PrusaSlicer-NonPlainar/src/slic3r/GUI/GCodeViewer.cpp
enricoturri1966 a690f7825c Fixed warning
2022-01-27 12:45:03 +01:00

3954 lines
180 KiB
C++

#include "libslic3r/libslic3r.h"
#include "GCodeViewer.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/LocalesUtils.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "GUI_App.hpp"
#include "MainFrame.hpp"
#include "Plater.hpp"
#include "Camera.hpp"
#include "I18N.hpp"
#include "GUI_Utils.hpp"
#include "GUI.hpp"
#include "DoubleSlider.hpp"
#include "GLCanvas3D.hpp"
#include "GLToolbar.hpp"
#include "GUI_Preview.hpp"
#include "GUI_ObjectManipulation.hpp"
#include <imgui/imgui_internal.h>
#include <GL/glew.h>
#include <boost/log/trivial.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/nowide/fstream.hpp>
#include <wx/progdlg.h>
#include <wx/numformatter.h>
#include <array>
#include <algorithm>
#include <chrono>
namespace Slic3r {
namespace GUI {
static unsigned char buffer_id(EMoveType type) {
return static_cast<unsigned char>(type) - static_cast<unsigned char>(EMoveType::Retract);
}
static EMoveType buffer_type(unsigned char id) {
return static_cast<EMoveType>(static_cast<unsigned char>(EMoveType::Retract) + id);
}
static std::array<float, 4> decode_color(const std::string& color) {
static const float INV_255 = 1.0f / 255.0f;
std::array<float, 4> ret = { 0.0f, 0.0f, 0.0f, 1.0f };
const char* c = color.data() + 1;
if (color.size() == 7 && color.front() == '#') {
for (size_t j = 0; j < 3; ++j) {
int digit1 = hex_digit_to_int(*c++);
int digit2 = hex_digit_to_int(*c++);
if (digit1 == -1 || digit2 == -1)
break;
ret[j] = float(digit1 * 16 + digit2) * INV_255;
}
}
return ret;
}
static std::vector<std::array<float, 4>> decode_colors(const std::vector<std::string>& colors) {
std::vector<std::array<float, 4>> output(colors.size(), { 0.0f, 0.0f, 0.0f, 1.0f });
for (size_t i = 0; i < colors.size(); ++i) {
output[i] = decode_color(colors[i]);
}
return output;
}
// Round to a bin with minimum two digits resolution.
// Equivalent to conversion to string with sprintf(buf, "%.2g", value) and conversion back to float, but faster.
static float round_to_bin(const float value)
{
// assert(value > 0);
constexpr float const scale [5] = { 100.f, 1000.f, 10000.f, 100000.f, 1000000.f };
constexpr float const invscale [5] = { 0.01f, 0.001f, 0.0001f, 0.00001f, 0.000001f };
constexpr float const threshold[5] = { 0.095f, 0.0095f, 0.00095f, 0.000095f, 0.0000095f };
// Scaling factor, pointer to the tables above.
int i = 0;
// While the scaling factor is not yet large enough to get two integer digits after scaling and rounding:
for (; value < threshold[i] && i < 4; ++ i) ;
return std::round(value * scale[i]) * invscale[i];
}
void GCodeViewer::VBuffer::reset()
{
// release gpu memory
if (!vbos.empty()) {
glsafe(::glDeleteBuffers(static_cast<GLsizei>(vbos.size()), static_cast<const GLuint*>(vbos.data())));
vbos.clear();
}
sizes.clear();
count = 0;
}
void GCodeViewer::InstanceVBuffer::Ranges::reset()
{
for (Range& range : ranges) {
// release gpu memory
if (range.vbo > 0)
glsafe(::glDeleteBuffers(1, &range.vbo));
}
ranges.clear();
}
void GCodeViewer::InstanceVBuffer::reset()
{
s_ids.clear();
buffer.clear();
render_ranges.reset();
}
void GCodeViewer::IBuffer::reset()
{
// release gpu memory
if (ibo > 0) {
glsafe(::glDeleteBuffers(1, &ibo));
ibo = 0;
}
vbo = 0;
count = 0;
}
bool GCodeViewer::Path::matches(const GCodeProcessorResult::MoveVertex& move) const
{
auto matches_percent = [](float value1, float value2, float max_percent) {
return std::abs(value2 - value1) / value1 <= max_percent;
};
switch (move.type)
{
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam:
case EMoveType::Extrude: {
// use rounding to reduce the number of generated paths
return type == move.type && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id && role == move.extrusion_role &&
move.position.z() <= sub_paths.front().first.position.z() && feedrate == move.feedrate && fan_speed == move.fan_speed &&
height == round_to_bin(move.height) && width == round_to_bin(move.width) &&
matches_percent(volumetric_rate, move.volumetric_rate(), 0.05f);
}
case EMoveType::Travel: {
return type == move.type && feedrate == move.feedrate && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id;
}
default: { return false; }
}
}
void GCodeViewer::TBuffer::Model::reset()
{
instances.reset();
}
void GCodeViewer::TBuffer::reset()
{
vertices.reset();
for (IBuffer& buffer : indices) {
buffer.reset();
}
indices.clear();
paths.clear();
render_paths.clear();
model.reset();
}
void GCodeViewer::TBuffer::add_path(const GCodeProcessorResult::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id)
{
Path::Endpoint endpoint = { b_id, i_id, s_id, move.position };
// use rounding to reduce the number of generated paths
paths.push_back({ move.type, move.extrusion_role, move.delta_extruder,
round_to_bin(move.height), round_to_bin(move.width),
move.feedrate, move.fan_speed, move.temperature,
move.volumetric_rate(), move.extruder_id, move.cp_color_id, { { endpoint, endpoint } } });
}
GCodeViewer::Color GCodeViewer::Extrusions::Range::get_color_at(float value) const
{
// Input value scaled to the colors range
const float step = step_size();
const float global_t = (step != 0.0f) ? std::max(0.0f, value - min) / step : 0.0f; // lower limit of 0.0f
const size_t color_max_idx = Range_Colors.size() - 1;
// Compute the two colors just below (low) and above (high) the input value
const size_t color_low_idx = std::clamp<size_t>(static_cast<size_t>(global_t), 0, color_max_idx);
const size_t color_high_idx = std::clamp<size_t>(color_low_idx + 1, 0, color_max_idx);
// Compute how far the value is between the low and high colors so that they can be interpolated
const float local_t = std::clamp(global_t - static_cast<float>(color_low_idx), 0.0f, 1.0f);
// Interpolate between the low and high colors to find exactly which color the input value should get
Color ret = { 0.0f, 0.0f, 0.0f, 1.0f };
for (unsigned int i = 0; i < 3; ++i) {
ret[i] = lerp(Range_Colors[color_low_idx][i], Range_Colors[color_high_idx][i], local_t);
}
return ret;
}
GCodeViewer::SequentialRangeCap::~SequentialRangeCap() {
if (ibo > 0)
glsafe(::glDeleteBuffers(1, &ibo));
}
void GCodeViewer::SequentialRangeCap::reset() {
if (ibo > 0)
glsafe(::glDeleteBuffers(1, &ibo));
buffer = nullptr;
ibo = 0;
vbo = 0;
color = { 0.0f, 0.0f, 0.0f, 1.0f };
}
void GCodeViewer::SequentialView::Marker::init()
{
m_model.init_from(stilized_arrow(16, 2.0f, 4.0f, 1.0f, 8.0f));
m_model.set_color(-1, { 1.0f, 1.0f, 1.0f, 0.5f });
}
void GCodeViewer::SequentialView::Marker::set_world_position(const Vec3f& position)
{
m_world_position = position;
m_world_transform = (Geometry::assemble_transform((position + m_z_offset * Vec3f::UnitZ()).cast<double>()) * Geometry::assemble_transform(m_model.get_bounding_box().size().z() * Vec3d::UnitZ(), { M_PI, 0.0, 0.0 })).cast<float>();
}
void GCodeViewer::SequentialView::Marker::render() const
{
if (!m_visible)
return;
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
shader->start_using();
shader->set_uniform("emission_factor", 0.0f);
glsafe(::glPushMatrix());
glsafe(::glMultMatrixf(m_world_transform.data()));
m_model.render();
glsafe(::glPopMatrix());
shader->stop_using();
glsafe(::glDisable(GL_BLEND));
static float last_window_width = 0.0f;
static size_t last_text_length = 0;
ImGuiWrapper& imgui = *wxGetApp().imgui();
Size cnv_size = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size();
imgui.set_next_window_pos(0.5f * static_cast<float>(cnv_size.get_width()), static_cast<float>(cnv_size.get_height()), ImGuiCond_Always, 0.5f, 1.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.25f);
imgui.begin(std::string("ToolPosition"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, _u8L("Tool position") + ":");
ImGui::SameLine();
char buf[1024];
const Vec3f position = m_world_position + m_world_offset;
sprintf(buf, "X: %.3f, Y: %.3f, Z: %.3f", position.x(), position.y(), position.z());
imgui.text(std::string(buf));
// force extra frame to automatically update window size
float width = ImGui::GetWindowWidth();
size_t length = strlen(buf);
if (width != last_window_width || length != last_text_length) {
last_window_width = width;
last_text_length = length;
imgui.set_requires_extra_frame();
}
imgui.end();
ImGui::PopStyleVar();
}
void GCodeViewer::SequentialView::GCodeWindow::load_gcode(const std::string& filename, std::vector<size_t> &&lines_ends)
{
assert(! m_file.is_open());
if (m_file.is_open())
return;
m_filename = filename;
m_lines_ends = std::move(lines_ends);
m_selected_line_id = 0;
m_last_lines_size = 0;
try
{
m_file.open(boost::filesystem::path(m_filename));
}
catch (...)
{
BOOST_LOG_TRIVIAL(error) << "Unable to map file " << m_filename << ". Cannot show G-code window.";
reset();
}
}
void GCodeViewer::SequentialView::GCodeWindow::render(float top, float bottom, uint64_t curr_line_id) const
{
auto update_lines = [this](uint64_t start_id, uint64_t end_id) {
std::vector<Line> ret;
ret.reserve(end_id - start_id + 1);
for (uint64_t id = start_id; id <= end_id; ++id) {
// read line from file
const size_t start = id == 1 ? 0 : m_lines_ends[id - 2];
const size_t len = m_lines_ends[id - 1] - start;
std::string gline(m_file.data() + start, len);
std::string command;
std::string parameters;
std::string comment;
// extract comment
std::vector<std::string> tokens;
boost::split(tokens, gline, boost::is_any_of(";"), boost::token_compress_on);
command = tokens.front();
if (tokens.size() > 1)
comment = ";" + tokens.back();
// extract gcode command and parameters
if (!command.empty()) {
boost::split(tokens, command, boost::is_any_of(" "), boost::token_compress_on);
command = tokens.front();
if (tokens.size() > 1) {
for (size_t i = 1; i < tokens.size(); ++i) {
parameters += " " + tokens[i];
}
}
}
ret.push_back({ command, parameters, comment });
}
return ret;
};
static const ImVec4 LINE_NUMBER_COLOR = ImGuiWrapper::COL_ORANGE_LIGHT;
static const ImVec4 SELECTION_RECT_COLOR = ImGuiWrapper::COL_ORANGE_DARK;
static const ImVec4 COMMAND_COLOR = { 0.8f, 0.8f, 0.0f, 1.0f };
static const ImVec4 PARAMETERS_COLOR = { 1.0f, 1.0f, 1.0f, 1.0f };
static const ImVec4 COMMENT_COLOR = { 0.7f, 0.7f, 0.7f, 1.0f };
if (!m_visible || m_filename.empty() || m_lines_ends.empty() || curr_line_id == 0)
return;
// window height
const float wnd_height = bottom - top;
// number of visible lines
const float text_height = ImGui::CalcTextSize("0").y;
const ImGuiStyle& style = ImGui::GetStyle();
const uint64_t lines_count = static_cast<uint64_t>((wnd_height - 2.0f * style.WindowPadding.y + style.ItemSpacing.y) / (text_height + style.ItemSpacing.y));
if (lines_count == 0)
return;
// visible range
const uint64_t half_lines_count = lines_count / 2;
uint64_t start_id = (curr_line_id >= half_lines_count) ? curr_line_id - half_lines_count : 0;
uint64_t end_id = start_id + lines_count - 1;
if (end_id >= static_cast<uint64_t>(m_lines_ends.size())) {
end_id = static_cast<uint64_t>(m_lines_ends.size()) - 1;
start_id = end_id - lines_count + 1;
}
// updates list of lines to show, if needed
if (m_selected_line_id != curr_line_id || m_last_lines_size != end_id - start_id + 1) {
try
{
*const_cast<std::vector<Line>*>(&m_lines) = update_lines(start_id, end_id);
}
catch (...)
