PrusaSlicer-NonPlainar/src/libslic3r/GCodeTimeEstimator.cpp

1680 lines
58 KiB
C++

#include "Exception.hpp"
#include "GCodeTimeEstimator.hpp"
#include "Utils.hpp"
#include <boost/bind.hpp>
#include <cmath>
#include <Shiny/Shiny.h>
#include <boost/nowide/fstream.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/algorithm/string/predicate.hpp>
#if !ENABLE_GCODE_VIEWER
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float MILLISEC_TO_SEC = 0.001f;
static const float INCHES_TO_MM = 25.4f;
static const float DEFAULT_FEEDRATE = 1500.0f; // from Prusa Firmware (Marlin_main.cpp)
static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 500.0f, 500.0f, 12.0f, 120.0f }; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 500.0f, 10000.0f }; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.4f, 2.5f }; // from Prusa Firmware (Configuration.h)
static const float DEFAULT_MINIMUM_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
static const float DEFAULT_MINIMUM_TRAVEL_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
static const float DEFAULT_EXTRUDE_FACTOR_OVERRIDE_PERCENTAGE = 1.0f; // 100 percent
static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f;
#if ENABLE_MOVE_STATS
static const std::string MOVE_TYPE_STR[Slic3r::GCodeTimeEstimator::Block::Num_Types] =
{
"Noop",
"Retract",
"Unretract",
"Tool_change",
"Move",
"Extrude"
};
#endif // ENABLE_MOVE_STATS
namespace Slic3r {
void GCodeTimeEstimator::Feedrates::reset()
{
feedrate = 0.0f;
safe_feedrate = 0.0f;
::memset(axis_feedrate, 0, Num_Axis * sizeof(float));
::memset(abs_axis_feedrate, 0, Num_Axis * sizeof(float));
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time(float entry_feedrate, float acceleration) const
{
return acceleration_time_from_distance(entry_feedrate, accelerate_until, acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_time() const
{
return (cruise_feedrate != 0.0f) ? cruise_distance() / cruise_feedrate : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::deceleration_time(float distance, float acceleration) const
{
return acceleration_time_from_distance(cruise_feedrate, (distance - decelerate_after), -acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_distance() const
{
return decelerate_after - accelerate_until;
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::speed_from_distance(float initial_feedrate, float distance, float acceleration)
{
// to avoid invalid negative numbers due to numerical imprecision
float value = std::max(0.0f, sqr(initial_feedrate) + 2.0f * acceleration * distance);
return ::sqrt(value);
}
float GCodeTimeEstimator::Block::acceleration_time() const
{
return trapezoid.acceleration_time(feedrate.entry, acceleration);
}
float GCodeTimeEstimator::Block::cruise_time() const
{
return trapezoid.cruise_time();
}
float GCodeTimeEstimator::Block::deceleration_time() const
{
return trapezoid.deceleration_time(distance, acceleration);
}
float GCodeTimeEstimator::Block::cruise_distance() const
{
return trapezoid.cruise_distance();
}
void GCodeTimeEstimator::Block::calculate_trapezoid()
{
trapezoid.cruise_feedrate = feedrate.cruise;
float accelerate_distance = std::max(0.0f, estimate_acceleration_distance(feedrate.entry, feedrate.cruise, acceleration));
float decelerate_distance = std::max(0.0f, estimate_acceleration_distance(feedrate.cruise, feedrate.exit, -acceleration));
float cruise_distance = distance - accelerate_distance - decelerate_distance;
// Not enough space to reach the nominal feedrate.
