PrusaSlicer-NonPlainar/xs/src/libslic3r/Fill/FillRectilinear3.cpp
bubnikv a6ea01a23f Moved some math macros (sqr, lerp, clamp) to libslic3r.h
Added UNUSED macro to libslic3r.h, used it to reduce some compile warnings.

Split the Int128 class from Clipper library to a separate file,
extended Int128 with intrinsic types wherever possible for performance,
added new geometric predicates.

Added a draft of new FillRectilinear3, which should reduce overfill near the perimeters in the future.
2017-07-27 10:39:43 +02:00

1621 lines
81 KiB
C++

#include <stdlib.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <boost/static_assert.hpp>
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "../Int128.hpp"
#include "FillRectilinear3.hpp"
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#include "SVG.hpp"
#endif
#include <cassert>
// We want our version of assert.
#include "../libslic3r.h"
#ifndef myassert
#define myassert assert
#endif
namespace Slic3r {
namespace FillRectilinear3_Internal {
// A container maintaining the source expolygon with its inner offsetted polygon.
// The source expolygon is offsetted twice:
// 1) A tiny offset is used to get a contour, to which the open hatching lines will be extended.
// 2) A larger offset is used to get a contor, along which the individual hatching lines will be connected.
struct ExPolygonWithOffset
{
public:
ExPolygonWithOffset(
const ExPolygon &expolygon,
float aoffset1,
float aoffset2)
{
// Copy and rotate the source polygons.
polygons_src = expolygon;
double mitterLimit = 3.;
// for the infill pattern, don't cut the corners.
// default miterLimt = 3
//double mitterLimit = 10.;
myassert(aoffset1 < 0);
myassert(aoffset2 < 0);
myassert(aoffset2 < aoffset1);
// bool sticks_removed = remove_sticks(polygons_src);
// if (sticks_removed) printf("Sticks removed!\n");
polygons_outer = offset(polygons_src, aoffset1,
ClipperLib::jtMiter,
mitterLimit);
polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
ClipperLib::jtMiter,
mitterLimit);
// Filter out contours with zero area or small area, contours with 2 points only.
const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
remove_small(polygons_outer, min_area_threshold);
remove_small(polygons_inner, min_area_threshold);
remove_sticks(polygons_outer);
remove_sticks(polygons_inner);
n_contours_outer = polygons_outer.size();
n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner;
polygons_ccw.assign(n_contours, false);
for (size_t i = 0; i < n_contours; ++ i) {
contour(i).remove_duplicate_points();
myassert(! contour(i).has_duplicate_points());
polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
}
}
// Any contour with offset1
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
// Any contour with offset2
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
const Polygon& contour(size_t idx) const
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
Polygon& contour(size_t idx)
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx] != 0; }
BoundingBox bounding_box_src() const
{ return get_extents(polygons_src); }
BoundingBox bounding_box_outer() const
{ return get_extents(polygons_outer); }
BoundingBox bounding_box_inner() const
{ return get_extents(polygons_inner); }
#ifdef SLIC3R_DEBUG
void export_to_svg(Slic3r::SVG &svg) const {
svg.draw_outline(polygons_src, "black");
svg.draw_outline(polygons_outer, "green");
svg.draw_outline(polygons_inner, "brown");
}
#endif /* SLIC3R_DEBUG */
ExPolygon polygons_src;
Polygons polygons_outer;
Polygons polygons_inner;
size_t n_contours_outer;
size_t n_contours_inner;
size_t n_contours;
protected:
// For each polygon of polygons_inner, remember its orientation.
std::vector<unsigned char> polygons_ccw;
};
class SegmentedIntersectionLine;
// Intersection point of a vertical line with a polygon segment.
class SegmentIntersection
{
public:
SegmentIntersection() :
line(nullptr),
expoly_with_offset(nullptr),
iContour(0),
iSegment(0),
type(UNKNOWN),
consumed_vertical_up(false),
consumed_perimeter_right(false)
{}
// Parent object owning this intersection point.
const SegmentedIntersectionLine *line;
// Container with the source expolygon and its shrank copies, to be intersected by the line.
const ExPolygonWithOffset *expoly_with_offset;
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
size_t iContour;
// Index of a segment in iContour, with which this vertical line intersects.
size_t iSegment;
// Kind of intersection. With the original contour, or with the inner offestted contour?
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
enum SegmentIntersectionType {
OUTER_LOW = 0,
OUTER_HIGH = 1,
INNER_LOW = 2,
INNER_HIGH = 3,
UNKNOWN = -1
};
SegmentIntersectionType type;
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
// If INNER_LOW is connected to INNER_HIGH or vice versa,
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
// Calculate a position of this intersection point. The position does not need to be necessary exact.
Point pos() const;
// Returns 0, if this and other segments intersect at the hatching line.