{
BOOST_LOG_TRIVIAL(error) << "Error while loading from file " << m_filename << ". Cannot show G-code window.";
return;
}
*const_cast<uint64_t*>(&m_selected_line_id) = curr_line_id;
*const_cast<size_t*>(&m_last_lines_size) = m_lines.size();
}
// line number's column width
const float id_width = ImGui::CalcTextSize(std::to_string(end_id).c_str()).x;
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_pos(0.0f, top, ImGuiCond_Always, 0.0f, 0.0f);
imgui.set_next_window_size(0.0f, wnd_height, ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.6f);
imgui.begin(std::string("G-code"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
// center the text in the window by pushing down the first line
const float f_lines_count = static_cast<float>(lines_count);
ImGui::SetCursorPosY(0.5f * (wnd_height - f_lines_count * text_height - (f_lines_count - 1.0f) * style.ItemSpacing.y));
// render text lines
for (uint64_t id = start_id; id <= end_id; ++id) {
const Line& line = m_lines[id - start_id];
// rect around the current selected line
if (id == curr_line_id) {
const float pos_y = ImGui::GetCursorScreenPos().y;
const float half_ItemSpacing_y = 0.5f * style.ItemSpacing.y;
const float half_padding_x = 0.5f * style.WindowPadding.x;
ImGui::GetWindowDrawList()->AddRect({ half_padding_x, pos_y - half_ItemSpacing_y },
{ ImGui::GetCurrentWindow()->Size.x - half_padding_x, pos_y + text_height + half_ItemSpacing_y },
ImGui::GetColorU32(SELECTION_RECT_COLOR));
}
// render line number
const std::string id_str = std::to_string(id);
// spacer to right align text
ImGui::Dummy({ id_width - ImGui::CalcTextSize(id_str.c_str()).x, text_height });
ImGui::SameLine(0.0f, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Text, LINE_NUMBER_COLOR);
imgui.text(id_str);
ImGui::PopStyleColor();
if (!line.command.empty() || !line.comment.empty())
ImGui::SameLine();
// render command
if (!line.command.empty()) {
ImGui::PushStyleColor(ImGuiCol_Text, COMMAND_COLOR);
imgui.text(line.command);
ImGui::PopStyleColor();
}
// render parameters
if (!line.parameters.empty()) {
ImGui::SameLine(0.0f, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Text, PARAMETERS_COLOR);
imgui.text(line.parameters);
ImGui::PopStyleColor();
}
// render comment
if (!line.comment.empty()) {
if (!line.command.empty())
ImGui::SameLine(0.0f, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Text, COMMENT_COLOR);
imgui.text(line.comment);
ImGui::PopStyleColor();
}
}
imgui.end();
ImGui::PopStyleVar();
}
void GCodeViewer::SequentialView::GCodeWindow::stop_mapping_file()
{
if (m_file.is_open())
m_file.close();
}
void GCodeViewer::SequentialView::render(float legend_height) const
{
marker.render();
float bottom = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size().get_height();
if (wxGetApp().is_editor())
bottom -= wxGetApp().plater()->get_view_toolbar().get_height();
gcode_window.render(legend_height, bottom, static_cast<uint64_t>(gcode_ids[current.last]));
}
const std::vector<GCodeViewer::Color> GCodeViewer::Extrusion_Role_Colors {{
{ 0.90f, 0.70f, 0.70f, 1.0f }, // erNone
{ 1.00f, 0.90f, 0.30f, 1.0f }, // erPerimeter
{ 1.00f, 0.49f, 0.22f, 1.0f }, // erExternalPerimeter
{ 0.12f, 0.12f, 1.00f, 1.0f }, // erOverhangPerimeter
{ 0.69f, 0.19f, 0.16f, 1.0f }, // erInternalInfill
{ 0.59f, 0.33f, 0.80f, 1.0f }, // erSolidInfill
{ 0.94f, 0.25f, 0.25f, 1.0f }, // erTopSolidInfill
{ 1.00f, 0.55f, 0.41f, 1.0f }, // erIroning
{ 0.30f, 0.50f, 0.73f, 1.0f }, // erBridgeInfill
{ 1.00f, 1.00f, 1.00f, 1.0f }, // erGapFill
{ 0.00f, 0.53f, 0.43f, 1.0f }, // erSkirt
{ 0.00f, 1.00f, 0.00f, 1.0f }, // erSupportMaterial
{ 0.00f, 0.50f, 0.00f, 1.0f }, // erSupportMaterialInterface
{ 0.70f, 0.89f, 0.67f, 1.0f }, // erWipeTower
{ 0.37f, 0.82f, 0.58f, 1.0f }, // erCustom
{ 0.00f, 0.00f, 0.00f, 1.0f } // erMixed
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Options_Colors {{
{ 0.803f, 0.135f, 0.839f, 1.0f }, // Retractions
{ 0.287f, 0.679f, 0.810f, 1.0f }, // Unretractions
{ 0.900f, 0.900f, 0.900f, 1.0f }, // Seams
{ 0.758f, 0.744f, 0.389f, 1.0f }, // ToolChanges
{ 0.856f, 0.582f, 0.546f, 1.0f }, // ColorChanges
{ 0.322f, 0.942f, 0.512f, 1.0f }, // PausePrints
{ 0.886f, 0.825f, 0.262f, 1.0f } // CustomGCodes
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Travel_Colors {{
{ 0.219f, 0.282f, 0.609f, 1.0f }, // Move
{ 0.112f, 0.422f, 0.103f, 1.0f }, // Extrude
{ 0.505f, 0.064f, 0.028f, 1.0f } // Retract
}};
#if 1
// Normal ranges
const std::vector<GCodeViewer::Color> GCodeViewer::Range_Colors {{
{ 0.043f, 0.173f, 0.478f, 1.0f }, // bluish
{ 0.075f, 0.349f, 0.522f, 1.0f },
{ 0.110f, 0.533f, 0.569f, 1.0f },
{ 0.016f, 0.839f, 0.059f, 1.0f },
{ 0.667f, 0.949f, 0.000f, 1.0f },
{ 0.988f, 0.975f, 0.012f, 1.0f },
{ 0.961f, 0.808f, 0.039f, 1.0f },
{ 0.890f, 0.533f, 0.125f, 1.0f },
{ 0.820f, 0.408f, 0.188f, 1.0f },
{ 0.761f, 0.322f, 0.235f, 1.0f },
{ 0.581f, 0.149f, 0.087f, 1.0f } // reddish
}};
#else
// Detailed ranges
const std::vector<GCodeViewer::Color> GCodeViewer::Range_Colors{ {
{ 0.043f, 0.173f, 0.478f, 1.0f }, // bluish
{ 0.5f * (0.043f + 0.075f), 0.5f * (0.173f + 0.349f), 0.5f * (0.478f + 0.522f), 1.0f },
{ 0.075f, 0.349f, 0.522f, 1.0f },
{ 0.5f * (0.075f + 0.110f), 0.5f * (0.349f + 0.533f), 0.5f * (0.522f + 0.569f), 1.0f },
{ 0.110f, 0.533f, 0.569f, 1.0f },
{ 0.5f * (0.110f + 0.016f), 0.5f * (0.533f + 0.839f), 0.5f * (0.569f + 0.059f), 1.0f },
{ 0.016f, 0.839f, 0.059f, 1.0f },
{ 0.5f * (0.016f + 0.667f), 0.5f * (0.839f + 0.949f), 0.5f * (0.059f + 0.000f), 1.0f },
{ 0.667f, 0.949f, 0.000f, 1.0f },
{ 0.5f * (0.667f + 0.988f), 0.5f * (0.949f + 0.975f), 0.5f * (0.000f + 0.012f), 1.0f },
{ 0.988f, 0.975f, 0.012f, 1.0f },
{ 0.5f * (0.988f + 0.961f), 0.5f * (0.975f + 0.808f), 0.5f * (0.012f + 0.039f), 1.0f },
{ 0.961f, 0.808f, 0.039f, 1.0f },
{ 0.5f * (0.961f + 0.890f), 0.5f * (0.808f + 0.533f), 0.5f * (0.039f + 0.125f), 1.0f },
{ 0.890f, 0.533f, 0.125f, 1.0f },
{ 0.5f * (0.890f + 0.820f), 0.5f * (0.533f + 0.408f), 0.5f * (0.125f + 0.188f), 1.0f },
{ 0.820f, 0.408f, 0.188f, 1.0f },
{ 0.5f * (0.820f + 0.761f), 0.5f * (0.408f + 0.322f), 0.5f * (0.188f + 0.235f), 1.0f },
{ 0.761f, 0.322f, 0.235f, 1.0f },
{ 0.5f * (0.761f + 0.581f), 0.5f * (0.322f + 0.149f), 0.5f * (0.235f + 0.087f), 1.0f },
{ 0.581f, 0.149f, 0.087f, 1.0f } // reddishgit
} };
#endif
const GCodeViewer::Color GCodeViewer::Wipe_Color = { 1.0f, 1.0f, 0.0f, 1.0f };
const GCodeViewer::Color GCodeViewer::Neutral_Color = { 0.25f, 0.25f, 0.25f, 1.0f };
GCodeViewer::GCodeViewer()
{
m_extrusions.reset_role_visibility_flags();
// m_sequential_view.skip_invisible_moves = true;
}
void GCodeViewer::init()
{
if (m_gl_data_initialized)
return;
// initializes opengl data of TBuffers
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
EMoveType type = buffer_type(i);
switch (type)
{
default: { break; }
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam: {
// if (wxGetApp().is_gl_version_greater_or_equal_to(3, 3)) {
// buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::InstancedModel;
// buffer.shader = "gouraud_light_instanced";
// buffer.model.model.init_from(diamond(16));
// buffer.model.color = option_color(type);
// buffer.model.instances.format = InstanceVBuffer::EFormat::InstancedModel;
// }
// else {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::BatchedModel;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
buffer.shader = "gouraud_light";
buffer.model.data = diamond(16);
buffer.model.color = option_color(type);
buffer.model.instances.format = InstanceVBuffer::EFormat::BatchedModel;
// }
break;
}
case EMoveType::Wipe:
case EMoveType::Extrude: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Triangle;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
buffer.shader = "gouraud_light";
break;
}
case EMoveType::Travel: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Line;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
buffer.shader = "toolpaths_lines";
break;
}
}
set_toolpath_move_type_visible(EMoveType::Extrude, true);
}
// initializes tool marker
m_sequential_view.marker.init();
// initializes point sizes
std::array<int, 2> point_sizes;
::glGetIntegerv(GL_ALIASED_POINT_SIZE_RANGE, point_sizes.data());
m_detected_point_sizes = { static_cast<float>(point_sizes[0]), static_cast<float>(point_sizes[1]) };
m_gl_data_initialized = true;
}
void GCodeViewer::load(const GCodeProcessorResult& gcode_result, const Print& print, bool initialized)
{
// avoid processing if called with the same gcode_result
if (m_last_result_id == gcode_result.id)
return;
m_last_result_id = gcode_result.id;
// release gpu memory, if used
reset();
m_sequential_view.gcode_window.load_gcode(gcode_result.filename,
// Stealing out lines_ends should be safe because this gcode_result is processed only once (see the 1st if in this function).
std::move(const_cast<std::vector<size_t>&>(gcode_result.lines_ends)));
if (wxGetApp().is_gcode_viewer())
m_custom_gcode_per_print_z = gcode_result.custom_gcode_per_print_z;
m_max_print_height = gcode_result.max_print_height;
load_toolpaths(gcode_result);
if (m_layers.empty())
return;
m_settings_ids = gcode_result.settings_ids;
m_filament_diameters = gcode_result.filament_diameters;
m_filament_densities = gcode_result.filament_densities;
if (wxGetApp().is_editor())
load_shells(print, initialized);
else {
Pointfs bed_shape;
std::string texture;
std::string model;
if (!gcode_result.bed_shape.empty()) {
// bed shape detected in the gcode
bed_shape = gcode_result.bed_shape;
const auto bundle = wxGetApp().preset_bundle;
if (bundle != nullptr && !m_settings_ids.printer.empty()) {
const Preset* preset = bundle->printers.find_preset(m_settings_ids.printer);
if (preset != nullptr) {
model = PresetUtils::system_printer_bed_model(*preset);
texture = PresetUtils::system_printer_bed_texture(*preset);
}
}
}
else {
// adjust printbed size in dependence of toolpaths bbox
const double margin = 10.0;
const Vec2d min(m_paths_bounding_box.min.x() - margin, m_paths_bounding_box.min.y() - margin);
const Vec2d max(m_paths_bounding_box.max.x() + margin, m_paths_bounding_box.max.y() + margin);
const Vec2d size = max - min;
bed_shape = {
{ min.x(), min.y() },
{ max.x(), min.y() },
{ max.x(), min.y() + 0.442265 * size.y()},
{ max.x() - 10.0, min.y() + 0.4711325 * size.y()},
{ max.x() + 10.0, min.y() + 0.5288675 * size.y()},
{ max.x(), min.y() + 0.557735 * size.y()},
{ max.x(), max.y() },
{ min.x() + 0.557735 * size.x(), max.y()},
{ min.x() + 0.5288675 * size.x(), max.y() - 10.0},
{ min.x() + 0.4711325 * size.x(), max.y() + 10.0},
{ min.x() + 0.442265 * size.x(), max.y()},
{ min.x(), max.y() } };
}
wxGetApp().plater()->set_bed_shape(bed_shape, gcode_result.max_print_height, texture, model, gcode_result.bed_shape.empty());
}
m_print_statistics = gcode_result.print_statistics;
if (m_time_estimate_mode != PrintEstimatedStatistics::ETimeMode::Normal) {
const float time = m_print_statistics.modes[static_cast<size_t>(m_time_estimate_mode)].time;
if (time == 0.0f ||
short_time(get_time_dhms(time)) == short_time(get_time_dhms(m_print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].time)))
m_time_estimate_mode = PrintEstimatedStatistics::ETimeMode::Normal;
}
}
void GCodeViewer::refresh(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (m_moves_count == 0)
return;
wxBusyCursor busy;
if (m_view_type == EViewType::Tool && !gcode_result.extruder_colors.empty())
// update tool colors from config stored in the gcode
m_tool_colors = decode_colors(gcode_result.extruder_colors);
else
// update tool colors
m_tool_colors = decode_colors(str_tool_colors);
// ensure there are enough colors defined
while (m_tool_colors.size() < std::max(size_t(1), gcode_result.extruders_count))
m_tool_colors.push_back(decode_color("#FF8000"));
// update ranges for coloring / legend
m_extrusions.reset_ranges();
for (size_t i = 0; i < m_moves_count; ++i) {
// skip first vertex
if (i == 0)
continue;
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
switch (curr.type)
{
case EMoveType::Extrude:
{
m_extrusions.ranges.height.update_from(round_to_bin(curr.height));
m_extrusions.ranges.width.update_from(round_to_bin(curr.width));
m_extrusions.ranges.fan_speed.update_from(curr.fan_speed);
m_extrusions.ranges.temperature.update_from(curr.temperature);
if (curr.extrusion_role != erCustom || is_visible(erCustom))
m_extrusions.ranges.volumetric_rate.update_from(round_to_bin(curr.volumetric_rate()));
[[fallthrough]];
}
case EMoveType::Travel:
{
if (m_buffers[buffer_id(curr.type)].visible)
m_extrusions.ranges.feedrate.update_from(curr.feedrate);
break;
}
default: { break; }
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.refresh_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// update buffers' render paths
refresh_render_paths();
log_memory_used("Refreshed G-code extrusion paths, ");
}
void GCodeViewer::refresh_render_paths()
{
refresh_render_paths(false, false);
}
void GCodeViewer::update_shells_color_by_extruder(const DynamicPrintConfig* config)
{
if (config != nullptr)
m_shells.volumes.update_colors_by_extruder(config);
}
void GCodeViewer::reset()
{
m_moves_count = 0;
for (TBuffer& buffer : m_buffers) {
buffer.reset();
}
m_paths_bounding_box = BoundingBoxf3();
m_max_bounding_box = BoundingBoxf3();
m_max_print_height = 0.0f;
m_tool_colors = std::vector<Color>();
m_extruders_count = 0;
m_extruder_ids = std::vector<unsigned char>();
m_filament_diameters = std::vector<float>();
m_filament_densities = std::vector<float>();
m_extrusions.reset_ranges();
m_shells.volumes.clear();
m_layers.reset();
m_layers_z_range = { 0, 0 };
m_roles = std::vector<ExtrusionRole>();
m_print_statistics.reset();
m_custom_gcode_per_print_z = std::vector<CustomGCode::Item>();
m_sequential_view.gcode_window.reset();
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.reset_all();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
m_contained_in_bed = true;
}
void GCodeViewer::render()
{
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.reset_opengl();
m_statistics.total_instances_gpu_size = 0;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (m_roles.empty())
return;
glsafe(::glEnable(GL_DEPTH_TEST));
render_toolpaths();
render_shells();
float legend_height = 0.0f;
render_legend(legend_height);
if (m_sequential_view.current.last != m_sequential_view.endpoints.last) {
m_sequential_view.marker.set_world_position(m_sequential_view.current_position);
m_sequential_view.marker.set_world_offset(m_sequential_view.current_offset);
m_sequential_view.render(legend_height);
}
#if ENABLE_GCODE_VIEWER_STATISTICS
render_statistics();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
bool GCodeViewer::can_export_toolpaths() const
{
return has_data() && m_buffers[buffer_id(EMoveType::Extrude)].render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle;
}
void GCodeViewer::update_sequential_view_current(unsigned int first, unsigned int last)
{
auto is_visible = [this](unsigned int id) {
for (const TBuffer& buffer : m_buffers) {
if (buffer.visible) {
for (const Path& path : buffer.paths) {
if (path.sub_paths.front().first.s_id <= id && id <= path.sub_paths.back().last.s_id)
return true;
}
}
}
return false;
};
const int first_diff = static_cast<int>(first) - static_cast<int>(m_sequential_view.last_current.first);
const int last_diff = static_cast<int>(last) - static_cast<int>(m_sequential_view.last_current.last);
unsigned int new_first = first;
unsigned int new_last = last;
if (m_sequential_view.skip_invisible_moves) {
while (!is_visible(new_first)) {
if (first_diff > 0)
++new_first;
else
--new_first;
}
while (!is_visible(new_last)) {
if (last_diff > 0)
++new_last;
else
--new_last;
}
}
m_sequential_view.current.first = new_first;
m_sequential_view.current.last = new_last;
m_sequential_view.last_current = m_sequential_view.current;
refresh_render_paths(true, true);
if (new_first != first || new_last != last)
wxGetApp().plater()->update_preview_moves_slider();
}
bool GCodeViewer::is_toolpath_move_type_visible(EMoveType type) const
{
size_t id = static_cast<size_t>(buffer_id(type));
return (id < m_buffers.size()) ? m_buffers[id].visible : false;
}
void GCodeViewer::set_toolpath_move_type_visible(EMoveType type, bool visible)
{
size_t id = static_cast<size_t>(buffer_id(type));
if (id < m_buffers.size())
m_buffers[id].visible = visible;
}
unsigned int GCodeViewer::get_options_visibility_flags() const
{
auto set_flag = [](unsigned int flags, unsigned int flag, bool active) {
return active ? (flags | (1 << flag)) : flags;
};
unsigned int flags = 0;
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Travel), is_toolpath_move_type_visible(EMoveType::Travel));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Wipe), is_toolpath_move_type_visible(EMoveType::Wipe));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Retractions), is_toolpath_move_type_visible(EMoveType::Retract));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Unretractions), is_toolpath_move_type_visible(EMoveType::Unretract));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Seams), is_toolpath_move_type_visible(EMoveType::Seam));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolChanges), is_toolpath_move_type_visible(EMoveType::Tool_change));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ColorChanges), is_toolpath_move_type_visible(EMoveType::Color_change));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::PausePrints), is_toolpath_move_type_visible(EMoveType::Pause_Print));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::CustomGCodes), is_toolpath_move_type_visible(EMoveType::Custom_GCode));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Shells), m_shells.visible);
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolMarker), m_sequential_view.marker.is_visible());
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Legend), is_legend_enabled());
return flags;
}
void GCodeViewer::set_options_visibility_from_flags(unsigned int flags)
{
auto is_flag_set = [flags](unsigned int flag) {
return (flags & (1 << flag)) != 0;
};
set_toolpath_move_type_visible(EMoveType::Travel, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Travel)));
set_toolpath_move_type_visible(EMoveType::Wipe, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Wipe)));
set_toolpath_move_type_visible(EMoveType::Retract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Retractions)));
set_toolpath_move_type_visible(EMoveType::Unretract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Unretractions)));
set_toolpath_move_type_visible(EMoveType::Seam, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Seams)));