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
if (cruise_distance < 0.0f)
{
accelerate_distance = std::clamp(intersection_distance(feedrate.entry, feedrate.exit, acceleration, distance), 0.0f, distance);
cruise_distance = 0.0f;
trapezoid.cruise_feedrate = Trapezoid::speed_from_distance(feedrate.entry, accelerate_distance, acceleration);
}
trapezoid.accelerate_until = accelerate_distance;
trapezoid.decelerate_after = accelerate_distance + cruise_distance;
}
float GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
{
// to avoid invalid negative numbers due to numerical imprecision
float value = std::max(0.0f, sqr(target_velocity) - 2.0f * acceleration * distance);
return ::sqrt(value);
}
float GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
}
float GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
}
#if ENABLE_MOVE_STATS
GCodeTimeEstimator::MoveStats::MoveStats()
: count(0)
, time(0.0f)
{
}
#endif // ENABLE_MOVE_STATS
const std::string GCodeTimeEstimator::Normal_First_M73_Output_Placeholder_Tag = "; _TE_NORMAL_FIRST_M73_OUTPUT_PLACEHOLDER";
const std::string GCodeTimeEstimator::Silent_First_M73_Output_Placeholder_Tag = "; _TE_SILENT_FIRST_M73_OUTPUT_PLACEHOLDER";
const std::string GCodeTimeEstimator::Normal_Last_M73_Output_Placeholder_Tag = "; _TE_NORMAL_LAST_M73_OUTPUT_PLACEHOLDER";
const std::string GCodeTimeEstimator::Silent_Last_M73_Output_Placeholder_Tag = "; _TE_SILENT_LAST_M73_OUTPUT_PLACEHOLDER";
const std::string GCodeTimeEstimator::Color_Change_Tag = "PRINT_COLOR_CHANGE";
const std::string GCodeTimeEstimator::Pause_Print_Tag = "PRINT_PAUSE";
GCodeTimeEstimator::GCodeTimeEstimator(EMode mode)
: m_mode(mode)
{
reset();
set_default();
}
void GCodeTimeEstimator::add_gcode_line(const std::string& gcode_line)
{
PROFILE_FUNC();
m_parser.parse_line(gcode_line,
[this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); });
}
void GCodeTimeEstimator::add_gcode_block(const char *ptr)
{
PROFILE_FUNC();
GCodeReader::GCodeLine gline;
auto action = [this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); };
for (; *ptr != 0;) {
gline.reset();
ptr = m_parser.parse_line(ptr, gline, action);
}
}
void GCodeTimeEstimator::calculate_time(bool start_from_beginning)
{
PROFILE_FUNC();
if (start_from_beginning)
_reset_time();
_calculate_time(0);
if (m_needs_custom_gcode_times && (m_custom_gcode_time_cache != 0.0f))
m_custom_gcode_times.push_back({CustomGCode::ColorChange, m_custom_gcode_time_cache });
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
}
#if 0
void GCodeTimeEstimator::calculate_time_from_text(const std::string& gcode)
{
reset();
m_parser.parse_buffer(gcode,
[this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); });
_calculate_time(0);
if (m_needs_custom_gcode_times && (m_custom_gcode_time_cache != 0.0f))
m_custom_gcode_times.push_back({ cgtColorChange, m_custom_gcode_time_cache });
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
}
void GCodeTimeEstimator::calculate_time_from_file(const std::string& file)
{
reset();
m_parser.parse_file(file, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_calculate_time(0);
if (m_needs_custom_gcode_times && (m_custom_gcode_time_cache != 0.0f))
m_custom_gcode_times.push_back({ cgtColorChange, m_custom_gcode_time_cache });
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
}
void GCodeTimeEstimator::calculate_time_from_lines(const std::vector<std::string>& gcode_lines)
{
reset();
auto action = [this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); };
for (const std::string& line : gcode_lines)
m_parser.parse_line(line, action);
_calculate_time(0);
if (m_needs_custom_gcode_times && (m_custom_gcode_time_cache != 0.0f))
m_custom_gcode_times.push_back({ cgtColorChange, m_custom_gcode_time_cache});
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
}
#endif
bool GCodeTimeEstimator::post_process(const std::string& filename, float interval_sec, const PostProcessData* const normal_mode, const PostProcessData* const silent_mode)
{
boost::nowide::ifstream in(filename);
if (!in.good())
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nCannot open file for reading.\n"));
std::string path_tmp = filename + ".postprocess";
FILE* out = boost::nowide::fopen(path_tmp.c_str(), "wb");
if (out == nullptr)
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nCannot open file for writing.\n"));
std::string normal_time_mask = "M73 P%s R%s\n";
std::string silent_time_mask = "M73 Q%s S%s\n";
char line_M73[64];
std::string gcode_line;
// buffer line to export only when greater than 64K to reduce writing calls
std::string export_line;
// helper function to write to disk
auto write_string = [&](const std::string& str) {
fwrite((const void*)export_line.c_str(), 1, export_line.length(), out);
if (ferror(out))
{
in.close();