// Returns -1, if this intersection is below the other intersection on the hatching line.
// Returns +1 otherwise.
int ordering_along_line(const SegmentIntersection &other) const;
// Compare two y intersection points given by rational numbers.
bool operator< (const SegmentIntersection &other) const { return this->ordering_along_line(other) == -1; }
bool operator==(const SegmentIntersection &other) const { return this->ordering_along_line(other) == 0; }
//FIXME legacy code, suporting the old graph traversal algorithm. Please remove.
// Was this segment along the y axis consumed?
// Up means up along the vertical segment.
bool consumed_vertical_up;
// Was a segment of the inner perimeter contour consumed?
// Right means right from the vertical segment.
bool consumed_perimeter_right;
};
// A single hathing line intersecting the ExPolygonWithOffset.
class SegmentedIntersectionLine
{
public:
// Index of this vertical intersection line.
size_t idx;
// Position of the line along the X axis of the oriented bounding box.
coord_t x;
// Position of this vertical intersection line, rotated to the world coordinate system.
Point pos;
// Direction of this vertical intersection line, rotated to the world coordinate system. The direction is not normalized to maintain a sufficient accuracy!
Vector dir;
// List of intersection points with polygons, sorted increasingly by the y axis.
// The SegmentIntersection keeps a pointer to this object to access the start and direction of this line.
std::vector<SegmentIntersection> intersections;
};
// Return an intersection point of the parent SegmentedIntersectionLine with the segment of a parent ExPolygonWithOffset.
// The intersected segment of the ExPolygonWithOffset is addressed with (iContour, iSegment).
// When calling this method, the SegmentedIntersectionLine must not be parallel with the segment.
Point SegmentIntersection::pos() const
{
// Get the two rays to be intersected.
const Polygon &poly = this->expoly_with_offset->contour(this->iContour);
// 30 bits + 1 signum bit.
const Point &seg_start = poly.points[this->iSegment];
const Point &seg_end = poly.points[(this->iSegment + 1) % poly.points.size()];
// Point, vector of the segment.
const Pointf p1 = convert_to<Pointf>(seg_start);
const Pointf v1 = convert_to<Pointf>(seg_end - seg_start);
// Point, vector of this hatching line.
const Pointf p2 = convert_to<Pointf>(line->pos);
const Pointf v2 = convert_to<Pointf>(line->dir);
// Intersect the two rays.
double denom = v1.x * v2.y - v2.x * v1.y;
Point out;
if (denom == 0.) {
// Lines are collinear. As the pos() method is not supposed to be called on collinear vectors,
// the source vectors are not quite collinear. Return the center of the contour segment.
out = seg_start + seg_end;
out.x >>= 1;
out.y >>= 1;
} else {
// Find the intersection point.
double t = (v2.x * (p1.y - p2.y) - v2.y * (p1.x - p2.x)) / denom;
if (t < 0.)
out = seg_start;
else if (t > 1.)
out = seg_end;
else {
out.x = coord_t(floor(p1.x + t * v1.x + 0.5));
out.y = coord_t(floor(p1.y + t * v1.y + 0.5));
}
}
return out;
}
static inline int signum(int64_t v) { return (v > 0) - (v < 0); }
// Returns 0, if this and other segments intersect at the hatching line.
// Returns -1, if this intersection is below the other intersection on the hatching line.
// Returns +1 otherwise.
int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) const
{
assert(this->line == other.line);
assert(this->expoly_with_offset == other.expoly_with_offset);
if (this->iContour == other.iContour && this->iSegment == other.iSegment)
return true;
// Segment of this
const Polygon &poly_a = this->expoly_with_offset->contour(this->iContour);
// 30 bits + 1 signum bit.
const Point &seg_start_a = poly_a.points[this->iSegment];
const Point &seg_end_a = poly_a.points[(this->iSegment + 1) % poly_a.points.size()];
const Point vec_a = seg_end_a - seg_start_a;
// Segment of other
const Polygon &poly_b = this->expoly_with_offset->contour(other.iContour);
// 30 bits + 1 signum bit.
const Point &seg_start_b = poly_b.points[other.iSegment];
const Point &seg_end_b = poly_b.points[(other.iSegment + 1) % poly_b.points.size()];
const Point vec_b = seg_end_b - seg_start_b;
if (this->iContour == other.iContour) {
if ((this->iSegment + 1) % poly_a.points.size() == other.iSegment) {
// other.iSegment succeeds this->iSegment
} else if ((other.iSegment + 1) % poly_a.points.size() == this->iSegment) {
// this->iSegment succeeds other.iSegment
} else {
// General case.