set_toolpath_move_type_visible(EMoveType::Tool_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolChanges)));
set_toolpath_move_type_visible(EMoveType::Color_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ColorChanges)));
set_toolpath_move_type_visible(EMoveType::Pause_Print, is_flag_set(static_cast<unsigned int>(Preview::OptionType::PausePrints)));
set_toolpath_move_type_visible(EMoveType::Custom_GCode, is_flag_set(static_cast<unsigned int>(Preview::OptionType::CustomGCodes)));
m_shells.visible = is_flag_set(static_cast<unsigned int>(Preview::OptionType::Shells));
m_sequential_view.marker.set_visible(is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolMarker)));
enable_legend(is_flag_set(static_cast<unsigned int>(Preview::OptionType::Legend)));
}
void GCodeViewer::set_layers_z_range(const std::array<unsigned int, 2>& layers_z_range)
{
bool keep_sequential_current_first = layers_z_range[0] >= m_layers_z_range[0];
bool keep_sequential_current_last = layers_z_range[1] <= m_layers_z_range[1];
m_layers_z_range = layers_z_range;
refresh_render_paths(keep_sequential_current_first, keep_sequential_current_last);
wxGetApp().plater()->update_preview_moves_slider();
}
void GCodeViewer::export_toolpaths_to_obj(const char* filename) const
{
if (filename == nullptr)
return;
if (!has_data())
return;
wxBusyCursor busy;
// the data needed is contained into the Extrude TBuffer
const TBuffer& t_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
if (!t_buffer.has_data())
return;
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
return;
// collect color information to generate materials
std::vector<Color> colors;
for (const RenderPath& path : t_buffer.render_paths) {
colors.push_back(path.color);
}
sort_remove_duplicates(colors);
// save materials file
boost::filesystem::path mat_filename(filename);
mat_filename.replace_extension("mtl");
CNumericLocalesSetter locales_setter;
FILE* fp = boost::nowide::fopen(mat_filename.string().c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << mat_filename.string().c_str() << " for writing";
return;
}
fprintf(fp, "# G-Code Toolpaths Materials\n");
fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
unsigned int colors_count = 1;
for (const Color& color : colors) {
fprintf(fp, "\nnewmtl material_%d\n", colors_count++);
fprintf(fp, "Ka 1 1 1\n");
fprintf(fp, "Kd %g %g %g\n", color[0], color[1], color[2]);
fprintf(fp, "Ks 0 0 0\n");
}
fclose(fp);
// save geometry file
fp = boost::nowide::fopen(filename, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << filename << " for writing";
return;
}
fprintf(fp, "# G-Code Toolpaths\n");
fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
fprintf(fp, "\nmtllib ./%s\n", mat_filename.filename().string().c_str());
const size_t floats_per_vertex = t_buffer.vertices.vertex_size_floats();
std::vector<Vec3f> out_vertices;
std::vector<Vec3f> out_normals;
struct VerticesOffset
{
unsigned int vbo;
size_t offset;
};
std::vector<VerticesOffset> vertices_offsets;
vertices_offsets.push_back({ t_buffer.vertices.vbos.front(), 0 });
// get vertices/normals data from vertex buffers on gpu
for (size_t i = 0; i < t_buffer.vertices.vbos.size(); ++i) {
const size_t floats_count = t_buffer.vertices.sizes[i] / sizeof(float);
VertexBuffer vertices(floats_count);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, t_buffer.vertices.vbos[i]));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, 0, static_cast<GLsizeiptr>(t_buffer.vertices.sizes[i]), static_cast<void*>(vertices.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
const size_t vertices_count = floats_count / floats_per_vertex;
for (size_t j = 0; j < vertices_count; ++j) {
const size_t base = j * floats_per_vertex;
out_vertices.push_back({ vertices[base + 0], vertices[base + 1], vertices[base + 2] });
out_normals.push_back({ vertices[base + 3], vertices[base + 4], vertices[base + 5] });
}
if (i < t_buffer.vertices.vbos.size() - 1)
vertices_offsets.push_back({ t_buffer.vertices.vbos[i + 1], vertices_offsets.back().offset + vertices_count });
}
// save vertices to file
fprintf(fp, "\n# vertices\n");
for (const Vec3f& v : out_vertices) {
fprintf(fp, "v %g %g %g\n", v.x(), v.y(), v.z());
}
// save normals to file
fprintf(fp, "\n# normals\n");
for (const Vec3f& n : out_normals) {
fprintf(fp, "vn %g %g %g\n", n.x(), n.y(), n.z());
}
size_t i = 0;
for (const Color& color : colors) {
// save material triangles to file
fprintf(fp, "\nusemtl material_%zu\n", i + 1);
fprintf(fp, "# triangles material %zu\n", i + 1);
for (const RenderPath& render_path : t_buffer.render_paths) {
if (render_path.color != color)
continue;
const IBuffer& ibuffer = t_buffer.indices[render_path.ibuffer_id];
size_t vertices_offset = 0;
for (size_t j = 0; j < vertices_offsets.size(); ++j) {
const VerticesOffset& offset = vertices_offsets[j];
if (offset.vbo == ibuffer.vbo) {
vertices_offset = offset.offset;
break;
}
}
// get indices data from index buffer on gpu
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuffer.ibo));
for (size_t j = 0; j < render_path.sizes.size(); ++j) {
IndexBuffer indices(render_path.sizes[j]);
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(render_path.offsets[j]),
static_cast<GLsizeiptr>(render_path.sizes[j] * sizeof(IBufferType)), static_cast<void*>(indices.data())));
const size_t triangles_count = render_path.sizes[j] / 3;
for (size_t k = 0; k < triangles_count; ++k) {
const size_t base = k * 3;
const size_t v1 = 1 + static_cast<size_t>(indices[base + 0]) + vertices_offset;
const size_t v2 = 1 + static_cast<size_t>(indices[base + 1]) + vertices_offset;
const size_t v3 = 1 + static_cast<size_t>(indices[base + 2]) + vertices_offset;
if (v1 != v2)
// do not export dummy triangles
fprintf(fp, "f %zu//%zu %zu//%zu %zu//%zu\n", v1, v1, v2, v2, v3, v3);
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
++i;
}
fclose(fp);
}
void GCodeViewer::load_toolpaths(const GCodeProcessorResult& gcode_result)
{
// max index buffer size, in bytes
static const size_t IBUFFER_THRESHOLD_BYTES = 64 * 1024 * 1024;
auto log_memory_usage = [this](const std::string& label, const std::vector<MultiVertexBuffer>& vertices, const std::vector<MultiIndexBuffer>& indices) {
int64_t vertices_size = 0;
for (const MultiVertexBuffer& buffers : vertices) {
for (const VertexBuffer& buffer : buffers) {
vertices_size += SLIC3R_STDVEC_MEMSIZE(buffer, float);
}
}
int64_t indices_size = 0;
for (const MultiIndexBuffer& buffers : indices) {
for (const IndexBuffer& buffer : buffers) {
indices_size += SLIC3R_STDVEC_MEMSIZE(buffer, IBufferType);
}
}
log_memory_used(label, vertices_size + indices_size);
};
// format data into the buffers to be rendered as points
auto add_vertices_as_point = [](const GCodeProcessorResult::MoveVertex& curr, VertexBuffer& vertices) {
vertices.push_back(curr.position.x());
vertices.push_back(curr.position.y());
vertices.push_back(curr.position.z());
};
auto add_indices_as_point = [](const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
indices.push_back(static_cast<IBufferType>(indices.size()));
};
// format data into the buffers to be rendered as lines
auto add_vertices_as_line = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, VertexBuffer& vertices) {
// x component of the normal to the current segment (the normal is parallel to the XY plane)
const Vec3f dir = (curr.position - prev.position).normalized();
Vec3f normal(dir.y(), -dir.x(), 0.0);
normal.normalize();
auto add_vertex = [&vertices, &normal](const GCodeProcessorResult::MoveVertex& vertex) {
// add position
vertices.push_back(vertex.position.x());
vertices.push_back(vertex.position.y());
vertices.push_back(vertex.position.z());
// add normal
vertices.push_back(normal.x());
vertices.push_back(normal.y());
vertices.push_back(normal.z());
};
// add previous vertex
add_vertex(prev);
// add current vertex
add_vertex(curr);
};
auto add_indices_as_line = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
if (buffer.paths.empty() || prev.type != curr.type || !buffer.paths.back().matches(curr)) {
// add starting index
indices.push_back(static_cast<IBufferType>(indices.size()));
buffer.add_path(curr, ibuffer_id, indices.size() - 1, move_id - 1);
buffer.paths.back().sub_paths.front().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
if (last_path.sub_paths.front().first.i_id != last_path.sub_paths.back().last.i_id) {
// add previous index
indices.push_back(static_cast<IBufferType>(indices.size()));
}
// add current index
indices.push_back(static_cast<IBufferType>(indices.size()));
last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
};
// format data into the buffers to be rendered as solid
auto add_vertices_as_solid = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer, unsigned int vbuffer_id, VertexBuffer& vertices, size_t move_id) {
auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
// append position
vertices.push_back(position.x());
vertices.push_back(position.y());
vertices.push_back(position.z());
// append normal
vertices.push_back(normal.x());
vertices.push_back(normal.y());
vertices.push_back(normal.z());
};
if (buffer.paths.empty() || prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, vbuffer_id, vertices.size(), move_id - 1);
buffer.paths.back().sub_paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
const Vec3f dir = (curr.position - prev.position).normalized();
const Vec3f right = Vec3f(dir.y(), -dir.x(), 0.0f).normalized();
const Vec3f left = -right;
const Vec3f up = right.cross(dir);
const Vec3f down = -up;
const float half_width = 0.5f * last_path.width;
const float half_height = 0.5f * last_path.height;
const Vec3f prev_pos = prev.position - half_height * up;
const Vec3f curr_pos = curr.position - half_height * up;
const Vec3f d_up = half_height * up;
const Vec3f d_down = -half_height * up;
const Vec3f d_right = half_width * right;
const Vec3f d_left = -half_width * right;
// vertices 1st endpoint
if (last_path.vertices_count() == 1 || vertices.empty()) {
// 1st segment or restart into a new vertex buffer
// ===============================================
store_vertex(vertices, prev_pos + d_up, up);
store_vertex(vertices, prev_pos + d_right, right);
store_vertex(vertices, prev_pos + d_down, down);
store_vertex(vertices, prev_pos + d_left, left);
}
else {
// any other segment
// =================
store_vertex(vertices, prev_pos + d_right, right);
store_vertex(vertices, prev_pos + d_left, left);
}
// vertices 2nd endpoint
store_vertex(vertices, curr_pos + d_up, up);
store_vertex(vertices, curr_pos + d_right, right);
store_vertex(vertices, curr_pos + d_down, down);
store_vertex(vertices, curr_pos + d_left, left);
last_path.sub_paths.back().last = { vbuffer_id, vertices.size(), move_id, curr.position };
};
auto add_indices_as_solid = [&](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, const GCodeProcessorResult::MoveVertex* next,
TBuffer& buffer, size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
static Vec3f prev_dir;
static Vec3f prev_up;
static float sq_prev_length;
auto store_triangle = [](IndexBuffer& indices, IBufferType i1, IBufferType i2, IBufferType i3) {
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
};
auto append_dummy_cap = [store_triangle](IndexBuffer& indices, IBufferType id) {
store_triangle(indices, id, id, id);
store_triangle(indices, id, id, id);
};
auto convert_vertices_offset = [](size_t vbuffer_size, const std::array<int, 8>& v_offsets) {
std::array<IBufferType, 8> ret = {
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[0]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[1]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[2]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[3]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[4]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[5]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[6]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[7])
};
return ret;
};
auto append_starting_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[0], v_offsets[2], v_offsets[1]);
store_triangle(indices, v_offsets[0], v_offsets[3], v_offsets[2]);
};
auto append_stem_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[0], v_offsets[1], v_offsets[4]);
store_triangle(indices, v_offsets[1], v_offsets[5], v_offsets[4]);
store_triangle(indices, v_offsets[1], v_offsets[2], v_offsets[5]);
store_triangle(indices, v_offsets[2], v_offsets[6], v_offsets[5]);
store_triangle(indices, v_offsets[2], v_offsets[3], v_offsets[6]);
store_triangle(indices, v_offsets[3], v_offsets[7], v_offsets[6]);
store_triangle(indices, v_offsets[3], v_offsets[0], v_offsets[7]);
store_triangle(indices, v_offsets[0], v_offsets[4], v_offsets[7]);
};
auto append_ending_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[4], v_offsets[6], v_offsets[7]);
store_triangle(indices, v_offsets[4], v_offsets[5], v_offsets[6]);
};
if (buffer.paths.empty() || prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id - 1);
buffer.paths.back().sub_paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
const Vec3f dir = (curr.position - prev.position).normalized();
const Vec3f right = Vec3f(dir.y(), -dir.x(), 0.0f).normalized();
const Vec3f up = right.cross(dir);
const float sq_length = (curr.position - prev.position).squaredNorm();
const std::array<IBufferType, 8> first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { 0, 1, 2, 3, 4, 5, 6, 7 });
const std::array<IBufferType, 8> non_first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { -4, 0, -2, 1, 2, 3, 4, 5 });
const bool is_first_segment = (last_path.vertices_count() == 1);
if (is_first_segment || vbuffer_size == 0) {
// 1st segment or restart into a new vertex buffer
// ===============================================
if (is_first_segment)
// starting cap triangles
append_starting_cap_triangles(indices, first_seg_v_offsets);
// dummy triangles outer corner cap
append_dummy_cap(indices, vbuffer_size);
// stem triangles
append_stem_triangles(indices, first_seg_v_offsets);
vbuffer_size += 8;
}
else {
// any other segment
// =================
float displacement = 0.0f;
const float cos_dir = prev_dir.dot(dir);
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
const Vec3f med_dir = (prev_dir + dir).normalized();
const float half_width = 0.5f * last_path.width;
displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
}
const float sq_displacement = sqr(displacement);
const bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_length;
const bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
// whether the angle between adjacent segments is greater than 45 degrees
const bool is_sharp = cos_dir < 0.7071068f;
bool right_displaced = false;
bool left_displaced = false;
if (!is_sharp && can_displace) {
if (is_right_turn)
left_displaced = true;
else
right_displaced = true;
}
// triangles outer corner cap
if (is_right_turn) {
if (left_displaced)
// dummy triangles
append_dummy_cap(indices, vbuffer_size);
else {
store_triangle(indices, vbuffer_size - 4, vbuffer_size + 1, vbuffer_size - 1);
store_triangle(indices, vbuffer_size + 1, vbuffer_size - 2, vbuffer_size - 1);
}
}
else {
if (right_displaced)
// dummy triangles
append_dummy_cap(indices, vbuffer_size);
else {
store_triangle(indices, vbuffer_size - 4, vbuffer_size - 3, vbuffer_size + 0);
store_triangle(indices, vbuffer_size - 3, vbuffer_size - 2, vbuffer_size + 0);
}
}
// stem triangles
append_stem_triangles(indices, non_first_seg_v_offsets);
vbuffer_size += 6;
}
if (next != nullptr && (curr.type != next->type || !last_path.matches(*next)))
// ending cap triangles
append_ending_cap_triangles(indices, is_first_segment ? first_seg_v_offsets : non_first_seg_v_offsets);
last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
prev_dir = dir;
prev_up = up;
sq_prev_length = sq_length;
};
// format data into the buffers to be rendered as instanced model
auto add_model_instance = [](const GCodeProcessorResult::MoveVertex& curr, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
// append position
instances.push_back(curr.position.x());
instances.push_back(curr.position.y());
instances.push_back(curr.position.z());
// append width
instances.push_back(curr.width);
// append height
instances.push_back(curr.height);
// append id
instances_ids.push_back(move_id);
};
// format data into the buffers to be rendered as batched model
auto add_vertices_as_model_batch = [](const GCodeProcessorResult::MoveVertex& curr, const GLModel::InitializationData& data, VertexBuffer& vertices, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
const double width = static_cast<double>(1.5f * curr.width);
const double height = static_cast<double>(1.5f * curr.height);
const Transform3d trafo = Geometry::assemble_transform((curr.position - 0.5f * curr.height * Vec3f::UnitZ()).cast<double>(), Vec3d::Zero(), { width, width, height });
const Eigen::Matrix<double, 3, 3, Eigen::DontAlign> normal_matrix = trafo.matrix().template block<3, 3>(0, 0).inverse().transpose();
for (const auto& entity : data.entities) {
// append vertices
for (size_t i = 0; i < entity.positions.size(); ++i) {
// append position
const Vec3d position = trafo * entity.positions[i].cast<double>();
vertices.push_back(static_cast<float>(position.x()));
vertices.push_back(static_cast<float>(position.y()));
vertices.push_back(static_cast<float>(position.z()));
// append normal
const Vec3d normal = normal_matrix * entity.normals[i].cast<double>();
vertices.push_back(static_cast<float>(normal.x()));
vertices.push_back(static_cast<float>(normal.y()));
vertices.push_back(static_cast<float>(normal.z()));
}
}
// append instance position
instances.push_back(curr.position.x());
instances.push_back(curr.position.y());
instances.push_back(curr.position.z());
// append instance id
instances_ids.push_back(move_id);
};
auto add_indices_as_model_batch = [](const GLModel::InitializationData& data, IndexBuffer& indices, IBufferType base_index) {
for (const auto& entity : data.entities) {
for (size_t i = 0; i < entity.indices.size(); ++i) {
indices.push_back(static_cast<IBufferType>(entity.indices[i] + base_index));
}
}
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessorResult::MoveVertex);
m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
m_moves_count = gcode_result.moves.size();
if (m_moves_count == 0)
return;
m_extruders_count = gcode_result.extruders_count;
unsigned int progress_count = 0;
static const unsigned int progress_threshold = 1000;
wxProgressDialog* progress_dialog = wxGetApp().is_gcode_viewer() ?