fclose(out);
boost::nowide::remove(path_tmp.c_str());
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nIs the disk full?\n"));
}
export_line.clear();
};
GCodeReader parser;
int g1_lines_count = 0;
int normal_g1_line_id = 0;
float normal_last_recorded_time = 0.0f;
int silent_g1_line_id = 0;
float silent_last_recorded_time = 0.0f;
// helper function to process g1 lines
auto process_g1_line = [&](const PostProcessData* const data, const GCodeReader::GCodeLine& line, int& g1_line_id, float& last_recorded_time, const std::string& time_mask) {
if (data == nullptr)
return;
assert((g1_line_id >= (int)data->g1_times.size()) || (data->g1_times[g1_line_id].first >= (int)g1_lines_count));
float elapsed_time = -1.0f;
if (g1_line_id < (int)data->g1_times.size())
{
const G1LineIdTime& map_item = data->g1_times[g1_line_id];
if (map_item.first == g1_lines_count)
{
if (line.has_e())
elapsed_time = map_item.second;
++g1_line_id;
}
}
if (elapsed_time != -1.0f)
{
float block_remaining_time = data->time - elapsed_time;
if (std::abs(last_recorded_time - block_remaining_time) > interval_sec)
{
sprintf(line_M73, time_mask.c_str(), std::to_string((int)(100.0f * elapsed_time / data->time)).c_str(), _get_time_minutes(block_remaining_time).c_str());
gcode_line += line_M73;
last_recorded_time = block_remaining_time;
}
}
};
while (std::getline(in, gcode_line))
{
if (!in.good())
{
fclose(out);
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nError while reading from file.\n"));
}
// check tags
// remove Color_Change_Tag and Pause_Print_Tag
if (gcode_line == "; " + Color_Change_Tag || gcode_line == "; " + Pause_Print_Tag)
continue;
// replaces placeholders for initial line M73 with the real lines
if ((normal_mode != nullptr) && (gcode_line == Normal_First_M73_Output_Placeholder_Tag))
{
sprintf(line_M73, normal_time_mask.c_str(), "0", _get_time_minutes(normal_mode->time).c_str());
gcode_line = line_M73;
}
else if ((silent_mode != nullptr) && (gcode_line == Silent_First_M73_Output_Placeholder_Tag))
{
sprintf(line_M73, silent_time_mask.c_str(), "0", _get_time_minutes(silent_mode->time).c_str());
gcode_line = line_M73;
}
// replaces placeholders for final line M73 with the real lines
else if ((normal_mode != nullptr) && (gcode_line == Normal_Last_M73_Output_Placeholder_Tag))
{
sprintf(line_M73, normal_time_mask.c_str(), "100", "0");
gcode_line = line_M73;
}
else if ((silent_mode != nullptr) && (gcode_line == Silent_Last_M73_Output_Placeholder_Tag))
{
sprintf(line_M73, silent_time_mask.c_str(), "100", "0");
gcode_line = line_M73;
}
else
gcode_line += "\n";
// add remaining time lines where needed
parser.parse_line(gcode_line,
[&](GCodeReader& reader, const GCodeReader::GCodeLine& line)
{
if (line.cmd_is("G1"))
{
++g1_lines_count;
process_g1_line(silent_mode, line, silent_g1_line_id, silent_last_recorded_time, silent_time_mask);
process_g1_line(normal_mode, line, normal_g1_line_id, normal_last_recorded_time, normal_time_mask);
}
});
export_line += gcode_line;
if (export_line.length() > 65535)
write_string(export_line);
}
if (!export_line.empty())
write_string(export_line);
fclose(out);
in.close();
if (rename_file(path_tmp, filename))
throw Slic3r::RuntimeError(std::string("Failed to rename the output G-code file from ") + path_tmp + " to " + filename + '\n' +
"Is " + path_tmp + " locked?" + '\n');
return true;
}
void GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
{
m_state.axis[axis].position = position;
}
void GCodeTimeEstimator::set_axis_origin(EAxis axis, float position)
{
m_state.axis[axis].origin = position;
}
void GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
{
m_state.axis[axis].max_feedrate = feedrate_mm_sec;
}
void GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
{
m_state.axis[axis].max_acceleration = acceleration;
}
void GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
{
m_state.axis[axis].max_jerk = jerk;
}
float GCodeTimeEstimator::get_axis_position(EAxis axis) const
{
return m_state.axis[axis].position;
}
float GCodeTimeEstimator::get_axis_origin(EAxis axis) const
{
return m_state.axis[axis].origin;
}
float GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
{
return m_state.axis[axis].max_feedrate;
}
float GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
{
return m_state.axis[axis].max_acceleration;
}
float GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
{
return m_state.axis[axis].max_jerk;
}
void GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
{
m_state.feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_feedrate() const
{
return m_state.feedrate;
}
void GCodeTimeEstimator::set_acceleration(float acceleration_mm_sec2)
{
m_state.acceleration = (m_state.max_acceleration == 0) ?
acceleration_mm_sec2 :
// Clamp the acceleration with the maximum.