}
}
// First test, whether both points of one segment are completely in one half-plane of the other line.
int side_start = signum(cross(vec_b, seg_start_a - seg_start_b));
int side_end = signum(cross(vec_b, seg_end_a - seg_start_b));
int side = side_start * side_end;
if (side > 0)
// This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
return signum(cross(vec_b, this->line->dir)) * side_start;
int side_start2 = signum(cross(vec_a, seg_start_b - seg_start_a));
int side_end2 = signum(cross(vec_a, seg_end_b - seg_start_a));
int side2 = side_start2 * side_end2;
if (side2 > 0)
// This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
return signum(cross(vec_a, this->line->dir)) * side_start2;
if (side == 0 && side2 == 0)
// The segments share one of their end points.
return 0;
// The two segments intersect and they are not sucessive segments of the same contour.
// Ordering of the points depends on the position of the segment intersection (left / right from this->line),
// therefore a simple test over the input segment end points is not sufficient.
// Find the parameters of intersection of the two segmetns with this->line.
int64_t denom1 = cross(vec_a, this->line->dir);
int64_t denom2 = cross(vec_b, this->line->dir);
int64_t t1_times_denom1 = int64_t(this->line->dir.x) * int64_t(seg_start_a.y - this->line->pos.y) - int64_t(this->line->dir.y) * int64_t(seg_start_a.x - this->line->pos.x);
int64_t t2_times_denom2 = int64_t(this->line->dir.x) * int64_t(seg_start_b.y - this->line->pos.y) - int64_t(this->line->dir.y) * int64_t(seg_start_b.x - this->line->pos.x);
assert(denom1 != 0);
assert(denom2 != 0);
return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2);
}
// When doing a rectilinear / grid / triangle / stars / cubic infill,
// the following class holds the hatching lines of each of the hatching directions.
class InfillHatchingSingleDirection
{
public:
// Hatching angle, CCW from the X axis.
double angle;
// Starting point of the 1st hatching line.
Point start_point;
// Direction vector, its size is not normalized to maintain a sufficient accuracy!
Vector direction;
// Spacing of the hatching lines, perpendicular to the direction vector.
coord_t line_spacing;
// Infill segments oriented at angle.
std::vector<SegmentedIntersectionLine> segs;
};
// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
// paths to be extruded.
static bool prepare_infill_hatching_segments(
// Input geometry to be hatch, containing two concentric contours for each input contour.
const ExPolygonWithOffset &poly_with_offset,
// fill density, dont_adjust
const FillParams &params,
// angle, pattern_shift, spacing
FillRectilinear3::FillDirParams &fill_dir_params,
// Reference point of the pattern, to which the infill lines will be alligned, and the base angle.
const std::pair<float, Point> &rotate_vector,
// Resulting straight segments of the infill graph.
InfillHatchingSingleDirection &out)
{
out.angle = rotate_vector.first + fill_dir_params.angle;
out.direction = Point(1000, 0);
// Hatch along the Y axis of the rotated coordinate system.
out.direction.rotate(out.angle + 0.5 * M_PI);
out.segs.clear();
myassert(params.density > 0.0001f && params.density <= 1.f);
coord_t line_spacing = coord_t(scale_(fill_dir_params.spacing) / params.density);
// Bounding box around the source contour, aligned with out.angle.
BoundingBox bounding_box = get_extents_rotated(poly_with_offset.polygons_src.contour, - out.angle);
// Define the flow spacing according to requested density.
if (params.full_infill() && ! params.dont_adjust) {
// Full infill, adjust the line spacing to fit an integer number of lines.
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size().x, line_spacing);
// Report back the adjusted line spacing.
fill_dir_params.spacing = float(unscale(line_spacing));
} else {
// Extend bounding box so that our pattern will be aligned with the other layers.
// Transform the reference point to the rotated coordinate system.
Point refpt = rotate_vector.second.rotated(- out.angle);
// _align_to_grid will not work correctly with positive pattern_shift.
coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing;
refpt.x -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
bounding_box.merge(Fill::_align_to_grid(
bounding_box.min,
Point(line_spacing, line_spacing),
refpt));
}
// Intersect a set of euqally spaced vertical lines wiht expolygon.
// n_vlines = ceil(bbox_width / line_spacing)
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min.x;
if (params.full_infill())
x0 += coord_t((line_spacing + SCALED_EPSILON) / 2);
out.line_spacing = line_spacing;
out.start_point = Point(x0, bounding_box.min.y);
out.start_point.rotate(out.angle);
#ifdef SLIC3R_DEBUG
static int iRun = 0;
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
}
iRun ++;
#endif /* SLIC3R_DEBUG */
// For each contour
// Allocate storage for the segments.