new wxProgressDialog(_L("Generating toolpaths"), "...",
100, wxGetApp().mainframe, wxPD_AUTO_HIDE | wxPD_APP_MODAL) : nullptr;
wxBusyCursor busy;
// extract approximate paths bounding box from result
for (const GCodeProcessorResult::MoveVertex& move : gcode_result.moves) {
if (wxGetApp().is_gcode_viewer())
// for the gcode viewer we need to take in account all moves to correctly size the printbed
m_paths_bounding_box.merge(move.position.cast<double>());
else {
if (move.type == EMoveType::Extrude && move.extrusion_role != erCustom && move.width != 0.0f && move.height != 0.0f)
m_paths_bounding_box.merge(move.position.cast<double>());
}
}
// set approximate max bounding box (take in account also the tool marker)
m_max_bounding_box = m_paths_bounding_box;
m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size().z() * Vec3d::UnitZ());
if (wxGetApp().is_editor())
m_contained_in_bed = wxGetApp().plater()->build_volume().all_paths_inside(gcode_result, m_paths_bounding_box);
m_sequential_view.gcode_ids.clear();
for (size_t i = 0; i < gcode_result.moves.size(); ++i) {
const GCodeProcessorResult::MoveVertex& move = gcode_result.moves[i];
if (move.type != EMoveType::Seam)
m_sequential_view.gcode_ids.push_back(move.gcode_id);
}
std::vector<MultiVertexBuffer> vertices(m_buffers.size());
std::vector<MultiIndexBuffer> indices(m_buffers.size());
std::vector<InstanceBuffer> instances(m_buffers.size());
std::vector<InstanceIdBuffer> instances_ids(m_buffers.size());
std::vector<InstancesOffsets> instances_offsets(m_buffers.size());
std::vector<float> options_zs;
size_t seams_count = 0;
std::vector<size_t> biased_seams_ids;
// toolpaths data -> extract vertices from result
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
if (curr.type == EMoveType::Seam) {
++seams_count;
biased_seams_ids.push_back(i - biased_seams_ids.size() - 1);
}
size_t move_id = i - seams_count;
// skip first vertex
if (i == 0)
continue;
const GCodeProcessorResult::MoveVertex& prev = gcode_result.moves[i - 1];
// update progress dialog
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(i) / (2.0f * float(m_moves_count))),
_L("Generating vertex buffer") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
const unsigned char id = buffer_id(curr.type);
TBuffer& t_buffer = m_buffers[id];
MultiVertexBuffer& v_multibuffer = vertices[id];
InstanceBuffer& inst_buffer = instances[id];
InstanceIdBuffer& inst_id_buffer = instances_ids[id];
InstancesOffsets& inst_offsets = instances_offsets[id];
// ensure there is at least one vertex buffer
if (v_multibuffer.empty())
v_multibuffer.push_back(VertexBuffer());
// if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
// add another vertex buffer
size_t vertices_size_to_add = (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) ? t_buffer.model.data.vertices_size_bytes() : t_buffer.max_vertices_per_segment_size_bytes();
if (v_multibuffer.back().size() * sizeof(float) > t_buffer.vertices.max_size_bytes() - vertices_size_to_add) {
v_multibuffer.push_back(VertexBuffer());
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
Path& last_path = t_buffer.paths.back();
if (prev.type == curr.type && last_path.matches(curr))
last_path.add_sub_path(prev, static_cast<unsigned int>(v_multibuffer.size()) - 1, 0, move_id - 1);
}
}
VertexBuffer& v_buffer = v_multibuffer.back();
switch (t_buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: { add_vertices_as_point(curr, v_buffer); break; }
case TBuffer::ERenderPrimitiveType::Line: { add_vertices_as_line(prev, curr, v_buffer); break; }
case TBuffer::ERenderPrimitiveType::Triangle: { add_vertices_as_solid(prev, curr, t_buffer, static_cast<unsigned int>(v_multibuffer.size()) - 1, v_buffer, move_id); break; }
case TBuffer::ERenderPrimitiveType::InstancedModel:
{
add_model_instance(curr, inst_buffer, inst_id_buffer, move_id);
inst_offsets.push_back(prev.position - curr.position);
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.instances_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
break;
}
case TBuffer::ERenderPrimitiveType::BatchedModel:
{
add_vertices_as_model_batch(curr, t_buffer.model.data, v_buffer, inst_buffer, inst_id_buffer, move_id);
inst_offsets.push_back(prev.position - curr.position);
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.batched_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
break;
}
}
// collect options zs for later use
if (curr.type == EMoveType::Pause_Print || curr.type == EMoveType::Custom_GCode) {
const float* const last_z = options_zs.empty() ? nullptr : &options_zs.back();
if (last_z == nullptr || curr.position[2] < *last_z - EPSILON || *last_z + EPSILON < curr.position[2])
options_zs.emplace_back(curr.position[2]);
}
}
// smooth toolpaths corners for the given TBuffer using triangles
auto smooth_triangle_toolpaths_corners = [&gcode_result, &biased_seams_ids](const TBuffer& t_buffer, MultiVertexBuffer& v_multibuffer) {
auto extract_position_at = [](const VertexBuffer& vertices, size_t offset) {
return Vec3f(vertices[offset + 0], vertices[offset + 1], vertices[offset + 2]);
};
auto update_position_at = [](VertexBuffer& vertices, size_t offset, const Vec3f& position) {
vertices[offset + 0] = position.x();
vertices[offset + 1] = position.y();
vertices[offset + 2] = position.z();
};
auto match_right_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
// offset into the vertex buffer of the next segment 1st vertex
const size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
// offset into the vertex buffer of the right vertex of the previous segment
const size_t prev_right_offset = prev_sub_path.last.i_id - next_1st_offset - 3 * vertex_size_floats;
// new position of the right vertices
const Vec3f shared_vertex = extract_position_at(vbuffer, prev_right_offset) + displacement_vec;
// update previous segment
update_position_at(vbuffer, prev_right_offset, shared_vertex);
// offset into the vertex buffer of the right vertex of the next segment
const size_t next_right_offset = next_sub_path.last.i_id - next_1st_offset;
// update next segment
update_position_at(vbuffer, next_right_offset, shared_vertex);
}
else { // previous and next segment are contained into different vertex buffers
VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
// offset into the previous vertex buffer of the right vertex of the previous segment
const size_t prev_right_offset = prev_sub_path.last.i_id - 3 * vertex_size_floats;
// new position of the right vertices
const Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_right_offset) + displacement_vec;
// update previous segment
update_position_at(prev_vbuffer, prev_right_offset, shared_vertex);
// offset into the next vertex buffer of the right vertex of the next segment
const size_t next_right_offset = next_sub_path.first.i_id + 1 * vertex_size_floats;
// update next segment
update_position_at(next_vbuffer, next_right_offset, shared_vertex);
}
};
auto match_left_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
// offset into the vertex buffer of the next segment 1st vertex
const size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
// offset into the vertex buffer of the left vertex of the previous segment
const size_t prev_left_offset = prev_sub_path.last.i_id - next_1st_offset - 1 * vertex_size_floats;
// new position of the left vertices
const Vec3f shared_vertex = extract_position_at(vbuffer, prev_left_offset) + displacement_vec;
// update previous segment
update_position_at(vbuffer, prev_left_offset, shared_vertex);
// offset into the vertex buffer of the left vertex of the next segment
const size_t next_left_offset = next_sub_path.last.i_id - next_1st_offset + 1 * vertex_size_floats;
// update next segment
update_position_at(vbuffer, next_left_offset, shared_vertex);
}
else { // previous and next segment are contained into different vertex buffers
VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
// offset into the previous vertex buffer of the left vertex of the previous segment
const size_t prev_left_offset = prev_sub_path.last.i_id - 1 * vertex_size_floats;
// new position of the left vertices
const Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_left_offset) + displacement_vec;
// update previous segment
update_position_at(prev_vbuffer, prev_left_offset, shared_vertex);
// offset into the next vertex buffer of the left vertex of the next segment
const size_t next_left_offset = next_sub_path.first.i_id + 3 * vertex_size_floats;
// update next segment
update_position_at(next_vbuffer, next_left_offset, shared_vertex);
}
};
auto extract_move_id = [&biased_seams_ids](size_t id) {
size_t new_id = size_t(-1);
auto it = std::lower_bound(biased_seams_ids.begin(), biased_seams_ids.end(), id);
if (it == biased_seams_ids.end())
new_id = id + biased_seams_ids.size();
else {
if (it == biased_seams_ids.begin() && *it < id)
new_id = id;
else if (it != biased_seams_ids.begin())
new_id = id + std::distance(biased_seams_ids.begin(), it);
}
return (new_id == size_t(-1)) ? id : new_id;
};
const size_t vertex_size_floats = t_buffer.vertices.vertex_size_floats();
for (const Path& path : t_buffer.paths) {
// the two segments of the path sharing the current vertex may belong
// to two different vertex buffers
size_t prev_sub_path_id = 0;
size_t next_sub_path_id = 0;
const size_t path_vertices_count = path.vertices_count();
const float half_width = 0.5f * path.width;
for (size_t j = 1; j < path_vertices_count - 1; ++j) {
const size_t curr_s_id = path.sub_paths.front().first.s_id + j;
const size_t move_id = extract_move_id(curr_s_id);
const Vec3f& prev = gcode_result.moves[move_id - 1].position;
const Vec3f& curr = gcode_result.moves[move_id].position;
const Vec3f& next = gcode_result.moves[move_id + 1].position;
// select the subpaths which contains the previous/next segments
if (!path.sub_paths[prev_sub_path_id].contains(curr_s_id))
++prev_sub_path_id;
if (!path.sub_paths[next_sub_path_id].contains(curr_s_id + 1))
++next_sub_path_id;
const Path::Sub_Path& prev_sub_path = path.sub_paths[prev_sub_path_id];
const Path::Sub_Path& next_sub_path = path.sub_paths[next_sub_path_id];
const Vec3f prev_dir = (curr - prev).normalized();
const Vec3f prev_right = Vec3f(prev_dir.y(), -prev_dir.x(), 0.0f).normalized();
const Vec3f prev_up = prev_right.cross(prev_dir);
const Vec3f next_dir = (next - curr).normalized();
const bool is_right_turn = prev_up.dot(prev_dir.cross(next_dir)) <= 0.0f;
const float cos_dir = prev_dir.dot(next_dir);
// whether the angle between adjacent segments is greater than 45 degrees
const bool is_sharp = cos_dir < 0.7071068f;
float displacement = 0.0f;
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
const Vec3f med_dir = (prev_dir + next_dir).normalized();
displacement = half_width * ::tan(::acos(std::clamp(next_dir.dot(med_dir), -1.0f, 1.0f)));
}
const float sq_prev_length = (curr - prev).squaredNorm();
const float sq_next_length = (next - curr).squaredNorm();
const float sq_displacement = sqr(displacement);
const bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_next_length;
if (can_displace) {
// displacement to apply to the vertices to match
const Vec3f displacement_vec = displacement * prev_dir;
// matches inner corner vertices
if (is_right_turn)
match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
else
match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
if (!is_sharp) {
// matches outer corner vertices
if (is_right_turn)
match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
else
match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
}
}
}
}
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto load_vertices_time = std::chrono::high_resolution_clock::now();
m_statistics.load_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// smooth toolpaths corners for TBuffers using triangles
for (size_t i = 0; i < m_buffers.size(); ++i) {
const TBuffer& t_buffer = m_buffers[i];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
smooth_triangle_toolpaths_corners(t_buffer, vertices[i]);
}
// dismiss, no more needed
std::vector<size_t>().swap(biased_seams_ids);
for (MultiVertexBuffer& v_multibuffer : vertices) {
for (VertexBuffer& v_buffer : v_multibuffer) {
v_buffer.shrink_to_fit();
}
}
// move the wipe toolpaths half height up to render them on proper position
MultiVertexBuffer& wipe_vertices = vertices[buffer_id(EMoveType::Wipe)];
for (VertexBuffer& v_buffer : wipe_vertices) {
for (size_t i = 2; i < v_buffer.size(); i += 3) {
v_buffer[i] += 0.5f * GCodeProcessor::Wipe_Height;
}
}
// send vertices data to gpu, where needed
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& t_buffer = m_buffers[i];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel) {
const InstanceBuffer& inst_buffer = instances[i];
if (!inst_buffer.empty()) {
t_buffer.model.instances.buffer = inst_buffer;
t_buffer.model.instances.s_ids = instances_ids[i];
t_buffer.model.instances.offsets = instances_offsets[i];
}
}
else {
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
const InstanceBuffer& inst_buffer = instances[i];
if (!inst_buffer.empty()) {
t_buffer.model.instances.buffer = inst_buffer;
t_buffer.model.instances.s_ids = instances_ids[i];
t_buffer.model.instances.offsets = instances_offsets[i];
}
}
const MultiVertexBuffer& v_multibuffer = vertices[i];
for (const VertexBuffer& v_buffer : v_multibuffer) {
const size_t size_elements = v_buffer.size();
const size_t size_bytes = size_elements * sizeof(float);
const size_t vertices_count = size_elements / t_buffer.vertices.vertex_size_floats();
t_buffer.vertices.count += vertices_count;
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_vertices_gpu_size += static_cast<int64_t>(size_bytes);
m_statistics.max_vbuffer_gpu_size = std::max(m_statistics.max_vbuffer_gpu_size, static_cast<int64_t>(size_bytes));
++m_statistics.vbuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
GLuint id = 0;
glsafe(::glGenBuffers(1, &id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, size_bytes, v_buffer.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
t_buffer.vertices.vbos.push_back(static_cast<unsigned int>(id));
t_buffer.vertices.sizes.push_back(size_bytes);
}
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
auto smooth_vertices_time = std::chrono::high_resolution_clock::now();
m_statistics.smooth_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - load_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
log_memory_usage("Loaded G-code generated vertex buffers ", vertices, indices);
// dismiss vertices data, no more needed
std::vector<MultiVertexBuffer>().swap(vertices);
std::vector<InstanceBuffer>().swap(instances);
std::vector<InstanceIdBuffer>().swap(instances_ids);
// toolpaths data -> extract indices from result
// paths may have been filled while extracting vertices,
// so reset them, they will be filled again while extracting indices
for (TBuffer& buffer : m_buffers) {
buffer.paths.clear();
}
// variable used to keep track of the current vertex buffers index and size
using CurrVertexBuffer = std::pair<unsigned int, size_t>;
std::vector<CurrVertexBuffer> curr_vertex_buffers(m_buffers.size(), { 0, 0 });
// variable used to keep track of the vertex buffers ids
using VboIndexList = std::vector<unsigned int>;
std::vector<VboIndexList> vbo_indices(m_buffers.size());
seams_count = 0;
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
if (curr.type == EMoveType::Seam)
++seams_count;
size_t move_id = i - seams_count;
// skip first vertex
if (i == 0)
continue;
const GCodeProcessorResult::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessorResult::MoveVertex* next = nullptr;
if (i < m_moves_count - 1)
next = &gcode_result.moves[i + 1];
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(m_moves_count + i) / (2.0f * float(m_moves_count))),
_L("Generating index buffers") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
const unsigned char id = buffer_id(curr.type);
TBuffer& t_buffer = m_buffers[id];
MultiIndexBuffer& i_multibuffer = indices[id];
CurrVertexBuffer& curr_vertex_buffer = curr_vertex_buffers[id];
VboIndexList& vbo_index_list = vbo_indices[id];
// ensure there is at least one index buffer
if (i_multibuffer.empty()) {
i_multibuffer.push_back(IndexBuffer());
if (!t_buffer.vertices.vbos.empty())
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
}
// if adding the indices for the current segment exceeds the threshold size of the current index buffer
// create another index buffer
size_t indiced_size_to_add = (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) ? t_buffer.model.data.indices_size_bytes() : t_buffer.max_indices_per_segment_size_bytes();
if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - indiced_size_to_add) {
i_multibuffer.push_back(IndexBuffer());
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point &&
t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::BatchedModel) {
Path& last_path = t_buffer.paths.back();
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, move_id - 1);
}
}
// if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
// create another index buffer
size_t vertices_size_to_add = (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) ? t_buffer.model.data.vertices_size_bytes() : t_buffer.max_vertices_per_segment_size_bytes();
if (curr_vertex_buffer.second * t_buffer.vertices.vertex_size_bytes() > t_buffer.vertices.max_size_bytes() - vertices_size_to_add) {
i_multibuffer.push_back(IndexBuffer());
++curr_vertex_buffer.first;
curr_vertex_buffer.second = 0;
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point &&
t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::BatchedModel) {
Path& last_path = t_buffer.paths.back();
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, move_id - 1);
}
}
IndexBuffer& i_buffer = i_multibuffer.back();
switch (t_buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
add_indices_as_point(curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, move_id);
curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
add_indices_as_line(prev, curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, move_id);
curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
add_indices_as_solid(prev, curr, next, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, move_id);
break;
}
case TBuffer::ERenderPrimitiveType::BatchedModel: {
add_indices_as_model_batch(t_buffer.model.data, i_buffer, curr_vertex_buffer.second);
curr_vertex_buffer.second += t_buffer.model.data.vertices_count();
break;
}
default: { break; }
}
}
for (MultiIndexBuffer& i_multibuffer : indices) {
for (IndexBuffer& i_buffer : i_multibuffer) {
i_buffer.shrink_to_fit();
