lines[$line_idx];
$used_lines{$line_idx} = 1;
}
}
# TODO: we should try to combine failed loops
for my $loop (grep @$_ >= 3, @failed_loops) {
push @polygons, Slic3r::Polygon->new(map $_->[I_A], @$loop);
Slic3r::debugf " Discovered failed %s polygon of %d points\n",
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@$loop)
if $Slic3r::debug;
}
return (@failed_loops ? 1 : 0, [@polygons]);
}
sub rotate {
my $self = shift;
my ($deg, $center) = @_;
return if $deg == 0;
my $rad = Slic3r::Geometry::deg2rad($deg);
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
@$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, $center, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]);
}
}
sub scale {
my $self = shift;
my ($factor) = @_;
return if $factor == 1;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] *= $factor for X,Y,Z;
}
}
sub scale_xyz {
my $self = shift;
my ($versor) = @_;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] *= $versor->[$_] for X,Y,Z;
}
}
sub move {
my $self = shift;
my (@shift) = @_;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] += $shift[$_] || 0 for X,Y,Z;
}
}
sub align_to_origin {
my $self = shift;
# calculate the displacements needed to
# have lowest value for each axis at coordinate 0
my $bb = $self->bounding_box;
$self->move(map -$bb->extents->[$_][MIN], X,Y,Z);
}
sub center_around_origin {
my $self = shift;
$self->move(map -$_, @{ $self->center });
}
sub center {
my $self = shift;
return $self->bounding_box->center;
}
sub duplicate {
my $self = shift;
my (@shifts) = @_;
my @new_facets = ();
foreach my $facet (@{$self->facets}) {
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
foreach my $shift (@shifts) {
push @new_facets, [ $normal ];
foreach my $vertex (@vertices) {
push @{$self->vertices}, [ map $self->vertices->[$vertex][$_] + ($shift->[$_] || 0), (X,Y,Z) ];
push @{$new_facets[-1]}, $#{$self->vertices};
}
}
}
push @{$self->facets}, @new_facets;
$self->BUILD;
}
sub used_vertices {
my $self = shift;
return [ map $self->vertices->[$_], map @$_, @{$self->facets} ];
}
sub bounding_box {
my $self = shift;
return Slic3r::Geometry::BoundingBox->new_from_points_3D($self->used_vertices);
}
sub size {
my $self = shift;
return $self->bounding_box->size;
}
sub slice_facet {
my $self = shift;
my ($print_object, $facet_id) = @_;
my @vertices = @{$self->facets->[$facet_id]}[-3..-1];
Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n",
$facet_id, map @{$self->vertices->[$_]}, @vertices
if $Slic3r::debug;
# find the vertical extents of the facet
my @z = map $_->[Z], @{$self->vertices}[@vertices];
my $min_z = min(@z);
my $max_z = max(@z);
Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z
if $Slic3r::debug;
if ($max_z == $min_z) {
Slic3r::debugf "Facet is horizontal; ignoring\n";
return;
}
# calculate the layer extents
my ($min_layer, $max_layer) = $print_object->get_layer_range($min_z, $max_z);
Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer
if $Slic3r::debug;
my $lines = {}; # layer_id => [ lines ]
for my $layer_id ($min_layer .. $max_layer) {
my $layer = $print_object->layers->[$layer_id];
$lines->{$layer_id} ||= [];
push @{ $lines->{$layer_id} }, $self->intersect_facet($facet_id, $layer->slice_z);
}
return $lines;
}
sub intersect_facet {
my $self = shift;
my ($facet_id, $z) = @_;
my @vertices_ids = @{$self->facets->[$facet_id]}[-3..-1];
my %vertices = map { $_ => $self->vertices->[$_] } @vertices_ids; # cache vertices
my @edge_ids = @{$self->facets_edges->[$facet_id]};
my @edge_vertices_ids = $self->_facet_edges($facet_id);
my (@points, @intersection_points, @points_on_layer) = ();
for my $e (0..2) {
my ($a_id, $b_id) = @{$edge_vertices_ids[$e]};
my ($a, $b) = @vertices{$a_id, $b_id};
#printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z;
if ($a->[Z] == $b->[Z] && $a->[Z] == $z) {
# edge is horizontal and belongs to the current layer
my $edge_type = (grep $vertices{$_}[Z] < $z, @vertices_ids) ? FE_TOP : FE_BOTTOM;
if ($edge_type == FE_TOP) {
($a, $b) = ($b, $a);
($a_id, $b_id) = ($b_id, $a_id);