out.segs.assign(n_vlines, SegmentedIntersectionLine());
for (size_t i = 0; i < n_vlines; ++ i) {
auto &seg = out.segs[i];
seg.idx = i;
seg.x = x0 + coord_t(i) * line_spacing;
seg.pos = Point(seg.x, bounding_box.min.y);
seg.pos.rotate(out.angle);
seg.dir = out.direction;
}
#if 1
double cos_a = cos(- out.angle);
double sin_a = sin(- out.angle);
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
const Points &contour = poly_with_offset.contour(iContour).points;
if (contour.size() < 2)
continue;
// For each segment
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
const Point *pl = &contour[iPrev];
const Point *pr = &contour[iSegment];
// Orient the segment to the direction vector.
const Point v = *pr - *pl;
int orientation = Int128::sign_determinant_2x2_filtered(v.x, v.y, out.direction.x, out.direction.y);
if (orientation == 0)
// Ignore strictly vertical segments.
continue;
if (orientation < 0)
// Always orient the input segment consistently towards the hatching direction.
std::swap(pl, pr);
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = (coord_t)floor(cos_a * pl->x - sin_a * pl->y - EPSILON);
coord_t r = (coord_t)ceil (cos_a * pr->x - sin_a * pr->y + EPSILON);
// il, ir are the left / right indices of vertical lines intersecting a segment
int il = (l - x0) / line_spacing;
il = std::max(int(0), il);
while (il * line_spacing + x0 < l)
++ il;
int ir = (r - x0 + line_spacing) / line_spacing;
while (ir * line_spacing + x0 > r)
-- ir;
ir = std::min(int(out.segs.size()) - 1, ir);
if (il > ir)
// No vertical line intersects this segment.
continue;
// The previous tests were done with floating point arithmetics over an epsilon-extended interval.
// Now do the same tests with exact arithmetics over the exact interval.
while (il <= ir && Int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
++ il;
while (il <= ir && Int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
-- ir;
if (il > ir)
// No vertical line intersects this segment.
continue;
// Here it is ensured, that
// 1) out.seg is not parallel to (pl, pr)
// 2) all lines from il to ir intersect <pl, pr>.
myassert(il >= 0 && il < out.segs.size());
myassert(ir >= 0 && ir < out.segs.size());
for (int i = il; i <= ir; ++ i) {
myassert(out.segs[i].x == i * line_spacing + x0);
myassert(l <= out.segs[i].x);
myassert(r >= out.segs[i].x);
SegmentIntersection is;
is.line = &out.segs[i];
is.expoly_with_offset = &poly_with_offset;
is.iContour = iContour;
is.iSegment = iSegment;
// Test whether the calculated intersection point falls into the bounding box of the input segment.
// +-1 to take rounding into account.
myassert(is.pos().x + 1 >= std::min(pl->x, pr->x));
myassert(is.pos().y + 1 >= std::min(pl->y, pr->y));
myassert(is.pos().x <= std::max(pl->x, pr->x) + 1);
myassert(is.pos().y <= std::max(pl->y, pr->y) + 1);
out.segs[i].intersections.push_back(is);
}
}
}
#endif
// Sort the intersections along their segments, specify the intersection types.
for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = out.segs[i_seg];
// Sort the intersection points using exact rational arithmetic.
std::sort(sil.intersections.begin(), sil.intersections.end());
// Assign the intersection types, remove duplicate or overlapping intersection points.
// When a loop vertex touches a vertical line, intersection point is generated for both segments.
// If such two segments are oriented equally, then one of them is removed.
// Otherwise the vertex is tangential to the vertical line and both segments are removed.
// The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
// The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
size_t j = 0;
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
// What is the orientation of the segment at the intersection point?
size_t iContour = sil.intersections[i].iContour;
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
coord_t dir = contour[iSegment].x - contour[iPrev].x;
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
// Two successive intersection points on a vertical line with the same contour. This may be a special case.
if (sil.intersections[i] == sil.intersections[j-1]) {
// Two successive segments meet exactly at the vertical line.
#ifdef SLIC3R_DEBUG
// Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
size_t iSegment2 = sil.intersections[j-1].iSegment;
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
myassert(iSegment == iPrev2 || iSegment2 == iPrev);
#endif /* SLIC3R_DEBUG */
if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line.
// Remove the second intersection point.
} else {
// This is a loop returning to the same point.
// It may as well be a vertex of a loop touching this vertical line.
// Remove both the lines.
-- j;
}
} else if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two non successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
// of the Z shaped path is aligned with this vertical line.
// Remove one of the intersection points while maximizing the vertical segment length.
if (low) {
// Remove the second intersection point, keep the first intersection point.
} else {
// Remove the first intersection point, keep the second intersection point.
sil.intersections[j-1] = sil.intersections[i];
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
// or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
// Keep both intersection points.
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
}
// Shrink the list of intersections, if any of the intersection was removed during the classification.
if (j < sil.intersections.size())
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
}
// Verify the segments. If something is wrong, give up.