}
}
// toolpaths data -> send indices data to gpu
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& t_buffer = m_buffers[i];
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::InstancedModel) {
const MultiIndexBuffer& i_multibuffer = indices[i];
for (const IndexBuffer& i_buffer : i_multibuffer) {
const size_t size_elements = i_buffer.size();
const size_t size_bytes = size_elements * sizeof(IBufferType);
// stores index buffer informations into TBuffer
t_buffer.indices.push_back(IBuffer());
IBuffer& ibuf = t_buffer.indices.back();
ibuf.count = size_elements;
ibuf.vbo = vbo_indices[i][t_buffer.indices.size() - 1];
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_indices_gpu_size += static_cast<int64_t>(size_bytes);
m_statistics.max_ibuffer_gpu_size = std::max(m_statistics.max_ibuffer_gpu_size, static_cast<int64_t>(size_bytes));
++m_statistics.ibuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
glsafe(::glGenBuffers(1, &ibuf.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuf.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, size_bytes, i_buffer.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
}
}
if (progress_dialog != nullptr) {
progress_dialog->Update(100, "");
progress_dialog->Fit();
}
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
m_statistics.paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
}
auto update_segments_count = [&](EMoveType type, int64_t& count) {
unsigned int id = buffer_id(type);
const MultiIndexBuffer& buffers = indices[id];
int64_t indices_count = 0;
for (const IndexBuffer& buffer : buffers) {
indices_count += buffer.size();
}
const TBuffer& t_buffer = m_buffers[id];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
indices_count -= static_cast<int64_t>(12 * t_buffer.paths.size()); // remove the starting + ending caps = 4 triangles
count += indices_count / t_buffer.indices_per_segment();
};
update_segments_count(EMoveType::Travel, m_statistics.travel_segments_count);
update_segments_count(EMoveType::Wipe, m_statistics.wipe_segments_count);
update_segments_count(EMoveType::Extrude, m_statistics.extrude_segments_count);
m_statistics.load_indices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - smooth_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
log_memory_usage("Loaded G-code generated indices buffers ", vertices, indices);
// dismiss indices data, no more needed
std::vector<MultiIndexBuffer>().swap(indices);
// layers zs / roles / extruder ids -> extract from result
size_t last_travel_s_id = 0;
seams_count = 0;
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessorResult::MoveVertex& move = gcode_result.moves[i];
if (move.type == EMoveType::Seam)
++seams_count;
size_t move_id = i - seams_count;
if (move.type == EMoveType::Extrude) {
// layers zs
const double* const last_z = m_layers.empty() ? nullptr : &m_layers.get_zs().back();
const double z = static_cast<double>(move.position.z());
if (last_z == nullptr || z < *last_z - EPSILON || *last_z + EPSILON < z)
m_layers.append(z, { last_travel_s_id, move_id });
else
m_layers.get_endpoints().back().last = move_id;
// extruder ids
m_extruder_ids.emplace_back(move.extruder_id);
// roles
if (i > 0)
m_roles.emplace_back(move.extrusion_role);
}
else if (move.type == EMoveType::Travel) {
if (move_id - last_travel_s_id > 1 && !m_layers.empty())
m_layers.get_endpoints().back().last = move_id;
last_travel_s_id = move_id;
}
}
// roles -> remove duplicates
sort_remove_duplicates(m_roles);
m_roles.shrink_to_fit();
// extruder ids -> remove duplicates
sort_remove_duplicates(m_extruder_ids);
m_extruder_ids.shrink_to_fit();
#if ENABLE_SPIRAL_VASE_LAYERS
// replace layers for spiral vase mode
if (!gcode_result.spiral_vase_layers.empty()) {
m_layers.reset();
for (const auto& layer : gcode_result.spiral_vase_layers) {
m_layers.append(layer.first, { layer.second.first, layer.second.second });
}
}
#endif // ENABLE_SPIRAL_VASE_LAYERS
// set layers z range
if (!m_layers.empty())
m_layers_z_range = { 0, static_cast<unsigned int>(m_layers.size() - 1) };
// change color of paths whose layer contains option points
if (!options_zs.empty()) {
TBuffer& extrude_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
for (Path& path : extrude_buffer.paths) {
const float z = path.sub_paths.front().first.position.z();
if (std::find_if(options_zs.begin(), options_zs.end(), [z](float f) { return f - EPSILON <= z && z <= f + EPSILON; }) != options_zs.end())
path.cp_color_id = 255 - path.cp_color_id;
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.load_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (progress_dialog != nullptr)
progress_dialog->Destroy();
}
void GCodeViewer::load_shells(const Print& print, bool initialized)
{
if (print.objects().empty())
// no shells, return
return;
// adds objects' volumes
int object_id = 0;
for (const PrintObject* obj : print.objects()) {
const ModelObject* model_obj = obj->model_object();
std::vector<int> instance_ids(model_obj->instances.size());
for (int i = 0; i < (int)model_obj->instances.size(); ++i) {
instance_ids[i] = i;
}
size_t current_volumes_count = m_shells.volumes.volumes.size();
m_shells.volumes.load_object(model_obj, object_id, instance_ids, "object", initialized);
// adjust shells' z if raft is present
const SlicingParameters& slicing_parameters = obj->slicing_parameters();
if (slicing_parameters.object_print_z_min != 0.0) {
const Vec3d z_offset = slicing_parameters.object_print_z_min * Vec3d::UnitZ();
for (size_t i = current_volumes_count; i < m_shells.volumes.volumes.size(); ++i) {
GLVolume* v = m_shells.volumes.volumes[i];
v->set_volume_offset(v->get_volume_offset() + z_offset);
}
}
++object_id;
}
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) {
// adds wipe tower's volume
const double max_z = print.objects()[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = print.config();
const size_t extruders_count = config.nozzle_diameter.size();
if (extruders_count > 1 && config.wipe_tower && !config.complete_objects) {
const float depth = print.wipe_tower_data(extruders_count).depth;
const float brim_width = print.wipe_tower_data(extruders_count).brim_width;
m_shells.volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width, initialized);
}
}
// remove modifiers
while (true) {
GLVolumePtrs::iterator it = std::find_if(m_shells.volumes.volumes.begin(), m_shells.volumes.volumes.end(), [](GLVolume* volume) { return volume->is_modifier; });
if (it != m_shells.volumes.volumes.end()) {
delete (*it);
m_shells.volumes.volumes.erase(it);
}
else
break;
}
for (GLVolume* volume : m_shells.volumes.volumes) {
volume->zoom_to_volumes = false;
volume->color[3] = 0.25f;
volume->force_native_color = true;
volume->set_render_color();
}
}
void GCodeViewer::refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
auto extrusion_color = [this](const Path& path) {
Color color;
switch (m_view_type)
{
case EViewType::FeatureType: { color = Extrusion_Role_Colors[static_cast<unsigned int>(path.role)]; break; }
case EViewType::Height: { color = m_extrusions.ranges.height.get_color_at(path.height); break; }
case EViewType::Width: { color = m_extrusions.ranges.width.get_color_at(path.width); break; }
case EViewType::Feedrate: { color = m_extrusions.ranges.feedrate.get_color_at(path.feedrate); break; }
case EViewType::FanSpeed: { color = m_extrusions.ranges.fan_speed.get_color_at(path.fan_speed); break; }
case EViewType::Temperature: { color = m_extrusions.ranges.temperature.get_color_at(path.temperature); break; }
case EViewType::VolumetricRate: { color = m_extrusions.ranges.volumetric_rate.get_color_at(path.volumetric_rate); break; }
case EViewType::Tool: { color = m_tool_colors[path.extruder_id]; break; }
case EViewType::ColorPrint: {
if (path.cp_color_id >= static_cast<unsigned char>(m_tool_colors.size()))
color = { 0.5f, 0.5f, 0.5f, 1.0f };
else
color = m_tool_colors[path.cp_color_id];
break;
}
default: { color = { 1.0f, 1.0f, 1.0f, 1.0f }; break; }
}
return color;
};
auto travel_color = [](const Path& path) {
return (path.delta_extruder < 0.0f) ? Travel_Colors[2] /* Retract */ :
((path.delta_extruder > 0.0f) ? Travel_Colors[1] /* Extrude */ :
Travel_Colors[0] /* Move */);
};
auto is_in_layers_range = [this](const Path& path, size_t min_id, size_t max_id) {
auto in_layers_range = [this, min_id, max_id](size_t id) {
return m_layers.get_endpoints_at(min_id).first <= id && id <= m_layers.get_endpoints_at(max_id).last;
};
return in_layers_range(path.sub_paths.front().first.s_id) && in_layers_range(path.sub_paths.back().last.s_id);
};
auto is_travel_in_layers_range = [this](size_t path_id, size_t min_id, size_t max_id) {
const TBuffer& buffer = m_buffers[buffer_id(EMoveType::Travel)];
if (path_id >= buffer.paths.size())
return false;
Path path = buffer.paths[path_id];
size_t first = path_id;
size_t last = path_id;
// check adjacent paths
while (first > 0 && path.sub_paths.front().first.position.isApprox(buffer.paths[first - 1].sub_paths.back().last.position)) {
--first;
path.sub_paths.front().first = buffer.paths[first].sub_paths.front().first;
}
while (last < buffer.paths.size() - 1 && path.sub_paths.back().last.position.isApprox(buffer.paths[last + 1].sub_paths.front().first.position)) {
++last;
path.sub_paths.back().last = buffer.paths[last].sub_paths.back().last;
}
const size_t min_s_id = m_layers.get_endpoints_at(min_id).first;
const size_t max_s_id = m_layers.get_endpoints_at(max_id).last;
return (min_s_id <= path.sub_paths.front().first.s_id && path.sub_paths.front().first.s_id <= max_s_id) ||
(min_s_id <= path.sub_paths.back().last.s_id && path.sub_paths.back().last.s_id <= max_s_id);
};
#if ENABLE_GCODE_VIEWER_STATISTICS
Statistics* statistics = const_cast<Statistics*>(&m_statistics);
statistics->render_paths_size = 0;
statistics->models_instances_size = 0;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
const bool top_layer_only = get_app_config()->get("seq_top_layer_only") == "1";
SequentialView::Endpoints global_endpoints = { m_moves_count , 0 };
SequentialView::Endpoints top_layer_endpoints = global_endpoints;
SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
if (top_layer_only || !keep_sequential_current_first) sequential_view->current.first = 0;
if (!keep_sequential_current_last) sequential_view->current.last = m_moves_count;
// first pass: collect visible paths and update sequential view data
std::vector<std::tuple<unsigned char, unsigned int, unsigned int, unsigned int>> paths;
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
// reset render paths
buffer.render_paths.clear();
if (!buffer.visible)
continue;
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel ||
buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
for (size_t id : buffer.model.instances.s_ids) {
if (id < m_layers.get_endpoints_at(m_layers_z_range[0]).first || m_layers.get_endpoints_at(m_layers_z_range[1]).last < id)
continue;
global_endpoints.first = std::min(global_endpoints.first, id);
global_endpoints.last = std::max(global_endpoints.last, id);
if (top_layer_only) {
if (id < m_layers.get_endpoints_at(m_layers_z_range[1]).first || m_layers.get_endpoints_at(m_layers_z_range[1]).last < id)
continue;
top_layer_endpoints.first = std::min(top_layer_endpoints.first, id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, id);
}
}
}
else {
for (size_t i = 0; i < buffer.paths.size(); ++i) {
const Path& path = buffer.paths[i];
if (path.type == EMoveType::Travel) {
if (!is_travel_in_layers_range(i, m_layers_z_range[0], m_layers_z_range[1]))
continue;
}
else if (!is_in_layers_range(path, m_layers_z_range[0], m_layers_z_range[1]))
continue;
if (path.type == EMoveType::Extrude && !is_visible(path))
continue;
// store valid path
for (size_t j = 0; j < path.sub_paths.size(); ++j) {
paths.push_back({ static_cast<unsigned char>(b), path.sub_paths[j].first.b_id, static_cast<unsigned int>(i), static_cast<unsigned int>(j) });
}
global_endpoints.first = std::min(global_endpoints.first, path.sub_paths.front().first.s_id);
global_endpoints.last = std::max(global_endpoints.last, path.sub_paths.back().last.s_id);
if (top_layer_only) {
if (path.type == EMoveType::Travel) {
if (is_travel_in_layers_range(i, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
}
}
else if (is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
}
}
}
}
}
// update current sequential position
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, global_endpoints.first, global_endpoints.last) : global_endpoints.first;
sequential_view->current.last = keep_sequential_current_last ? std::clamp(sequential_view->current.last, global_endpoints.first, global_endpoints.last) : global_endpoints.last;
// get the world position from the vertex buffer
bool found = false;
for (const TBuffer& buffer : m_buffers) {
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel ||
buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
for (size_t i = 0; i < buffer.model.instances.s_ids.size(); ++i) {
if (buffer.model.instances.s_ids[i] == m_sequential_view.current.last) {
size_t offset = i * buffer.model.instances.instance_size_floats();
sequential_view->current_position.x() = buffer.model.instances.buffer[offset + 0];
sequential_view->current_position.y() = buffer.model.instances.buffer[offset + 1];
sequential_view->current_position.z() = buffer.model.instances.buffer[offset + 2];
sequential_view->current_offset = buffer.model.instances.offsets[i];
found = true;
break;
}
}
}
else {
// searches the path containing the current position
for (const Path& path : buffer.paths) {
if (path.contains(m_sequential_view.current.last)) {
const int sub_path_id = path.get_id_of_sub_path_containing(m_sequential_view.current.last);
if (sub_path_id != -1) {
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
unsigned int offset = static_cast<unsigned int>(m_sequential_view.current.last - sub_path.first.s_id);
if (offset > 0) {
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Line)
offset = 2 * offset - 1;
else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
unsigned int indices_count = buffer.indices_per_segment();
offset = indices_count * (offset - 1) + (indices_count - 2);
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
}
}
offset += static_cast<unsigned int>(sub_path.first.i_id);
// gets the vertex index from the index buffer on gpu
const IBuffer& i_buffer = buffer.indices[sub_path.first.b_id];
unsigned int index = 0;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(offset * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&index)));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// gets the position from the vertices buffer on gpu
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, static_cast<GLintptr>(index * buffer.vertices.vertex_size_bytes()), static_cast<GLsizeiptr>(3 * sizeof(float)), static_cast<void*>(sequential_view->current_position.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
sequential_view->current_offset = Vec3f::Zero();
found = true;
break;
}
}
}
}
if (found)
break;
}
// second pass: filter paths by sequential data and collect them by color
RenderPath* render_path = nullptr;
for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
const Path& path = buffer.paths[path_id];
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
if (m_sequential_view.current.last < sub_path.first.s_id || sub_path.last.s_id < m_sequential_view.current.first)
continue;
Color color;
switch (path.type)
{
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam: { color = option_color(path.type); break; }
case EMoveType::Extrude: {
if (!top_layer_only ||
m_sequential_view.current.last == global_endpoints.last ||
is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1]))
color = extrusion_color(path);
else
color = Neutral_Color;
break;
}
case EMoveType::Travel: {
if (!top_layer_only || m_sequential_view.current.last == global_endpoints.last || is_travel_in_layers_range(path_id, m_layers_z_range[1], m_layers_z_range[1]))
color = (m_view_type == EViewType::Feedrate || m_view_type == EViewType::Tool || m_view_type == EViewType::ColorPrint) ? extrusion_color(path) : travel_color(path);
else
color = Neutral_Color;
break;
}
case EMoveType::Wipe: { color = Wipe_Color; break; }
default: { color = { 0.0f, 0.0f, 0.0f, 1.0f }; break; }
}
RenderPath key{ tbuffer_id, color, static_cast<unsigned int>(ibuffer_id), path_id };
if (render_path == nullptr || !RenderPathPropertyEqual()(*render_path, key)) {
buffer.render_paths.emplace_back(key);
render_path = const_cast<RenderPath*>(&buffer.render_paths.back());
}
unsigned int delta_1st = 0;
if (sub_path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= sub_path.last.s_id)
delta_1st = static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id);
unsigned int size_in_indices = 0;
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
size_in_indices = buffer.indices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Line:
case TBuffer::ERenderPrimitiveType::Triangle: {
unsigned int segments_count = std::min(m_sequential_view.current.last, sub_path.last.s_id) - std::max(m_sequential_view.current.first, sub_path.first.s_id);
size_in_indices = buffer.indices_per_segment() * segments_count;
break;
}
default: { break; }
}
if (size_in_indices == 0)
continue;
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
if (sub_path_id == 0 && delta_1st == 0)
size_in_indices += 6; // add 2 triangles for starting cap
if (sub_path_id == path.sub_paths.size() - 1 && path.sub_paths.back().last.s_id <= m_sequential_view.current.last)
size_in_indices += 6; // add 2 triangles for ending cap
if (delta_1st > 0)
size_in_indices -= 6; // remove 2 triangles for corner cap
}
render_path->sizes.push_back(size_in_indices);
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
delta_1st *= buffer.indices_per_segment();
if (delta_1st > 0) {
delta_1st += 6; // skip 2 triangles for corner cap
if (sub_path_id == 0)
delta_1st += 6; // skip 2 triangles for starting cap
}
}
render_path->offsets.push_back(static_cast<size_t>((sub_path.first.i_id + delta_1st) * sizeof(IBufferType)));
#if 0
// check sizes and offsets against index buffer size on gpu
GLint buffer_size;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer->indices[render_path->ibuffer_id].ibo));
glsafe(::glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &buffer_size));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (render_path->offsets.back() + render_path->sizes.back() * sizeof(IBufferType) > buffer_size)
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::refresh_render_paths: Invalid render path data";
#endif
}
// Removes empty render paths and sort.