}
# We assume that this method is never being called for horizontal
# facets, so no other edge is going to be on this layer.
return pack I_FMT, (
$a->[X], $a->[Y], # I_A
$b->[X], $b->[Y], # I_B
$a_id, # I_A_ID
$b_id, # I_B_ID
-1, # I_EDGE_A_ID
-1, # I_EDGE_B_ID
$edge_type, # I_FACET_EDGE
);
#print "Horizontal edge at $z!\n";
} elsif ($a->[Z] == $z) {
#print "A point on plane $z!\n";
push @points, [ $a->[X], $a->[Y], $a_id ];
push @points_on_layer, $#points;
} elsif ($b->[Z] == $z) {
#print "B point on plane $z!\n";
push @points, [ $b->[X], $b->[Y], $b_id ];
push @points_on_layer, $#points;
} elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) {
# edge intersects the current layer; calculate intersection
push @points, [
$b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
undef,
$edge_ids[$e],
];
push @intersection_points, $#points;
#print "Intersects at $z!\n";
}
}
if (@points_on_layer == 2) {
if (@intersection_points == 1) {
splice @points, $points_on_layer[1], 1;
} elsif (@intersection_points == 0) {
return if same_point(@points[@points_on_layer]);
}
}
if (@points) {
# defensive programming:
die "Facets must intersect each plane 0 or 2 times" if @points != 2;
return pack I_FMT, (
$points[B][X], $points[B][Y], # I_A
$points[A][X], $points[A][Y], # I_B
$points[B][2] // -1, # I_A_ID /
$points[A][2] // -1, # I_B_ID /
$points[B][3] // -1, # I_EDGE_A_ID /
$points[A][3] // -1, # I_EDGE_B_ID /
-1, # I_FACET_EDGE
);
#printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points;
}
return ();
}
sub get_connected_facets {
my $self = shift;
my ($facet_id) = @_;
my %facets = ();
foreach my $edge_id (@{$self->facets_edges->[$facet_id]}) {
$facets{$_} = 1 for @{$self->edges_facets->[$edge_id]};
}
delete $facets{$facet_id};
return keys %facets;
}
sub split_mesh {
my $self = shift;
$self->analyze;
my @meshes = ();
# loop while we have remaining facets
while (1) {
# get the first facet
my @facet_queue = ();
my @facets = ();
for (my $i = 0; $i <= $#{$self->facets}; $i++) {
if (defined $self->facets->[$i]) {
push @facet_queue, $i;
last;
}
}
last if !@facet_queue;
while (defined (my $facet_id = shift @facet_queue)) {
next unless defined $self->facets->[$facet_id];
push @facets, map [ @$_ ], $self->facets->[$facet_id];
push @facet_queue, $self->get_connected_facets($facet_id);
$self->facets->[$facet_id] = undef;
}
my %vertices = map { $_ => 1 } map @$_[-3..-1], @facets;
my @new_vertices = keys %vertices;
my %new_vertices = map { $new_vertices[$_] => $_ } 0..$#new_vertices;
foreach my $facet (@facets) {
$facet->[$_] = $new_vertices{$facet->[$_]} for -3..-1;
}
push @meshes, Slic3r::TriangleMesh->new(
facets => \@facets,
vertices => [ map $self->vertices->[$_], keys %vertices ],
);
}
return @meshes;
}
# this will return *scaled* expolygons, so it is expected to be run
# on unscaled meshes
sub horizontal_projection {
my $self = shift;
my @f = ();
foreach my $facet (@{$self->facets}) {
push @f, Slic3r::Polygon->new(
map [ map $_ / &Slic3r::SCALING_FACTOR, @{$self->vertices->[$_]}[X,Y] ], @$facet
);
}
$_->make_counter_clockwise for @f; # do this after scaling, as winding order might change while doing that
# the offset factor was tuned using groovemount.stl
return union_ex(offset(\@f, Slic3r::Geometry::scale 0.01), 1);
}
1;