#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = out.segs[i_seg];
// The intersection points have to be even.
ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
for (size_t i = 0; i < sil.intersections.size();) {
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
size_t j = i + 1;
ASSERT_OR_RETURN(j < sil.intersections.size());
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
ASSERT_OR_RETURN(j < sil.intersections.size());
ASSERT_OR_RETURN((j & 1) == 1);
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
i = j + 1;
}
}
#undef ASSERT_OR_RETURN
#ifdef _MSC_VER
#pragma warning(push)
#endif _MSC_VER
#ifdef SLIC3R_DEBUG
// Paint the segments and finalize the SVG file.
for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = out.segs[i_seg];
for (size_t i = 0; i < sil.intersections.size();) {
size_t j = i + 1;
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
if (i + 1 == j) {
svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[j ].pos()), "blue");
} else {
svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[i+1].pos()), "green");
svg.draw(Line(sil.intersections[i+1].pos(), sil.intersections[j-1].pos()), (j - i + 1 > 4) ? "yellow" : "magenta");
svg.draw(Line(sil.intersections[j-1].pos(), sil.intersections[j ].pos()), "green");
}
i = j + 1;
}
}
svg.Close();
#endif /* SLIC3R_DEBUG */
return true;
}
/****************************************************************** Legacy code, to be replaced by a graph algorithm ******************************************************************/
// Having a segment of a closed polygon, calculate its Euclidian length.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
#ifdef SLIC3R_DEBUG
// Verify that p1 lies on seg1. This is difficult to verify precisely,
// but at least verify, that p1 lies in the bounding box of seg1.
for (size_t i = 0; i < 2; ++ i) {
size_t seg = (i == 0) ? seg1 : seg2;
Point px = (i == 0) ? p1 : p2;
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
Point pb = poly.points[seg];
if (pa.x > pb.x)
std::swap(pa.x, pb.x);
if (pa.y > pb.y)
std::swap(pa.y, pb.y);
myassert(px.x >= pa.x && px.x <= pb.x);
myassert(px.y >= pa.y && px.y <= pb.y);
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
const Point *pThis = NULL;
coordf_t len = 0;
if (seg1 <= seg2) {
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
len += pPrev->distance_to(*(pThis = &poly.points[i]));
} else {
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
len += pPrev->distance_to(*(pThis = &poly.points[i]));
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
len += pPrev->distance_to(*(pThis = &poly.points[i]));
}
len += pPrev->distance_to(p2);
return len;
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 == seg2) {
// Nothing to append from this segment.
} else if (seg1 < seg2) {
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
} else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
}
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 >= seg2) {
out.reserve(seg1 - seg2);
for (size_t i = seg1; i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
} else {
// it could be, that seg1 == seg2. In that case, append the complete loop.
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
for (size_t i = seg1; i > 0; -- i)
out.push_back(polygon.points[i - 1]);
for (size_t i = polygon.points.size(); i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
}
}
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
{
int d = int(seg2) - int(seg1);
if (! forward)
d = - d;
if (d < 0)
d += int(poly.points.size());
return d;
}
// For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous resp. next vertical line.
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
// Return -1 if there is no such point on the previous resp. next vertical line.
static inline int intersection_on_prev_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return -1;
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return -1;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
const bool forward = itsct.is_low() == dir_is_next;
// Resulting index of an intersection point on il2.
int out = -1;
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
// at the same orientation as iIntersection, and being closest to iIntersection
// in the number of contour segments, when following the direction of the contour.
int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il2.intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
/*
if (itsct.is_low()) {
myassert(itsct.type == SegmentIntersection::INNER_LOW);
myassert(iIntersection > 0);
myassert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
myassert(i > 0);
if (il2.intersections[i-1].is_inner())
// Take only the lowest inner intersection point.
continue;
myassert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
} else {
myassert(itsct.type == SegmentIntersection::INNER_HIGH);
myassert(iIntersection+1 < il.intersections.size());
myassert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
myassert(i+1 < il2.intersections.size());
if (il2.intersections[i+1].is_inner())
// Take only the highest inner intersection point.
continue;
myassert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
}
*/
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest path in the direction of the contour.
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
if (d < dmin) {
out = i;
dmin = d;
}
}
}
//FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
return out;
}
static inline int intersection_on_prev_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
}
static inline int intersection_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
}
enum IntersectionTypeOtherVLine {
// There is no connection point on the other vertical line.
INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
// Connection point on the other vertical segment was found
// and it could be followed.
INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
// The connection segment connects to a middle of a vertical segment.
// Cannot follow.
INTERSECTION_TYPE_OTHER_VLINE_INNER,
// Cannot extend the contor to this intersection point as either the connection segment
// or the succeeding vertical segment were already consumed.
INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
// Not the first intersection along the contor. This intersection point
// has been preceded by an intersection point along the vertical line.
INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
};
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionOther,
bool dir_is_next)
{
// This routine will propose a connecting line even if the connecting perimeter segment intersects
// iVertical line multiple times before reaching iIntersectionOther.
if (iIntersectionOther == -1)
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
myassert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
myassert(itsct_other.is_inner());
myassert(iIntersectionOther > 0);
myassert(iIntersectionOther + 1 < il_other.intersections.size());
// Is iIntersectionOther at the boundary of a vertical segment?
const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
if (itsct_other2.is_inner())
// Cannot follow a perimeter segment into the middle of another vertical segment.
// Only perimeter segments connecting to the end of a vertical segment are followed.
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
myassert(itsct_other.is_low() == itsct_other2.is_low());
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
// This vertical segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
return INTERSECTION_TYPE_OTHER_VLINE_OK;
}
static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionPrev)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
}
static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionNext)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
}
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_prev_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return coordf_t(-1);
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return coordf_t(-1);
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
myassert(itsct.type == itsct2.type);
myassert(itsct.iContour == itsct2.iContour);
myassert(itsct.is_inner());
const bool forward = itsct.is_low() == dir_is_next;
Point p1 = itsct.pos();
Point p2 = itsct2.pos();
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
static inline coordf_t measure_perimeter_prev_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
}
static inline coordf_t measure_perimeter_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
++ iVerticalLineOther;
myassert(iVerticalLineOther < segs.size());
} else {
myassert(iVerticalLineOther > 0);
-- iVerticalLineOther;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
myassert(itsct.type == itsct2.type);
myassert(itsct.iContour == itsct2.iContour);
myassert(itsct.is_inner());
const bool forward = itsct.is_low() == dir_is_next;
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(itsct2.pos());
}
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
myassert(itsct.is_inner());
myassert(itsct2.is_inner());
myassert(itsct.type != itsct2.type);
myassert(itsct.iContour == iInnerContour);
myassert(itsct.iContour == itsct2.iContour);
return forward ?
segment_length(poly, itsct .iSegment, itsct.pos(), itsct2.iSegment, itsct2.pos()) :
segment_length(poly, itsct2.iSegment, itsct2.pos(), itsct .iSegment, itsct.pos());
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_segment_on_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
myassert(itsct.is_inner());
myassert(itsct2.is_inner());
myassert(itsct.type != itsct2.type);
myassert(itsct.iContour == iInnerContour);
myassert(itsct.iContour == itsct2.iContour);
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(itsct2.pos());
}
//TBD: For precise infill, measure the area of a slab spanned by an infill line.
/*
static inline float measure_outer_contour_slab(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t i_vline,
size_t iIntersection)
{
const SegmentedIntersectionLine &il = segs[i_vline];
const SegmentIntersection &itsct = il.intersections[i_vline];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour((itsct.iContour);
myassert(itsct.is_outer());
myassert(itsct2.is_outer());
myassert(itsct.type != itsct2.type);
myassert(itsct.iContour == itsct2.iContour);
if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
// Error, return zero area.
return 0.f;
// Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
// Find possible connection points on the same vertical line.
int iAbove = iBelow = -1;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iAbove = i; break; }
// Does the perimeter intersect the current vertical line below intrsctn?
for (int i = int(i_intersection) - 1; i > 0; -- i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iBelow = i; break; }
if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_FORWARD;
}
}
}
*/
enum DirectionMask
{
DIR_FORWARD = 1,
DIR_BACKWARD = 2
};
// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
// paths to be extruded.
static bool fill_hatching_segments_legacy(
// Input geometry to be hatch, containing two concentric contours for each input contour.
const ExPolygonWithOffset &poly_with_offset,
// fill density, dont_adjust
const FillParams &params,
const coord_t link_max_length,
// Resulting straight segments of the infill graph.
InfillHatchingSingleDirection &hatching,
Polylines &polylines_out)
{
// At the end, only the new polylines will be rotated back.
size_t n_polylines_out_initial = polylines_out.size();
std::vector<SegmentedIntersectionLine> &segs = hatching.segs;
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
// Mark an outer only chord as consumed, if the distance is low.
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
SegmentedIntersectionLine &seg = segs[i_vline];
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
bool consumed = false;
// if (params.full_infill()) {
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
// } else
consumed = true;
seg.intersections[i_intersection].consumed_vertical_up = consumed;
}
}
}
// Now construct a graph.
// Find the first point.
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
// but that procedure does not create the longest continuous paths.