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer* buffer = const_cast<TBuffer*>(&m_buffers[b]);
buffer->render_paths.erase(std::remove_if(buffer->render_paths.begin(), buffer->render_paths.end(),
[](const auto &path){ return path.sizes.empty() || path.offsets.empty(); }),
buffer->render_paths.end());
}
// second pass: for buffers using instanced and batched models, update the instances render ranges
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::InstancedModel &&
buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::BatchedModel)
continue;
buffer.model.instances.render_ranges.reset();
if (!buffer.visible || buffer.model.instances.s_ids.empty())
continue;
buffer.model.instances.render_ranges.ranges.push_back({ 0, 0, 0, buffer.model.color });
bool has_second_range = top_layer_only && m_sequential_view.current.last != m_sequential_view.global.last;
if (has_second_range)
buffer.model.instances.render_ranges.ranges.push_back({ 0, 0, 0, Neutral_Color });
if (m_sequential_view.current.first <= buffer.model.instances.s_ids.back() && buffer.model.instances.s_ids.front() <= m_sequential_view.current.last) {
for (size_t id : buffer.model.instances.s_ids) {
if (has_second_range) {
if (id < m_sequential_view.endpoints.first) {
++buffer.model.instances.render_ranges.ranges.front().offset;
if (id <= m_sequential_view.current.first)
++buffer.model.instances.render_ranges.ranges.back().offset;
else
++buffer.model.instances.render_ranges.ranges.back().count;
}
else if (id <= m_sequential_view.current.last)
++buffer.model.instances.render_ranges.ranges.front().count;
else
break;
}
else {
if (id <= m_sequential_view.current.first)
++buffer.model.instances.render_ranges.ranges.front().offset;
else if (id <= m_sequential_view.current.last)
++buffer.model.instances.render_ranges.ranges.front().count;
else
break;
}
}
}
}
// set sequential data to their final value
sequential_view->endpoints = top_layer_only ? top_layer_endpoints : global_endpoints;
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, sequential_view->endpoints.first, sequential_view->endpoints.last) : sequential_view->endpoints.first;
sequential_view->global = global_endpoints;
// updates sequential range caps
std::array<SequentialRangeCap, 2>* sequential_range_caps = const_cast<std::array<SequentialRangeCap, 2>*>(&m_sequential_range_caps);
(*sequential_range_caps)[0].reset();
(*sequential_range_caps)[1].reset();
if (m_sequential_view.current.first != m_sequential_view.current.last) {
for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
continue;
const Path& path = buffer.paths[path_id];
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
if (m_sequential_view.current.last <= sub_path.first.s_id || sub_path.last.s_id <= m_sequential_view.current.first)
continue;
// update cap for first endpoint of current range
if (m_sequential_view.current.first > sub_path.first.s_id) {
SequentialRangeCap& cap = (*sequential_range_caps)[0];
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
cap.buffer = &buffer;
cap.vbo = i_buffer.vbo;
// calculate offset into the index buffer
unsigned int offset = sub_path.first.i_id;
offset += 6; // add 2 triangles for corner cap
offset += static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id) * buffer.indices_per_segment();
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
// extract indices from index buffer
std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 0) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 7) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 1) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 13) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[4])));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
indices[3] = indices[0];
indices[5] = indices[1];
// send indices to gpu
glsafe(::glGenBuffers(1, &cap.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// extract color from render path
size_t offset_bytes = offset * sizeof(IBufferType);
for (const RenderPath& render_path : buffer.render_paths) {
if (render_path.ibuffer_id == ibuffer_id) {
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
if (render_path.contains(offset_bytes)) {
cap.color = render_path.color;
break;
}
}
}
}
}
// update cap for last endpoint of current range
if (m_sequential_view.current.last < sub_path.last.s_id) {
SequentialRangeCap& cap = (*sequential_range_caps)[1];
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
cap.buffer = &buffer;
cap.vbo = i_buffer.vbo;
// calculate offset into the index buffer
unsigned int offset = sub_path.first.i_id;
offset += 6; // add 2 triangles for corner cap
offset += static_cast<unsigned int>(m_sequential_view.current.last - 1 - sub_path.first.s_id) * buffer.indices_per_segment();
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
// extract indices from index buffer
std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 2) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 4) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 10) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 16) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[5])));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
indices[3] = indices[0];
indices[4] = indices[2];
// send indices to gpu
glsafe(::glGenBuffers(1, &cap.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6 * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// extract color from render path
size_t offset_bytes = offset * sizeof(IBufferType);
for (const RenderPath& render_path : buffer.render_paths) {
if (render_path.ibuffer_id == ibuffer_id) {
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
if (render_path.contains(offset_bytes)) {
cap.color = render_path.color;
break;
}
}
}
}
}
if ((*sequential_range_caps)[0].is_renderable() && (*sequential_range_caps)[1].is_renderable())
break;
}
}
wxGetApp().plater()->enable_preview_moves_slider(!paths.empty());
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
statistics->render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
statistics->models_instances_size += SLIC3R_STDVEC_MEMSIZE(buffer.model.instances.buffer, float);
statistics->models_instances_size += SLIC3R_STDVEC_MEMSIZE(buffer.model.instances.s_ids, size_t);
statistics->models_instances_size += SLIC3R_STDVEC_MEMSIZE(buffer.model.instances.render_ranges.ranges, InstanceVBuffer::Ranges::Range);
}
statistics->refresh_paths_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
void GCodeViewer::render_toolpaths()
{
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
float point_size = 20.0f;
#else
float point_size = 0.8f;
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
std::array<float, 4> light_intensity = { 0.25f, 0.70f, 0.75f, 0.75f };
const Camera& camera = wxGetApp().plater()->get_camera();
double zoom = camera.get_zoom();
const std::array<int, 4>& viewport = camera.get_viewport();
float near_plane_height = camera.get_type() == Camera::EType::Perspective ? static_cast<float>(viewport[3]) / (2.0f * static_cast<float>(2.0 * std::tan(0.5 * Geometry::deg2rad(camera.get_fov())))) :
static_cast<float>(viewport[3]) * 0.0005;
auto shader_init_as_points = [zoom, point_size, near_plane_height](GLShaderProgram& shader) {
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("use_fixed_screen_size", 1);
#else
shader.set_uniform("use_fixed_screen_size", 0);
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("zoom", zoom);
shader.set_uniform("percent_outline_radius", 0.0f);
shader.set_uniform("percent_center_radius", 0.33f);
shader.set_uniform("point_size", point_size);
shader.set_uniform("near_plane_height", near_plane_height);
};
auto render_as_points = [
#if ENABLE_GCODE_VIEWER_STATISTICS
this
#endif // ENABLE_GCODE_VIEWER_STATISTICS
](std::vector<RenderPath>::iterator it_path, std::vector<RenderPath>::iterator it_end, GLShaderProgram& shader, int uniform_color) {
glsafe(::glEnable(GL_VERTEX_PROGRAM_POINT_SIZE));
glsafe(::glEnable(GL_POINT_SPRITE));
for (auto it = it_path; it != it_end && it_path->ibuffer_id == it->ibuffer_id; ++it) {
const RenderPath& path = *it;
// Some OpenGL drivers crash on empty glMultiDrawElements, see GH #7415.
assert(! path.sizes.empty());
assert(! path.offsets.empty());
glsafe(::glUniform4fv(uniform_color, 1, static_cast<const GLfloat*>(path.color.data())));
glsafe(::glMultiDrawElements(GL_POINTS, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_multi_points_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
glsafe(::glDisable(GL_POINT_SPRITE));
glsafe(::glDisable(GL_VERTEX_PROGRAM_POINT_SIZE));
};
auto shader_init_as_lines = [light_intensity](GLShaderProgram &shader) {
shader.set_uniform("light_intensity", light_intensity);
};
auto render_as_lines = [
#if ENABLE_GCODE_VIEWER_STATISTICS
this
#endif // ENABLE_GCODE_VIEWER_STATISTICS
](std::vector<RenderPath>::iterator it_path, std::vector<RenderPath>::iterator it_end, GLShaderProgram& shader, int uniform_color) {
for (auto it = it_path; it != it_end && it_path->ibuffer_id == it->ibuffer_id; ++it) {
const RenderPath& path = *it;
// Some OpenGL drivers crash on empty glMultiDrawElements, see GH #7415.
assert(! path.sizes.empty());
assert(! path.offsets.empty());
glsafe(::glUniform4fv(uniform_color, 1, static_cast<const GLfloat*>(path.color.data())));
glsafe(::glMultiDrawElements(GL_LINES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_multi_lines_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
};
auto render_as_triangles = [
#if ENABLE_GCODE_VIEWER_STATISTICS
this
#endif // ENABLE_GCODE_VIEWER_STATISTICS
](std::vector<RenderPath>::iterator it_path, std::vector<RenderPath>::iterator it_end, GLShaderProgram& shader, int uniform_color) {
for (auto it = it_path; it != it_end && it_path->ibuffer_id == it->ibuffer_id; ++it) {
const RenderPath& path = *it;
// Some OpenGL drivers crash on empty glMultiDrawElements, see GH #7415.
assert(! path.sizes.empty());
assert(! path.offsets.empty());
glsafe(::glUniform4fv(uniform_color, 1, static_cast<const GLfloat*>(path.color.data())));
glsafe(::glMultiDrawElements(GL_TRIANGLES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_multi_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
};
auto render_as_instanced_model = [
#if ENABLE_GCODE_VIEWER_STATISTICS
this
#endif // ENABLE_GCODE_VIEWER_STATISTICS
](TBuffer& buffer, GLShaderProgram & shader) {
for (auto& range : buffer.model.instances.render_ranges.ranges) {
if (range.vbo == 0 && range.count > 0) {
glsafe(::glGenBuffers(1, &range.vbo));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, range.vbo));
glsafe(::glBufferData(GL_ARRAY_BUFFER, range.count * buffer.model.instances.instance_size_bytes(), (const void*)&buffer.model.instances.buffer[range.offset * buffer.model.instances.instance_size_floats()], GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
if (range.vbo > 0) {
buffer.model.model.set_color(-1, range.color);
buffer.model.model.render_instanced(range.vbo, range.count);
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_instanced_models_calls_count;
m_statistics.total_instances_gpu_size += static_cast<int64_t>(range.count * buffer.model.instances.instance_size_bytes());
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_as_batched_model = [this](TBuffer& buffer, GLShaderProgram& shader) {
#else
auto render_as_batched_model = [](TBuffer& buffer, GLShaderProgram& shader) {
#endif // ENABLE_GCODE_VIEWER_STATISTICS
struct Range
{
unsigned int first;
unsigned int last;
bool intersects(const Range& other) const { return (other.last < first || other.first > last) ? false : true; }
};
Range buffer_range = { 0, 0 };
size_t indices_per_instance = buffer.model.data.indices_count();
for (size_t j = 0; j < buffer.indices.size(); ++j) {
const IBuffer& i_buffer = buffer.indices[j];
buffer_range.last = buffer_range.first + i_buffer.count / indices_per_instance;
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_bytes()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = buffer.vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_bytes()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
for (auto& range : buffer.model.instances.render_ranges.ranges) {
Range range_range = { range.offset, range.offset + range.count };
if (range_range.intersects(buffer_range)) {
shader.set_uniform("uniform_color", range.color);
unsigned int offset = (range_range.first > buffer_range.first) ? range_range.first - buffer_range.first : 0;
size_t offset_bytes = static_cast<size_t>(offset) * indices_per_instance * sizeof(IBufferType);
Range render_range = { std::max(range_range.first, buffer_range.first), std::min(range_range.last, buffer_range.last) };
size_t count = static_cast<size_t>(render_range.last - render_range.first) * indices_per_instance;
if (count > 0) {
glsafe(::glDrawElements(GL_TRIANGLES, (GLsizei)count, GL_UNSIGNED_SHORT, (const void*)offset_bytes));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_batched_models_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
buffer_range.first = buffer_range.last;
}
};
auto line_width = [](double zoom) {
return (zoom < 5.0) ? 1.0 : (1.0 + 5.0 * (zoom - 5.0) / (100.0 - 5.0));
};
unsigned char begin_id = buffer_id(EMoveType::Retract);
unsigned char end_id = buffer_id(EMoveType::Count);
for (unsigned char i = begin_id; i < end_id; ++i) {
TBuffer& buffer = m_buffers[i];
if (!buffer.visible || !buffer.has_data())
continue;
GLShaderProgram* shader = wxGetApp().get_shader(buffer.shader.c_str());
if (shader != nullptr) {
shader->start_using();
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel) {
shader->set_uniform("emission_factor", 0.25f);
render_as_instanced_model(buffer, *shader);
shader->set_uniform("emission_factor", 0.0f);
}
else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
shader->set_uniform("emission_factor", 0.25f);
render_as_batched_model(buffer, *shader);
shader->set_uniform("emission_factor", 0.0f);
}
else {
switch (buffer.render_primitive_type) {
case TBuffer::ERenderPrimitiveType::Point: shader_init_as_points(*shader); break;
case TBuffer::ERenderPrimitiveType::Line: shader_init_as_lines(*shader); break;
default: break;
}
int uniform_color = shader->get_uniform_location("uniform_color");
auto it_path = buffer.render_paths.begin();
for (unsigned int ibuffer_id = 0; ibuffer_id < static_cast<unsigned int>(buffer.indices.size()); ++ibuffer_id) {
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
// Skip all paths with ibuffer_id < ibuffer_id.
for (; it_path != buffer.render_paths.end() && it_path->ibuffer_id < ibuffer_id; ++ it_path) ;
if (it_path == buffer.render_paths.end() || it_path->ibuffer_id > ibuffer_id)
// Not found. This shall not happen.
continue;
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_bytes()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = buffer.vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_bytes()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
// Render all elements with it_path->ibuffer_id == ibuffer_id, possible with varying colors.
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
render_as_points(it_path, buffer.render_paths.end(), *shader, uniform_color);
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
glsafe(::glLineWidth(static_cast<GLfloat>(line_width(zoom))));
render_as_lines(it_path, buffer.render_paths.end(), *shader, uniform_color);
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
render_as_triangles(it_path, buffer.render_paths.end(), *shader, uniform_color);
break;
}
default: { break; }
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
}
shader->stop_using();
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_sequential_range_cap = [this]
#else
auto render_sequential_range_cap = []
#endif // ENABLE_GCODE_VIEWER_STATISTICS
(const SequentialRangeCap& cap) {
GLShaderProgram* shader = wxGetApp().get_shader(cap.buffer->shader.c_str());
if (shader != nullptr) {
shader->start_using();
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, cap.vbo));
glsafe(::glVertexPointer(cap.buffer->vertices.position_size_floats(), GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.position_offset_bytes()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = cap.buffer->vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.normal_offset_bytes()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
shader->set_uniform("uniform_color", cap.color);
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glDrawElements(GL_TRIANGLES, (GLsizei)cap.indices_count(), GL_UNSIGNED_SHORT, nullptr));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
shader->stop_using();
}
};
for (unsigned int i = 0; i < 2; ++i) {
if (m_sequential_range_caps[i].is_renderable())
render_sequential_range_cap(m_sequential_range_caps[i]);
}
}
void GCodeViewer::render_shells()
{
if (!m_shells.visible || m_shells.volumes.empty())
return;
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
// when the background processing is enabled, it may happen that the shells data have been loaded
// before opengl has been initialized for the preview canvas.