std::min(m_state.max_acceleration, acceleration_mm_sec2);
}
float GCodeTimeEstimator::get_acceleration() const
{
return m_state.acceleration;
}
void GCodeTimeEstimator::set_max_acceleration(float acceleration_mm_sec2)
{
m_state.max_acceleration = acceleration_mm_sec2;
if (acceleration_mm_sec2 > 0)
m_state.acceleration = acceleration_mm_sec2;
}
float GCodeTimeEstimator::get_max_acceleration() const
{
return m_state.max_acceleration;
}
void GCodeTimeEstimator::set_retract_acceleration(float acceleration_mm_sec2)
{
m_state.retract_acceleration = acceleration_mm_sec2;
}
float GCodeTimeEstimator::get_retract_acceleration() const
{
return m_state.retract_acceleration;
}
void GCodeTimeEstimator::set_minimum_feedrate(float feedrate_mm_sec)
{
m_state.minimum_feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_minimum_feedrate() const
{
return m_state.minimum_feedrate;
}
void GCodeTimeEstimator::set_minimum_travel_feedrate(float feedrate_mm_sec)
{
m_state.minimum_travel_feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_minimum_travel_feedrate() const
{
return m_state.minimum_travel_feedrate;
}
void GCodeTimeEstimator::set_filament_load_times(const std::vector<double> &filament_load_times)
{
m_state.filament_load_times.clear();
for (double t : filament_load_times)
m_state.filament_load_times.push_back((float)t);
}
void GCodeTimeEstimator::set_filament_unload_times(const std::vector<double> &filament_unload_times)
{
m_state.filament_unload_times.clear();
for (double t : filament_unload_times)
m_state.filament_unload_times.push_back((float)t);
}
float GCodeTimeEstimator::get_filament_load_time(unsigned int id_extruder)
{
return
(m_state.filament_load_times.empty() || id_extruder == m_state.extruder_id_unloaded) ?
0 :
(m_state.filament_load_times.size() <= id_extruder) ?
m_state.filament_load_times.front() :
m_state.filament_load_times[id_extruder];
}
float GCodeTimeEstimator::get_filament_unload_time(unsigned int id_extruder)
{
return
(m_state.filament_unload_times.empty() || id_extruder == m_state.extruder_id_unloaded) ?
0 :
(m_state.filament_unload_times.size() <= id_extruder) ?
m_state.filament_unload_times.front() :
m_state.filament_unload_times[id_extruder];
}
void GCodeTimeEstimator::set_extrude_factor_override_percentage(float percentage)
{
m_state.extrude_factor_override_percentage = percentage;
}
float GCodeTimeEstimator::get_extrude_factor_override_percentage() const
{
return m_state.extrude_factor_override_percentage;
}
void GCodeTimeEstimator::set_dialect(GCodeFlavor dialect)
{
m_state.dialect = dialect;
}
GCodeFlavor GCodeTimeEstimator::get_dialect() const
{
PROFILE_FUNC();
return m_state.dialect;
}
void GCodeTimeEstimator::set_units(GCodeTimeEstimator::EUnits units)
{
m_state.units = units;
}
GCodeTimeEstimator::EUnits GCodeTimeEstimator::get_units() const
{
return m_state.units;
}
void GCodeTimeEstimator::set_global_positioning_type(GCodeTimeEstimator::EPositioningType type)
{
m_state.global_positioning_type = type;
}
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_global_positioning_type() const
{
return m_state.global_positioning_type;
}
void GCodeTimeEstimator::set_e_local_positioning_type(GCodeTimeEstimator::EPositioningType type)
{
m_state.e_local_positioning_type = type;
}
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_e_local_positioning_type() const
{
return m_state.e_local_positioning_type;
}
int GCodeTimeEstimator::get_g1_line_id() const
{
return m_state.g1_line_id;
}
void GCodeTimeEstimator::increment_g1_line_id()
{
++m_state.g1_line_id;
}
void GCodeTimeEstimator::reset_g1_line_id()
{
m_state.g1_line_id = 0;
}
void GCodeTimeEstimator::set_extruder_id(unsigned int id)
{
m_state.extruder_id = id;
}
unsigned int GCodeTimeEstimator::get_extruder_id() const
{
return m_state.extruder_id;
}
void GCodeTimeEstimator::reset_extruder_id()
{
// Set the initial extruder ID to unknown. For the multi-material setup it means
// that all the filaments are parked in the MMU and no filament is loaded yet.