// A simple "sweep left to right" procedure achieves better results.
size_t i_vline = 0;
size_t i_intersection = size_t(-1);
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
Polyline *polyline_current = NULL;
if (! polylines_out.empty())
pointLast = polylines_out.back().points.back();
for (;;) {
if (i_intersection == size_t(-1)) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
const SegmentedIntersectionLine &seg = segs[i_vline2];
if (! seg.intersections.empty()) {
myassert(seg.intersections.size() > 1);
// Even number of intersections with the loops.
myassert((seg.intersections.size() & 1) == 0);
myassert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
const SegmentIntersection &intrsctn = seg.intersections[i];
if (intrsctn.is_outer()) {
myassert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
seg.intersections[i-1].consumed_vertical_up;
if (! consumed) {
coordf_t dist2 = pointLast.distance_to(intrsctn.pos());
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
i_intersection = i;
//FIXME We are taking the first left point always. Verify, that the caller chains the paths
// by a shortest distance, while reversing the paths if needed.
//if (polylines_out.empty())
// Initial state, take the first line, which is the first from the left.
goto found;
}
}
}
}
}
}
if (i_intersection == size_t(-1))
// We are finished.
break;
found:
// Start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
// Emit the first point of a path.
pointLast = segs[i_vline].intersections[i_intersection].pos();
polyline_current->points.push_back(pointLast);
}
// From the initial point (i_vline, i_intersection), follow a path.
SegmentedIntersectionLine &seg = segs[i_vline];
SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
bool going_up = intrsctn->is_low();
bool try_connect = false;
if (going_up) {
myassert(! intrsctn->consumed_vertical_up);
myassert(i_intersection + 1 < seg.intersections.size());
// Step back to the beginning of the vertical segment to mark it as consumed.
if (intrsctn->is_inner()) {
myassert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
}
// Consume the complete vertical segment up to the outer contour.
do {
intrsctn->consumed_vertical_up = true;
++ intrsctn;
++ i_intersection;
myassert(i_intersection < seg.intersections.size());
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
if ((intrsctn - 1)->is_inner()) {
// Step back.
-- intrsctn;
-- i_intersection;
myassert(intrsctn->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
myassert(intrsctn->is_high());
myassert(i_intersection > 0);
myassert(! (intrsctn - 1)->consumed_vertical_up);
// Consume the complete vertical segment up to the outer contour.
if (intrsctn->is_inner())
intrsctn->consumed_vertical_up = true;
do {
myassert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
intrsctn->consumed_vertical_up = true;
} while (intrsctn->type != SegmentIntersection::OUTER_LOW);
if ((intrsctn + 1)->is_inner()) {
// Step back.
++ intrsctn;
++ i_intersection;
myassert(intrsctn->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
if (try_connect) {
// Decide, whether to finish the segment, or whether to follow the perimeter.
// 1) Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
// 2) Find possible connection points on the same vertical line.
int iAbove = -1;
int iBelow = -1;
int iSegAbove = -1;
int iSegBelow = -1;
{
SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
if (seg.intersections[i].iContour == intrsctn->iContour) {
iAbove = i;
iSegAbove = seg.intersections[i].iSegment;
break;
}
// Does the perimeter intersect the current vertical line below intrsctn?
for (size_t i = i_intersection - 1; i > 0; -- i)
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
if (seg.intersections[i].iContour == intrsctn->iContour) {
iBelow = i;
iSegBelow = seg.intersections[i].iSegment;
break;
}
}
// 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
// if it is preceded by any other intersection point along the contour.
unsigned int vert_seg_dir_valid_mask =
(going_up ?
(iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
(iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
(DIR_FORWARD | DIR_BACKWARD) :
0;
{
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going forward.
intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
}
}
// 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
// Take the shorter path.
//FIXME this may not be always the best strategy to take the shortest connection line now.
bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
(distNext < distPrev) :
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
myassert(intrsctn->is_inner());
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
if (skip) {
// Just skip the connecting contour and start a new path.
goto dont_connect;
polyline_current->points.push_back(intrsctn->pos());
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
polyline_current->points.push_back(il2.intersections[take_next ? iNext : iPrev].pos());
} else {
polyline_current->points.push_back(intrsctn->pos());
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
if (iPrev != -1)
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
if (iNext != -1)
intrsctn->consumed_perimeter_right = true;
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
// Advance to the neighbor line.
if (take_next) {
++ i_vline;
i_intersection = iNext;
} else {
-- i_vline;
i_intersection = iPrev;
}
continue;
}
// 5) Try to connect to a previous or next point on the same vertical line.
if (vert_seg_dir_valid_mask) {
bool valid = true;
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
// Verify, that the successive segment has not been consumed yet.
if (going_up) {
if (seg.intersections[iAbove].consumed_vertical_up) {
valid = false;
} else {
for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
} else {
if (seg.intersections[iBelow-1].consumed_vertical_up) {
valid = false;
} else {
for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
}
if (valid) {
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
int iNext = going_up ? iAbove : iBelow;
int iSegNext = going_up ? iSegAbove : iSegBelow;
bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
// Take the shorter length between the current and the next intersection point.
(distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
(vert_seg_dir_valid_mask == DIR_FORWARD);
// Skip this perimeter line?
bool skip = params.dont_connect;
if (! skip && link_max_length > 0) {
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
skip = link_length > link_max_length;
}
polyline_current->points.push_back(intrsctn->pos());
if (skip) {
// Just skip the connecting contour and start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
polyline_current->points.push_back(seg.intersections[iNext].pos());
} else {
// Consume the connecting contour and the next segment.
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
// If there are any outer intersection points skipped (bypassed) by the contour,
// mark them as processed.
if (going_up) {
for (int i = (int)i_intersection; i < iAbove; ++ i)
seg.intersections[i].consumed_vertical_up = true;
} else {
for (int i = iBelow; i < (int)i_intersection; ++ i)
seg.intersections[i].consumed_vertical_up = true;
}
// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
intrsctn->consumed_perimeter_right = true;
i_intersection = iNext;
if (going_up)
++ intrsctn;
else
-- intrsctn;
intrsctn->consumed_perimeter_right = true;
continue;
}
}
dont_connect:
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
// This will finish the polyline, starting another polyline at a new point.
if (going_up)
++ intrsctn;
else
-- intrsctn;
}
// Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
myassert(intrsctn->is_outer());
myassert(intrsctn->is_high() == going_up);
pointLast = intrsctn->pos();
polyline_current->points.push_back(pointLast);
// Handle duplicate points and zero length segments.
polyline_current->remove_duplicate_points();
myassert(! polyline_current->has_duplicate_points());
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
polyline_current = NULL;
}
#ifdef SLIC3R_DEBUG
{
static int iRun = 0;
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
svg.draw(polylines_out[i].lines(), "black");
}
// Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
svg.draw(polylines_out[i_polyline].lines(), "black");
}
}
#endif /* SLIC3R_DEBUG */
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
myassert(! it->has_duplicate_points());
//it->rotate(rotate_vector.first);
//FIXME rather simplify the paths to avoid very short edges?
//myassert(! it->has_duplicate_points());
it->remove_duplicate_points();
}
#ifdef SLIC3R_DEBUG
// Verify, that there are no duplicate points in the sequence.
for (Polyline &polyline : polylines_out)
myassert(! polyline.has_duplicate_points());
#endif /* SLIC3R_DEBUG */
return true;
}
}; // namespace FillRectilinear3_Internal
bool FillRectilinear3::fill_surface_by_lines(const Surface *surface, const FillParams &params, std::vector<FillDirParams> &fill_dir_params, Polylines &polylines_out)
{
myassert(params.density > 0.0001f && params.density <= 1.f);
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
myassert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
// On the polygons of poly_with_offset, the infill lines will be connected.
FillRectilinear3_Internal::ExPolygonWithOffset poly_with_offset(
surface->expolygon,
float(scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing)),
float(scale_(- 0.5 * this->spacing)));
if (poly_with_offset.n_contours_inner == 0) {
// Not a single infill line fits.
//FIXME maybe one shall trigger the gap fill here?
return true;
}
// Rotate polygons so that we can work with vertical lines here
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
std::vector<FillRectilinear3_Internal::InfillHatchingSingleDirection> hatching(fill_dir_params.size(), FillRectilinear3_Internal::InfillHatchingSingleDirection());
for (size_t i = 0; i < hatching.size(); ++ i)
if (! FillRectilinear3_Internal::prepare_infill_hatching_segments(poly_with_offset, params, fill_dir_params[i], rotate_vector, hatching[i]))
return false;
for (size_t i = 0; i < hatching.size(); ++ i)
if (! FillRectilinear3_Internal::fill_hatching_segments_legacy(
poly_with_offset,
params,
this->link_max_length,
hatching[i],
polylines_out))
return false;
return true;
}
Polylines FillRectilinear3::fill_surface(const Surface *surface, const FillParams &params)
{
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
if (! fill_surface_by_lines(surface, params, fill_dir_params, polylines_out))
printf("FillRectilinear3::fill_surface() failed to fill a region.\n");
if (params.full_infill() && ! params.dont_adjust)
// Return back the adjusted spacing.
this->spacing = fill_dir_params.front().spacing;
return polylines_out;
}
Polylines FillGrid3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers half of the target coverage.
FillParams params2 = params;
params2.density *= 0.5f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
fill_dir_params.emplace_back(FillDirParams(this->spacing, float(M_PI / 2.)));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillGrid3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
Polylines FillTriangles3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3.));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillTriangles3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
Polylines FillStars3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., 0.5 * this->spacing / params2.density));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillStars3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
Polylines FillCubic3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0., z));
fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3., -z));
fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., z));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillCubic3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
} // namespace Slic3r