// when this happens, the volumes' data have not been sent to gpu yet.
for (GLVolume* v : m_shells.volumes.volumes) {
if (!v->indexed_vertex_array.has_VBOs())
v->finalize_geometry(true);
}
// glsafe(::glDepthMask(GL_FALSE));
shader->start_using();
m_shells.volumes.render(GLVolumeCollection::ERenderType::Transparent, true, wxGetApp().plater()->get_camera().get_view_matrix());
shader->stop_using();
// glsafe(::glDepthMask(GL_TRUE));
}
void GCodeViewer::render_legend(float& legend_height)
{
if (!m_legend_enabled)
return;
const Size cnv_size = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size();
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_pos(0.0f, 0.0f, ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.6f);
const float max_height = 0.75f * static_cast<float>(cnv_size.get_height());
const float child_height = 0.3333f * max_height;
ImGui::SetNextWindowSizeConstraints({ 0.0f, 0.0f }, { -1.0f, max_height });
imgui.begin(std::string("Legend"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse | ImGuiWindowFlags_NoMove);
enum class EItemType : unsigned char
{
Rect,
Circle,
Hexagon,
Line
};
const PrintEstimatedStatistics::Mode& time_mode = m_print_statistics.modes[static_cast<size_t>(m_time_estimate_mode)];
bool show_estimated_time = time_mode.time > 0.0f && (m_view_type == EViewType::FeatureType ||
(m_view_type == EViewType::ColorPrint && !time_mode.custom_gcode_times.empty()));
const float icon_size = ImGui::GetTextLineHeight();
const float percent_bar_size = 2.0f * ImGui::GetTextLineHeight();
bool imperial_units = wxGetApp().app_config->get("use_inches") == "1";
auto append_item = [icon_size, percent_bar_size, &imgui, imperial_units](EItemType type, const Color& color, const std::string& label,
bool visible = true, const std::string& time = "", float percent = 0.0f, float max_percent = 0.0f, const std::array<float, 4>& offsets = { 0.0f, 0.0f, 0.0f, 0.0f },
double used_filament_m = 0.0, double used_filament_g = 0.0,
std::function<void()> callback = nullptr) {
if (!visible)
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
switch (type) {
default:
case EItemType::Rect: {
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
break;
}
case EItemType::Circle: {
ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
draw_list->AddCircleFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);
break;
}
case EItemType::Hexagon: {
ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
draw_list->AddNgonFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 6);
break;
}
case EItemType::Line: {
draw_list->AddLine({ pos.x + 1, pos.y + icon_size - 1 }, { pos.x + icon_size - 1, pos.y + 1 }, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 3.0f);
break;
}
}
// draw text
ImGui::Dummy({ icon_size, icon_size });
ImGui::SameLine();
if (callback != nullptr) {
if (ImGui::MenuItem(label.c_str()))
callback();
else {
// show tooltip
if (ImGui::IsItemHovered()) {
if (!visible)
ImGui::PopStyleVar();
ImGui::PushStyleColor(ImGuiCol_PopupBg, ImGuiWrapper::COL_WINDOW_BACKGROUND);
ImGui::BeginTooltip();
imgui.text(visible ? _u8L("Click to hide") : _u8L("Click to show"));
ImGui::EndTooltip();
ImGui::PopStyleColor();
if (!visible)
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
// to avoid the tooltip to change size when moving the mouse
imgui.set_requires_extra_frame();
}
}
if (!time.empty()) {
ImGui::SameLine(offsets[0]);
imgui.text(time);
ImGui::SameLine(offsets[1]);
pos = ImGui::GetCursorScreenPos();
const float width = std::max(1.0f, percent_bar_size * percent / max_percent);
draw_list->AddRectFilled({ pos.x, pos.y + 2.0f }, { pos.x + width, pos.y + icon_size - 2.0f },
ImGui::GetColorU32(ImGuiWrapper::COL_ORANGE_LIGHT));
ImGui::Dummy({ percent_bar_size, icon_size });
ImGui::SameLine();
char buf[64];
::sprintf(buf, "%.1f%%", 100.0f * percent);
ImGui::TextUnformatted((percent > 0.0f) ? buf : "");
ImGui::SameLine(offsets[2]);
::sprintf(buf, imperial_units ? "%.2f in" : "%.2f m", used_filament_m);
imgui.text(buf);
ImGui::SameLine(offsets[3]);
::sprintf(buf, "%.2f g", used_filament_g);
imgui.text(buf);
}
}
else {
imgui.text(label);
if (used_filament_m > 0.0) {
char buf[64];
ImGui::SameLine(offsets[0]);
::sprintf(buf, imperial_units ? "%.2f in" : "%.2f m", used_filament_m);
imgui.text(buf);
ImGui::SameLine(offsets[1]);
::sprintf(buf, "%.2f g", used_filament_g);
imgui.text(buf);
}
}
if (!visible)
ImGui::PopStyleVar();
};
auto append_range = [append_item](const Extrusions::Range& range, unsigned int decimals) {
auto append_range_item = [append_item](int i, float value, unsigned int decimals) {
char buf[1024];
::sprintf(buf, "%.*f", decimals, value);
append_item(EItemType::Rect, Range_Colors[i], buf);
};
if (range.count == 1)
// single item use case
append_range_item(0, range.min, decimals);
else if (range.count == 2) {
append_range_item(static_cast<int>(Range_Colors.size()) - 1, range.max, decimals);
append_range_item(0, range.min, decimals);
}
else {
const float step_size = range.step_size();
for (int i = static_cast<int>(Range_Colors.size()) - 1; i >= 0; --i) {
append_range_item(i, range.min + static_cast<float>(i) * step_size, decimals);
}
}
};
auto append_headers = [&imgui](const std::array<std::string, 5>& texts, const std::array<float, 4>& offsets) {
size_t i = 0;
for (; i < offsets.size(); i++) {
imgui.text(texts[i]);
ImGui::SameLine(offsets[i]);
}
imgui.text(texts[i]);
ImGui::Separator();
};
auto max_width = [](const std::vector<std::string>& items, const std::string& title, float extra_size = 0.0f) {
float ret = ImGui::CalcTextSize(title.c_str()).x;
for (const std::string& item : items) {
ret = std::max(ret, extra_size + ImGui::CalcTextSize(item.c_str()).x);
}
return ret;
};
auto calculate_offsets = [max_width](const std::vector<std::string>& labels, const std::vector<std::string>& times,
const std::array<std::string, 4>& titles, float extra_size = 0.0f) {
const ImGuiStyle& style = ImGui::GetStyle();
std::array<float, 4> ret = { 0.0f, 0.0f, 0.0f, 0.0f };
ret[0] = max_width(labels, titles[0], extra_size) + 3.0f * style.ItemSpacing.x;
for (size_t i = 1; i < titles.size(); i++)
ret[i] = ret[i-1] + max_width(times, titles[i]) + style.ItemSpacing.x;
return ret;
};
auto color_print_ranges = [this](unsigned char extruder_id, const std::vector<CustomGCode::Item>& custom_gcode_per_print_z) {
std::vector<std::pair<Color, std::pair<double, double>>> ret;
ret.reserve(custom_gcode_per_print_z.size());
for (const auto& item : custom_gcode_per_print_z) {
if (extruder_id + 1 != static_cast<unsigned char>(item.extruder))
continue;
if (item.type != ColorChange)
continue;
const std::vector<double> zs = m_layers.get_zs();
auto lower_b = std::lower_bound(zs.begin(), zs.end(), item.print_z - Slic3r::DoubleSlider::epsilon());
if (lower_b == zs.end())
continue;
const double current_z = *lower_b;
const double previous_z = (lower_b == zs.begin()) ? 0.0 : *(--lower_b);
// to avoid duplicate values, check adding values
if (ret.empty() || !(ret.back().second.first == previous_z && ret.back().second.second == current_z))
ret.push_back({ decode_color(item.color), { previous_z, current_z } });
}
return ret;
};
auto upto_label = [](double z) {
char buf[64];
::sprintf(buf, "%.2f", z);
return _u8L("up to") + " " + std::string(buf) + " " + _u8L("mm");
};
auto above_label = [](double z) {
char buf[64];
::sprintf(buf, "%.2f", z);
return _u8L("above") + " " + std::string(buf) + " " + _u8L("mm");
};
auto fromto_label = [](double z1, double z2) {
char buf1[64];
::sprintf(buf1, "%.2f", z1);
char buf2[64];
::sprintf(buf2, "%.2f", z2);
return _u8L("from") + " " + std::string(buf1) + " " + _u8L("to") + " " + std::string(buf2) + " " + _u8L("mm");
};
auto role_time_and_percent = [time_mode](ExtrusionRole role) {
auto it = std::find_if(time_mode.roles_times.begin(), time_mode.roles_times.end(), [role](const std::pair<ExtrusionRole, float>& item) { return role == item.first; });
return (it != time_mode.roles_times.end()) ? std::make_pair(it->second, it->second / time_mode.time) : std::make_pair(0.0f, 0.0f);
};
auto used_filament_per_role = [this, imperial_units](ExtrusionRole role) {
auto it = m_print_statistics.used_filaments_per_role.find(role);
if (it == m_print_statistics.used_filaments_per_role.end())
return std::make_pair(0.0, 0.0);
double koef = imperial_units ? 1000.0 / ObjectManipulation::in_to_mm : 1.0;
return std::make_pair(it->second.first * koef, it->second.second);
};
// data used to properly align items in columns when showing time
std::array<float, 4> offsets = { 0.0f, 0.0f, 0.0f, 0.0f };
std::vector<std::string> labels;
std::vector<std::string> times;
std::vector<float> percents;
std::vector<double> used_filaments_m;
std::vector<double> used_filaments_g;
float max_percent = 0.0f;
if (m_view_type == EViewType::FeatureType) {
// calculate offsets to align time/percentage data
for (size_t i = 0; i < m_roles.size(); ++i) {
ExtrusionRole role = m_roles[i];
if (role < erCount) {
labels.push_back(_u8L(ExtrusionEntity::role_to_string(role)));
auto [time, percent] = role_time_and_percent(role);
times.push_back((time > 0.0f) ? short_time(get_time_dhms(time)) : "");
percents.push_back(percent);
max_percent = std::max(max_percent, percent);
auto [used_filament_m, used_filament_g] = used_filament_per_role(role);
used_filaments_m.push_back(used_filament_m);
used_filaments_g.push_back(used_filament_g);
}
}
std::string longest_percentage_string;
for (double item : percents) {
char buffer[64];
::sprintf(buffer, "%.2f %%", item);
if (::strlen(buffer) > longest_percentage_string.length())
longest_percentage_string = buffer;
}
longest_percentage_string += " ";
if (_u8L("Percentage").length() > longest_percentage_string.length())
longest_percentage_string = _u8L("Percentage");
std::string longest_used_filament_string;
for (double item : used_filaments_m) {
char buffer[64];
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", item);
if (::strlen(buffer) > longest_used_filament_string.length())
longest_used_filament_string = buffer;
}
offsets = calculate_offsets(labels, times, { _u8L("Feature type"), _u8L("Time"), longest_percentage_string, longest_used_filament_string }, icon_size);
}
// get used filament (meters and grams) from used volume in respect to the active extruder
auto get_used_filament_from_volume = [this, imperial_units](double volume, int extruder_id) {
double koef = imperial_units ? 1.0 / ObjectManipulation::in_to_mm : 0.001;
std::pair<double, double> ret = { koef * volume / (PI * sqr(0.5 * m_filament_diameters[extruder_id])),
volume * m_filament_densities[extruder_id] * 0.001 };
return ret;
};
if (m_view_type == EViewType::Tool) {
// calculate used filaments data
for (size_t extruder_id : m_extruder_ids) {
if (m_print_statistics.volumes_per_extruder.find(extruder_id) == m_print_statistics.volumes_per_extruder.end())
continue;
double volume = m_print_statistics.volumes_per_extruder.at(extruder_id);
auto [used_filament_m, used_filament_g] = get_used_filament_from_volume(volume, extruder_id);
used_filaments_m.push_back(used_filament_m);
used_filaments_g.push_back(used_filament_g);
}
std::string longest_used_filament_string;
for (double item : used_filaments_m) {
char buffer[64];
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", item);
if (::strlen(buffer) > longest_used_filament_string.length())
longest_used_filament_string = buffer;
}
offsets = calculate_offsets(labels, times, { "Extruder NNN", longest_used_filament_string }, icon_size);
}
// extrusion paths section -> title
switch (m_view_type)
{
case EViewType::FeatureType:
{
append_headers({ _u8L("Feature type"), _u8L("Time"), _u8L("Percentage"), _u8L("Used filament") }, offsets);
break;
}
case EViewType::Height: { imgui.title(_u8L("Height (mm)")); break; }
case EViewType::Width: { imgui.title(_u8L("Width (mm)")); break; }
case EViewType::Feedrate: { imgui.title(_u8L("Speed (mm/s)")); break; }
case EViewType::FanSpeed: { imgui.title(_u8L("Fan Speed (%)")); break; }
case EViewType::Temperature: { imgui.title(_u8L("Temperature (°C)")); break; }
case EViewType::VolumetricRate: { imgui.title(_u8L("Volumetric flow rate (mm³/s)")); break; }
case EViewType::Tool:
{
append_headers({ _u8L("Tool"), _u8L("Used filament") }, offsets);
break;
}
case EViewType::ColorPrint: { imgui.title(_u8L("Color Print")); break; }
default: { break; }
}
// extrusion paths section -> items
switch (m_view_type)
{
case EViewType::FeatureType:
{
for (size_t i = 0; i < m_roles.size(); ++i) {
ExtrusionRole role = m_roles[i];
if (role >= erCount)
continue;
const bool visible = is_visible(role);
append_item(EItemType::Rect, Extrusion_Role_Colors[static_cast<unsigned int>(role)], labels[i],
visible, times[i], percents[i], max_percent, offsets, used_filaments_m[i], used_filaments_g[i], [this, role, visible]() {
m_extrusions.role_visibility_flags = visible ? m_extrusions.role_visibility_flags & ~(1 << role) : m_extrusions.role_visibility_flags | (1 << role);
// update buffers' render paths
refresh_render_paths(false, false);
wxGetApp().plater()->update_preview_moves_slider();
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->update_preview_bottom_toolbar();
}
);
}
break;
}
case EViewType::Height: { append_range(m_extrusions.ranges.height, 3); break; }
case EViewType::Width: { append_range(m_extrusions.ranges.width, 3); break; }
case EViewType::Feedrate: { append_range(m_extrusions.ranges.feedrate, 1); break; }
case EViewType::FanSpeed: { append_range(m_extrusions.ranges.fan_speed, 0); break; }
case EViewType::Temperature: { append_range(m_extrusions.ranges.temperature, 0); break; }
case EViewType::VolumetricRate: { append_range(m_extrusions.ranges.volumetric_rate, 3); break; }
case EViewType::Tool:
{
// shows only extruders actually used
size_t i = 0;
for (unsigned char extruder_id : m_extruder_ids) {
append_item(EItemType::Rect, m_tool_colors[extruder_id], _u8L("Extruder") + " " + std::to_string(extruder_id + 1),
true, "", 0.0f, 0.0f, offsets, used_filaments_m[i], used_filaments_g[i]);
i++;
}
break;
}
case EViewType::ColorPrint:
{
const std::vector<CustomGCode::Item>& custom_gcode_per_print_z = wxGetApp().is_editor() ? wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes : m_custom_gcode_per_print_z;
size_t total_items = 1;
for (unsigned char i : m_extruder_ids) {
total_items += color_print_ranges(i, custom_gcode_per_print_z).size();
}
const bool need_scrollable = static_cast<float>(total_items) * (icon_size + ImGui::GetStyle().ItemSpacing.y) > child_height;
// add scrollable region, if needed
if (need_scrollable)
ImGui::BeginChild("color_prints", { -1.0f, child_height }, false);
if (m_extruders_count == 1) { // single extruder use case
const std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(0, custom_gcode_per_print_z);
const int items_cnt = static_cast<int>(cp_values.size());
if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
append_item(EItemType::Rect, m_tool_colors.front(), _u8L("Default color"));
}
else {
for (int i = items_cnt; i >= 0; --i) {
// create label for color change item
if (i == 0) {
append_item(EItemType::Rect, m_tool_colors[0], upto_label(cp_values.front().second.first));
break;
}
else if (i == items_cnt) {
append_item(EItemType::Rect, cp_values[i - 1].first, above_label(cp_values[i - 1].second.second));
continue;
}
append_item(EItemType::Rect, cp_values[i - 1].first, fromto_label(cp_values[i - 1].second.second, cp_values[i].second.first));
}
}
}
else { // multi extruder use case
// shows only extruders actually used
for (unsigned char i : m_extruder_ids) {
const std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(i, custom_gcode_per_print_z);
const int items_cnt = static_cast<int>(cp_values.size());
if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
append_item(EItemType::Rect, m_tool_colors[i], _u8L("Extruder") + " " + std::to_string(i + 1) + " " + _u8L("default color"));
}
else {
for (int j = items_cnt; j >= 0; --j) {
// create label for color change item
std::string label = _u8L("Extruder") + " " + std::to_string(i + 1);
if (j == 0) {
label += " " + upto_label(cp_values.front().second.first);
append_item(EItemType::Rect, m_tool_colors[i], label);
break;
}
else if (j == items_cnt) {
label += " " + above_label(cp_values[j - 1].second.second);
append_item(EItemType::Rect, cp_values[j - 1].first, label);
continue;
}
label += " " + fromto_label(cp_values[j - 1].second.second, cp_values[j].second.first);
append_item(EItemType::Rect, cp_values[j - 1].first, label);
}
}
}
}
if (need_scrollable)
ImGui::EndChild();
break;
}
default: { break; }
}
// partial estimated printing time section
if (m_view_type == EViewType::ColorPrint) {
using Times = std::pair<float, float>;
using TimesList = std::vector<std::pair<CustomGCode::Type, Times>>;
// helper structure containig the data needed to render the time items
struct PartialTime
{
enum class EType : unsigned char
{
Print,
ColorChange,
Pause
};
EType type;
int extruder_id;
Color color1;
Color color2;
Times times;
std::pair<double, double> used_filament {0.0f, 0.0f};
};
using PartialTimes = std::vector<PartialTime>;
auto generate_partial_times = [this, get_used_filament_from_volume](const TimesList& times, const std::vector<double>& used_filaments) {