m_state.extruder_id = m_state.extruder_id_unloaded;
}
void GCodeTimeEstimator::set_default()
{
set_units(Millimeters);
set_dialect(gcfRepRapSprinter);
set_global_positioning_type(Absolute);
set_e_local_positioning_type(Absolute);
set_feedrate(DEFAULT_FEEDRATE);
// Setting the maximum acceleration to zero means that the there is no limit and the G-code
// is allowed to set excessive values.
set_max_acceleration(0);
set_acceleration(DEFAULT_ACCELERATION);
set_retract_acceleration(DEFAULT_RETRACT_ACCELERATION);
set_minimum_feedrate(DEFAULT_MINIMUM_FEEDRATE);
set_minimum_travel_feedrate(DEFAULT_MINIMUM_TRAVEL_FEEDRATE);
set_extrude_factor_override_percentage(DEFAULT_EXTRUDE_FACTOR_OVERRIDE_PERCENTAGE);
for (unsigned char a = X; a < Num_Axis; ++a)
{
EAxis axis = (EAxis)a;
set_axis_max_feedrate(axis, DEFAULT_AXIS_MAX_FEEDRATE[a]);
set_axis_max_acceleration(axis, DEFAULT_AXIS_MAX_ACCELERATION[a]);
set_axis_max_jerk(axis, DEFAULT_AXIS_MAX_JERK[a]);
}
m_state.filament_load_times.clear();
m_state.filament_unload_times.clear();
}
void GCodeTimeEstimator::reset()
{
_reset_time();
#if ENABLE_MOVE_STATS
_moves_stats.clear();
#endif // ENABLE_MOVE_STATS
_reset_blocks();
_reset();
}
float GCodeTimeEstimator::get_time() const
{
return m_time;
}
std::string GCodeTimeEstimator::get_time_dhms() const
{
return _get_time_dhms(get_time());
}
std::string GCodeTimeEstimator::get_time_dhm() const
{
return _get_time_dhm(get_time());
}
std::string GCodeTimeEstimator::get_time_minutes() const
{
return _get_time_minutes(get_time());
}
std::vector<std::pair<CustomGCode::Type, float>> GCodeTimeEstimator::get_custom_gcode_times() const
{
return m_custom_gcode_times;
}
std::vector<std::string> GCodeTimeEstimator::get_color_times_dhms(bool include_remaining) const
{
std::vector<std::string> ret;
float total_time = 0.0f;
// for (float t : m_color_times)
for (auto t : m_custom_gcode_times)
{
std::string time = _get_time_dhms(t.second);
if (include_remaining)
{
time += " (";
time += _get_time_dhms(m_time - total_time);
time += ")";
}
total_time += t.second;
ret.push_back(time);
}
return ret;
}
std::vector<std::string> GCodeTimeEstimator::get_color_times_minutes(bool include_remaining) const
{
std::vector<std::string> ret;
float total_time = 0.0f;
// for (float t : m_color_times)
for (auto t : m_custom_gcode_times)
{
std::string time = _get_time_minutes(t.second);
if (include_remaining)
{
time += " (";
time += _get_time_minutes(m_time - total_time);
time += ")";
}
total_time += t.second;
}
return ret;
}
std::vector<std::pair<CustomGCode::Type, std::string>> GCodeTimeEstimator::get_custom_gcode_times_dhm(bool include_remaining) const
{
std::vector<std::pair<CustomGCode::Type, std::string>> ret;
float total_time = 0.0f;
for (auto t : m_custom_gcode_times)
{
std::string time = _get_time_dhm(t.second);
if (include_remaining)
{
time += " (";
time += _get_time_dhm(m_time - total_time);
time += ")";
}
total_time += t.second;
ret.push_back({t.first, time});
}
return ret;
}
// Return an estimate of the memory consumed by the time estimator.
size_t GCodeTimeEstimator::memory_used() const
{
size_t out = sizeof(*this);
out += SLIC3R_STDVEC_MEMSIZE(this->m_blocks, Block);
out += SLIC3R_STDVEC_MEMSIZE(this->m_g1_times, G1LineIdTime);
return out;
}
void GCodeTimeEstimator::_reset()
{
m_curr.reset();
m_prev.reset();
set_axis_position(X, 0.0f);
set_axis_position(Y, 0.0f);
set_axis_position(Z, 0.0f);
set_axis_origin(X, 0.0f);
set_axis_origin(Y, 0.0f);
set_axis_origin(Z, 0.0f);
if (get_e_local_positioning_type() == Absolute)
set_axis_position(E, 0.0f);
reset_extruder_id();
reset_g1_line_id();
m_g1_times.clear();
m_needs_custom_gcode_times = false;
m_custom_gcode_times.clear();
m_custom_gcode_time_cache = 0.0f;
}
void GCodeTimeEstimator::_reset_time()
{
m_time = 0.0f;
}
void GCodeTimeEstimator::_reset_blocks()
{
m_blocks.clear();
}
void GCodeTimeEstimator::_calculate_time(size_t keep_last_n_blocks)
{
PROFILE_FUNC();
assert(keep_last_n_blocks <= m_blocks.size());
_forward_pass();
_reverse_pass();
_recalculate_trapezoids();
size_t n_blocks_process = m_blocks.size() - keep_last_n_blocks;
m_g1_times.reserve(m_g1_times.size() + n_blocks_process);
for (size_t i = 0; i < n_blocks_process; ++ i)
{
Block& block = m_blocks[i];
float block_time = 0.0f;
block_time += block.acceleration_time();
block_time += block.cruise_time();
block_time += block.deceleration_time();
m_time += block_time;
if (block.g1_line_id >= 0)
m_g1_times.emplace_back(block.g1_line_id, m_time);
#if ENABLE_MOVE_STATS
MovesStatsMap::iterator it = _moves_stats.find(block.move_type);
if (it == _moves_stats.end())
it = _moves_stats.insert(MovesStatsMap::value_type(block.move_type, MoveStats())).first;
it->second.count += 1;
it->second.time += block_time;
#endif // ENABLE_MOVE_STATS
m_custom_gcode_time_cache += block_time;
}
if (keep_last_n_blocks)
m_blocks.erase(m_blocks.begin(), m_blocks.begin() + n_blocks_process);
else
m_blocks.clear();
}
void GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
// processes 'special' comments contained in line
if (_process_tags(line))
return;
std::string cmd = line.cmd();
if (cmd.length() > 1)
{
switch (::toupper(cmd[0]))
{
case 'G':
{
switch (::atoi(&cmd[1]))
{
case 1: // Move
{
_processG1(line);
break;
}
case 4: // Dwell
{
_processG4(line);
break;
}
case 20: // Set Units to Inches
{
_processG20(line);
break;
}
case 21: // Set Units to Millimeters
{
_processG21(line);
break;
}
case 28: // Move to Origin (Home)
{
_processG28(line);
break;
}
case 90: // Set to Absolute Positioning
{
_processG90(line);
break;
}
case 91: // Set to Relative Positioning
{
_processG91(line);
break;
}
case 92: // Set Position
{
_processG92(line);
break;
}
}
break;
}
case 'M':
{
switch (::atoi(&cmd[1]))
{
case 1: // Sleep or Conditional stop
{
_processM1(line);
break;
}
case 82: // Set extruder to absolute mode
{
_processM82(line);
break;
}
case 83: // Set extruder to relative mode
{
_processM83(line);
break;
}
case 109: // Set Extruder Temperature and Wait
{
_processM109(line);
break;
}
case 201: // Set max printing acceleration
{
_processM201(line);
break;
}
case 203: // Set maximum feedrate
{
_processM203(line);
break;
}
case 204: // Set default acceleration
{
_processM204(line);
break;
}
case 205: // Advanced settings
{
_processM205(line);
break;
}
case 221: // Set extrude factor override percentage
{
_processM221(line);
break;
}
case 566: // Set allowable instantaneous speed change
{
_processM566(line);
break;
}
case 702: // MK3 MMU2: Process the final filament unload.