PartialTimes items;
std::vector<CustomGCode::Item> custom_gcode_per_print_z = wxGetApp().is_editor() ? wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes : m_custom_gcode_per_print_z;
int extruders_count = wxGetApp().extruders_edited_cnt();
std::vector<Color> last_color(extruders_count);
for (int i = 0; i < extruders_count; ++i) {
last_color[i] = m_tool_colors[i];
}
int last_extruder_id = 1;
int color_change_idx = 0;
for (const auto& time_rec : times) {
switch (time_rec.first)
{
case CustomGCode::PausePrint: {
auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
if (it != custom_gcode_per_print_z.end()) {
items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second });
items.push_back({ PartialTime::EType::Pause, it->extruder, Color(), Color(), time_rec.second });
custom_gcode_per_print_z.erase(it);
}
break;
}
case CustomGCode::ColorChange: {
auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
if (it != custom_gcode_per_print_z.end()) {
items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second, get_used_filament_from_volume(used_filaments[color_change_idx++], it->extruder-1) });
items.push_back({ PartialTime::EType::ColorChange, it->extruder, last_color[it->extruder - 1], decode_color(it->color), time_rec.second });
last_color[it->extruder - 1] = decode_color(it->color);
last_extruder_id = it->extruder;
custom_gcode_per_print_z.erase(it);
}
else
items.push_back({ PartialTime::EType::Print, last_extruder_id, last_color[last_extruder_id - 1], Color(), time_rec.second, get_used_filament_from_volume(used_filaments[color_change_idx++], last_extruder_id -1) });
break;
}
default: { break; }
}
}
return items;
};
auto append_color_change = [&imgui](const Color& color1, const Color& color2, const std::array<float, 4>& offsets, const Times& times) {
imgui.text(_u8L("Color change"));
ImGui::SameLine();
float icon_size = ImGui::GetTextLineHeight();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color1[0], color1[1], color1[2], 1.0f }));
pos.x += icon_size;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color2[0], color2[1], color2[2], 1.0f }));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(times.second - times.first)));
};
auto append_print = [&imgui, imperial_units](const Color& color, const std::array<float, 4>& offsets, const Times& times, std::pair<double, double> used_filament) {
imgui.text(_u8L("Print"));
ImGui::SameLine();
float icon_size = ImGui::GetTextLineHeight();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(times.second)));
ImGui::SameLine(offsets[1]);
imgui.text(short_time(get_time_dhms(times.first)));
if (used_filament.first > 0.0f) {
char buffer[64];
ImGui::SameLine(offsets[2]);
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", used_filament.first);
imgui.text(buffer);
ImGui::SameLine(offsets[3]);
::sprintf(buffer, "%.2f g", used_filament.second);
imgui.text(buffer);
}
};
PartialTimes partial_times = generate_partial_times(time_mode.custom_gcode_times, m_print_statistics.volumes_per_color_change);
if (!partial_times.empty()) {
labels.clear();
times.clear();
for (const PartialTime& item : partial_times) {
switch (item.type)
{
case PartialTime::EType::Print: { labels.push_back(_u8L("Print")); break; }
case PartialTime::EType::Pause: { labels.push_back(_u8L("Pause")); break; }
case PartialTime::EType::ColorChange: { labels.push_back(_u8L("Color change")); break; }
}
times.push_back(short_time(get_time_dhms(item.times.second)));
}
std::string longest_used_filament_string;
for (const PartialTime& item : partial_times) {
if (item.used_filament.first > 0.0f) {
char buffer[64];
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", item.used_filament.first);
if (::strlen(buffer) > longest_used_filament_string.length())
longest_used_filament_string = buffer;
}
}
offsets = calculate_offsets(labels, times, { _u8L("Event"), _u8L("Remaining time"), _u8L("Duration"), longest_used_filament_string }, 2.0f * icon_size);
ImGui::Spacing();
append_headers({ _u8L("Event"), _u8L("Remaining time"), _u8L("Duration"), _u8L("Used filament") }, offsets);
const bool need_scrollable = static_cast<float>(partial_times.size()) * (icon_size + ImGui::GetStyle().ItemSpacing.y) > child_height;
if (need_scrollable)
// add scrollable region
ImGui::BeginChild("events", { -1.0f, child_height }, false);
for (const PartialTime& item : partial_times) {
switch (item.type)
{
case PartialTime::EType::Print: {
append_print(item.color1, offsets, item.times, item.used_filament);
break;
}
case PartialTime::EType::Pause: {
imgui.text(_u8L("Pause"));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(item.times.second - item.times.first)));
break;
}
case PartialTime::EType::ColorChange: {
append_color_change(item.color1, item.color2, offsets, item.times);
break;
}
}
}
if (need_scrollable)
ImGui::EndChild();
}
}
// travel paths section
if (m_buffers[buffer_id(EMoveType::Travel)].visible) {
switch (m_view_type)
{
case EViewType::Feedrate:
case EViewType::Tool:
case EViewType::ColorPrint: {
break;
}
default: {
// title
ImGui::Spacing();
imgui.title(_u8L("Travel"));
// items
append_item(EItemType::Line, Travel_Colors[0], _u8L("Movement"));
append_item(EItemType::Line, Travel_Colors[1], _u8L("Extrusion"));
append_item(EItemType::Line, Travel_Colors[2], _u8L("Retraction"));
break;
}
}
}
// wipe paths section
if (m_buffers[buffer_id(EMoveType::Wipe)].visible) {
switch (m_view_type)
{
case EViewType::Feedrate:
case EViewType::Tool:
case EViewType::ColorPrint: { break; }
default: {
// title
ImGui::Spacing();
imgui.title(_u8L("Wipe"));
// items
append_item(EItemType::Line, Wipe_Color, _u8L("Wipe"));
break;
}
}
}
auto any_option_available = [this]() {
auto available = [this](EMoveType type) {
const TBuffer& buffer = m_buffers[buffer_id(type)];
return buffer.visible && buffer.has_data();
};
return available(EMoveType::Color_change) ||
available(EMoveType::Custom_GCode) ||
available(EMoveType::Pause_Print) ||
available(EMoveType::Retract) ||
available(EMoveType::Tool_change) ||
available(EMoveType::Unretract) ||
available(EMoveType::Seam);
};
auto add_option = [this, append_item](EMoveType move_type, EOptionsColors color, const std::string& text) {
const TBuffer& buffer = m_buffers[buffer_id(move_type)];
if (buffer.visible && buffer.has_data())
append_item(EItemType::Circle, Options_Colors[static_cast<unsigned int>(color)], text);
};
// options section
if (any_option_available()) {
// title
ImGui::Spacing();
imgui.title(_u8L("Options"));
// items
add_option(EMoveType::Retract, EOptionsColors::Retractions, _u8L("Retractions"));
add_option(EMoveType::Unretract, EOptionsColors::Unretractions, _u8L("Deretractions"));
add_option(EMoveType::Seam, EOptionsColors::Seams, _u8L("Seams"));
add_option(EMoveType::Tool_change, EOptionsColors::ToolChanges, _u8L("Tool changes"));
add_option(EMoveType::Color_change, EOptionsColors::ColorChanges, _u8L("Color changes"));
add_option(EMoveType::Pause_Print, EOptionsColors::PausePrints, _u8L("Print pauses"));
add_option(EMoveType::Custom_GCode, EOptionsColors::CustomGCodes, _u8L("Custom G-codes"));
}
// settings section
bool has_settings = false;
has_settings |= !m_settings_ids.print.empty();
has_settings |= !m_settings_ids.printer.empty();
bool has_filament_settings = true;
has_filament_settings &= !m_settings_ids.filament.empty();
for (const std::string& fs : m_settings_ids.filament) {
has_filament_settings &= !fs.empty();
}
has_settings |= has_filament_settings;
bool show_settings = wxGetApp().is_gcode_viewer();
show_settings &= (m_view_type == EViewType::FeatureType || m_view_type == EViewType::Tool);
show_settings &= has_settings;
if (show_settings) {
auto calc_offset = [this]() {
float ret = 0.0f;
if (!m_settings_ids.printer.empty())
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Printer") + std::string(":")).c_str()).x);
if (!m_settings_ids.print.empty())
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Print settings") + std::string(":")).c_str()).x);
if (!m_settings_ids.filament.empty()) {
for (unsigned char i : m_extruder_ids) {
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Filament") + " " + std::to_string(i + 1) + ":").c_str()).x);
}
}
if (ret > 0.0f)
ret += 2.0f * ImGui::GetStyle().ItemSpacing.x;
return ret;
};
ImGui::Spacing();
imgui.title(_u8L("Settings"));
float offset = calc_offset();
if (!m_settings_ids.printer.empty()) {
imgui.text(_u8L("Printer") + ":");
ImGui::SameLine(offset);
imgui.text(m_settings_ids.printer);
}
if (!m_settings_ids.print.empty()) {
imgui.text(_u8L("Print settings") + ":");
ImGui::SameLine(offset);
imgui.text(m_settings_ids.print);
}
if (!m_settings_ids.filament.empty()) {
for (unsigned char i : m_extruder_ids) {
if (i < static_cast<unsigned char>(m_settings_ids.filament.size()) && !m_settings_ids.filament[i].empty()) {
std::string txt = _u8L("Filament");
txt += (m_extruder_ids.size() == 1) ? ":" : " " + std::to_string(i + 1);
imgui.text(txt);
ImGui::SameLine(offset);
imgui.text(m_settings_ids.filament[i]);
}
}
}
}
// total estimated printing time section
if (show_estimated_time) {
ImGui::Spacing();
std::string time_title = _u8L("Estimated printing times");
auto can_show_mode_button = [this](PrintEstimatedStatistics::ETimeMode mode) {
bool show = false;
if (m_print_statistics.modes.size() > 1 && m_print_statistics.modes[static_cast<size_t>(mode)].roles_times.size() > 0) {
for (size_t i = 0; i < m_print_statistics.modes.size(); ++i) {
if (i != static_cast<size_t>(mode) &&
m_print_statistics.modes[i].time > 0.0f &&
short_time(get_time_dhms(m_print_statistics.modes[static_cast<size_t>(mode)].time)) != short_time(get_time_dhms(m_print_statistics.modes[i].time))) {
show = true;
break;
}
}
}
return show;
};
if (can_show_mode_button(m_time_estimate_mode)) {
switch (m_time_estimate_mode)
{
case PrintEstimatedStatistics::ETimeMode::Normal: { time_title += " [" + _u8L("Normal mode") + "]"; break; }
case PrintEstimatedStatistics::ETimeMode::Stealth: { time_title += " [" + _u8L("Stealth mode") + "]"; break; }
default: { assert(false); break; }
}
}
imgui.title(time_title + ":");
std::string first_str = _u8L("First layer");
std::string total_str = _u8L("Total");
float max_len = 10.0f + ImGui::GetStyle().ItemSpacing.x;
if (time_mode.layers_times.empty())
max_len += ImGui::CalcTextSize(total_str.c_str()).x;
else
max_len += std::max(ImGui::CalcTextSize(first_str.c_str()).x, ImGui::CalcTextSize(total_str.c_str()).x);
if (!time_mode.layers_times.empty()) {
imgui.text(first_str + ":");
ImGui::SameLine(max_len);
imgui.text(short_time(get_time_dhms(time_mode.layers_times.front())));
}
imgui.text(total_str + ":");
ImGui::SameLine(max_len);
imgui.text(short_time(get_time_dhms(time_mode.time)));
auto show_mode_button = [this, &imgui, can_show_mode_button](const wxString& label, PrintEstimatedStatistics::ETimeMode mode) {
if (can_show_mode_button(mode)) {
if (imgui.button(label)) {
m_time_estimate_mode = mode;
imgui.set_requires_extra_frame();
}
}
};
switch (m_time_estimate_mode) {
case PrintEstimatedStatistics::ETimeMode::Normal: {
show_mode_button(_L("Show stealth mode"), PrintEstimatedStatistics::ETimeMode::Stealth);
break;
}
case PrintEstimatedStatistics::ETimeMode::Stealth: {
show_mode_button(_L("Show normal mode"), PrintEstimatedStatistics::ETimeMode::Normal);
break;
}
default : { assert(false); break; }
}
}
legend_height = ImGui::GetCurrentWindow()->Size.y;
imgui.end();
ImGui::PopStyleVar();
}
#if ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::render_statistics()
{
static const float offset = 275.0f;
ImGuiWrapper& imgui = *wxGetApp().imgui();
auto add_time = [this, &imgui](const std::string& label, int64_t time) {
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
imgui.text(std::to_string(time) + " ms (" + get_time_dhms(static_cast<float>(time) * 0.001f) + ")");
};
auto add_memory = [this, &imgui](const std::string& label, int64_t memory) {
auto format_string = [memory](const std::string& units, float value) {
return std::to_string(memory) + " bytes (" +
Slic3r::float_to_string_decimal_point(float(memory) * value, 3)
+ " " + units + ")";
};
static const float kb = 1024.0f;
static const float inv_kb = 1.0f / kb;
static const float mb = 1024.0f * kb;
static const float inv_mb = 1.0f / mb;
static const float gb = 1024.0f * mb;
static const float inv_gb = 1.0f / gb;
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
if (static_cast<float>(memory) < mb)
imgui.text(format_string("KB", inv_kb));
else if (static_cast<float>(memory) < gb)
imgui.text(format_string("MB", inv_mb));
else
imgui.text(format_string("GB", inv_gb));
};
auto add_counter = [this, &imgui](const std::string& label, int64_t counter) {
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
imgui.text(std::to_string(counter));
};
imgui.set_next_window_pos(0.5f * wxGetApp().plater()->get_current_canvas3D()->get_canvas_size().get_width(), 0.0f, ImGuiCond_Once, 0.5f, 0.0f);
ImGui::SetNextWindowSizeConstraints({ 300.0f, 100.0f }, { 600.0f, 900.0f });
imgui.begin(std::string("GCodeViewer Statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize);
ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow());
if (ImGui::CollapsingHeader("Time")) {
add_time(std::string("GCodeProcessor:"), m_statistics.results_time);
ImGui::Separator();
add_time(std::string("Load:"), m_statistics.load_time);
add_time(std::string(" Load vertices:"), m_statistics.load_vertices);
add_time(std::string(" Smooth vertices:"), m_statistics.smooth_vertices);
add_time(std::string(" Load indices:"), m_statistics.load_indices);
add_time(std::string("Refresh:"), m_statistics.refresh_time);
add_time(std::string("Refresh paths:"), m_statistics.refresh_paths_time);
}
if (ImGui::CollapsingHeader("OpenGL calls")) {
add_counter(std::string("Multi GL_POINTS:"), m_statistics.gl_multi_points_calls_count);
add_counter(std::string("Multi GL_LINES:"), m_statistics.gl_multi_lines_calls_count);
add_counter(std::string("Multi GL_TRIANGLES:"), m_statistics.gl_multi_triangles_calls_count);
add_counter(std::string("GL_TRIANGLES:"), m_statistics.gl_triangles_calls_count);
ImGui::Separator();
add_counter(std::string("Instanced models:"), m_statistics.gl_instanced_models_calls_count);
add_counter(std::string("Batched models:"), m_statistics.gl_batched_models_calls_count);
}
if (ImGui::CollapsingHeader("CPU memory")) {
add_memory(std::string("GCodeProcessor results:"), m_statistics.results_size);
ImGui::Separator();
add_memory(std::string("Paths:"), m_statistics.paths_size);
add_memory(std::string("Render paths:"), m_statistics.render_paths_size);
add_memory(std::string("Models instances:"), m_statistics.models_instances_size);
}
if (ImGui::CollapsingHeader("GPU memory")) {
add_memory(std::string("Vertices:"), m_statistics.total_vertices_gpu_size);
add_memory(std::string("Indices:"), m_statistics.total_indices_gpu_size);
add_memory(std::string("Instances:"), m_statistics.total_instances_gpu_size);
ImGui::Separator();
add_memory(std::string("Max VBuffer:"), m_statistics.max_vbuffer_gpu_size);
add_memory(std::string("Max IBuffer:"), m_statistics.max_ibuffer_gpu_size);
}
if (ImGui::CollapsingHeader("Other")) {
add_counter(std::string("Travel segments count:"), m_statistics.travel_segments_count);
add_counter(std::string("Wipe segments count:"), m_statistics.wipe_segments_count);
add_counter(std::string("Extrude segments count:"), m_statistics.extrude_segments_count);
add_counter(std::string("Instances count:"), m_statistics.instances_count);
add_counter(std::string("Batched count:"), m_statistics.batched_count);
ImGui::Separator();
add_counter(std::string("VBuffers count:"), m_statistics.vbuffers_count);
add_counter(std::string("IBuffers count:"), m_statistics.ibuffers_count);
}
imgui.end();
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::log_memory_used(const std::string& label, int64_t additional) const
{
if (Slic3r::get_logging_level() >= 5) {
int64_t paths_size = 0;
int64_t render_paths_size = 0;
for (const TBuffer& buffer : m_buffers) {
paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
}
int64_t layers_size = SLIC3R_STDVEC_MEMSIZE(m_layers.get_zs(), double);
layers_size += SLIC3R_STDVEC_MEMSIZE(m_layers.get_endpoints(), Layers::Endpoints);
BOOST_LOG_TRIVIAL(trace) << label
<< "(" << format_memsize_MB(additional + paths_size + render_paths_size + layers_size) << ");"
<< log_memory_info();
}
}
GCodeViewer::Color GCodeViewer::option_color(EMoveType move_type) const
{
switch (move_type)
{
case EMoveType::Tool_change: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::ToolChanges)]; }
case EMoveType::Color_change: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::ColorChanges)]; }
case EMoveType::Pause_Print: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::PausePrints)]; }
case EMoveType::Custom_GCode: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::CustomGCodes)]; }
case EMoveType::Retract: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::Retractions)]; }
case EMoveType::Unretract: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::Unretractions)]; }
case EMoveType::Seam: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::Seams)]; }
default: { return { 0.0f, 0.0f, 0.0f, 1.0f }; }
}
}
} // namespace GUI
} // namespace Slic3r