{
_processM702(line);
break;
}
}
break;
}
case 'T': // Select Tools
{
_processT(line);
break;
}
}
}
}
void GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
{
auto axis_absolute_position = [this](GCodeTimeEstimator::EAxis axis, const GCodeReader::GCodeLine& lineG1) -> float
{
float current_absolute_position = get_axis_position(axis);
float current_origin = get_axis_origin(axis);
float lengthsScaleFactor = (get_units() == GCodeTimeEstimator::Inches) ? INCHES_TO_MM : 1.0f;
bool is_relative = (get_global_positioning_type() == Relative);
if (axis == E)
is_relative |= (get_e_local_positioning_type() == Relative);
if (lineG1.has(Slic3r::Axis(axis)))
{
float ret = lineG1.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
return is_relative ? current_absolute_position + ret : ret + current_origin;
}
else
return current_absolute_position;
};
// delta_pos must have size >= Num_Axis
auto move_length = [](const float* delta_pos) {
float xyz_length = std::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
return (xyz_length > 0.0f) ? xyz_length : std::abs(delta_pos[E]);
};
// delta_pos must have size >= Num_Axis
auto is_extruder_only_move = [](const float* delta_pos) {
return (delta_pos[X] == 0.0f) && (delta_pos[Y] == 0.0f) && (delta_pos[Z] == 0.0f) && (delta_pos[E] != 0.0f);
};
PROFILE_FUNC();
increment_g1_line_id();
// updates axes positions from line
float new_pos[Num_Axis];
for (unsigned char a = X; a < Num_Axis; ++a)
{
new_pos[a] = axis_absolute_position((EAxis)a, line);
}
// updates feedrate from line, if present
if (line.has_f())
set_feedrate(std::max(line.f() * MMMIN_TO_MMSEC, get_minimum_feedrate()));
// fills block data
Block block;
// calculates block movement deltas
float max_abs_delta = 0.0f;
float delta_pos[Num_Axis];
for (unsigned char a = X; a < Num_Axis; ++a)
{
delta_pos[a] = new_pos[a] - get_axis_position((EAxis)a);
max_abs_delta = std::max(max_abs_delta, std::abs(delta_pos[a]));
}
// is it a move ?
if (max_abs_delta == 0.0f)
return;
// calculates block feedrate
m_curr.feedrate = std::max(get_feedrate(), (delta_pos[E] == 0.0f) ? get_minimum_travel_feedrate() : get_minimum_feedrate());
block.distance = move_length(delta_pos);
float invDistance = 1.0f / block.distance;
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
m_curr.axis_feedrate[a] = m_curr.feedrate * delta_pos[a] * invDistance;
if (a == E)
m_curr.axis_feedrate[a] *= get_extrude_factor_override_percentage();
m_curr.abs_axis_feedrate[a] = std::abs(m_curr.axis_feedrate[a]);
if (m_curr.abs_axis_feedrate[a] > 0.0f)
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / m_curr.abs_axis_feedrate[a]);
}
block.feedrate.cruise = min_feedrate_factor * m_curr.feedrate;
if (min_feedrate_factor < 1.0f)
{
for (unsigned char a = X; a < Num_Axis; ++a)
{
m_curr.axis_feedrate[a] *= min_feedrate_factor;
m_curr.abs_axis_feedrate[a] *= min_feedrate_factor;
}
}
// calculates block acceleration
float acceleration = is_extruder_only_move(delta_pos) ? get_retract_acceleration() : get_acceleration();
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_acceleration = get_axis_max_acceleration((EAxis)a);
if (acceleration * std::abs(delta_pos[a]) * invDistance > axis_max_acceleration)
acceleration = axis_max_acceleration;
}
block.acceleration = acceleration;
// calculates block exit feedrate
m_curr.safe_feedrate = block.feedrate.cruise;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (m_curr.abs_axis_feedrate[a] > axis_max_jerk)
m_curr.safe_feedrate = std::min(m_curr.safe_feedrate, axis_max_jerk);
}
block.feedrate.exit = m_curr.safe_feedrate;
// calculates block entry feedrate
float vmax_junction = m_curr.safe_feedrate;
if (!m_blocks.empty() && (m_prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD))
{
bool prev_speed_larger = m_prev.feedrate > block.feedrate.cruise;
float smaller_speed_factor = prev_speed_larger ? (block.feedrate.cruise / m_prev.feedrate) : (m_prev.feedrate / block.feedrate.cruise);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block.feedrate.cruise : m_prev.feedrate;
float v_factor = 1.0f;
bool limited = false;
for (unsigned char a = X; a < Num_Axis; ++a)
{
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
float v_exit = m_prev.axis_feedrate[a];
float v_entry = m_curr.axis_feedrate[a];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited)
{
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
(((v_entry > 0.0f) || (v_exit < 0.0f)) ?
// coasting
(v_exit - v_entry) :
// axis reversal
std::max(v_exit, -v_entry)) :
// v_exit <= v_entry
(((v_entry < 0.0f) || (v_exit > 0.0f)) ?
// coasting
(v_entry - v_exit) :
// axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (jerk > axis_max_jerk)
{
v_factor *= axis_max_jerk / jerk;
limited = true;
}
}
if (limited)
vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
// Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if ((m_prev.safe_feedrate > vmax_junction_threshold) && (m_curr.safe_feedrate > vmax_junction_threshold))
vmax_junction = m_curr.safe_feedrate;
}
float v_allowable = Block::max_allowable_speed(-acceleration, m_curr.safe_feedrate, block.distance);
block.feedrate.entry = std::min(vmax_junction, v_allowable);
block.max_entry_speed = vmax_junction;
block.flags.nominal_length = (block.feedrate.cruise <= v_allowable);
block.flags.recalculate = true;
block.safe_feedrate = m_curr.safe_feedrate;
// calculates block trapezoid
block.calculate_trapezoid();
// updates previous
m_prev = m_curr;
// updates axis positions
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_position((EAxis)a, new_pos[a]);
}
#if ENABLE_MOVE_STATS
// detects block move type
block.move_type = Block::Noop;
if (delta_pos[E] < 0.0f)
{
if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f) || (delta_pos[Z] != 0.0f))
block.move_type = Block::Move;
else
block.move_type = Block::Retract;
}
else if (delta_pos[E] > 0.0f)
{
if ((delta_pos[X] == 0.0f) && (delta_pos[Y] == 0.0f) && (delta_pos[Z] == 0.0f))
block.move_type = Block::Unretract;
else if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f))
block.move_type = Block::Extrude;
}
else if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f) || (delta_pos[Z] != 0.0f))
block.move_type = Block::Move;
#endif // ENABLE_MOVE_STATS
// adds block to blocks list
block.g1_line_id = this->get_g1_line_id();
m_blocks.emplace_back(block);
if (m_blocks.size() > planner_refresh_if_larger)
_calculate_time(planner_queue_size);
}
void GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
GCodeFlavor dialect = get_dialect();
float value;
float extra_time = 0.f;
if (line.has_value('P', value))
extra_time += value * MILLISEC_TO_SEC;
// see: http://reprap.org/wiki/G-code#G4:_Dwell
if ((dialect == gcfRepetier) ||
(dialect == gcfMarlin) ||
(dialect == gcfSmoothie) ||
(dialect == gcfRepRapSprinter) ||
(dialect == gcfRepRapFirmware))
{
if (line.has_value('S', value))
extra_time += value;
}
_simulate_st_synchronize(extra_time);
}
void GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
set_units(Inches);
}
void GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
set_units(Millimeters);
}
void GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
// TODO
}
void GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
set_global_positioning_type(Absolute);
}
void GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
set_global_positioning_type(Relative);
}
void GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
float lengthsScaleFactor = (get_units() == Inches) ? INCHES_TO_MM : 1.0f;
bool anyFound = false;
if (line.has_x())
{
set_axis_origin(X, get_axis_position(X) - line.x() * lengthsScaleFactor);
anyFound = true;
}
if (line.has_y())
{
set_axis_origin(Y, get_axis_position(Y) - line.y() * lengthsScaleFactor);
anyFound = true;
}
if (line.has_z())
{
set_axis_origin(Z, get_axis_position(Z) - line.z() * lengthsScaleFactor);
anyFound = true;
}
if (line.has_e())
{
// extruder coordinate can grow to the point where its float representation does not allow for proper addition with small increments,
// we set the value taken from the G92 line as the new current position for it
set_axis_position(E, line.e() * lengthsScaleFactor);
anyFound = true;
}
else
_simulate_st_synchronize(0.f);
if (!anyFound)
{
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_origin((EAxis)a, get_axis_position((EAxis)a));
}
}
}
void GCodeTimeEstimator::_processM1(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
_simulate_st_synchronize(0.f);
}
void GCodeTimeEstimator::_processM82(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
set_e_local_positioning_type(Absolute);
}
void GCodeTimeEstimator::_processM83(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
set_e_local_positioning_type(Relative);
}
void GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
// TODO
}
void GCodeTimeEstimator::_processM201(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
GCodeFlavor dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration
float factor = ((dialect != gcfRepRapSprinter && dialect != gcfRepRapFirmware) && (get_units() == GCodeTimeEstimator::Inches)) ? INCHES_TO_MM : 1.0f;
if (line.has_x())
set_axis_max_acceleration(X, line.x() * factor);
if (line.has_y())
set_axis_max_acceleration(Y, line.y() * factor);
if (line.has_z())
set_axis_max_acceleration(Z, line.z() * factor);
if (line.has_e())
set_axis_max_acceleration(E, line.e() * factor);
}
void GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
GCodeFlavor dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
if (dialect == gcfRepetier)
return;
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
// http://smoothieware.org/supported-g-codes
float factor = (dialect == gcfMarlin || dialect == gcfSmoothie) ? 1.0f : MMMIN_TO_MMSEC;
if (line.has_x())
set_axis_max_feedrate(X, line.x() * factor);
if (line.has_y())
set_axis_max_feedrate(Y, line.y() * factor);
if (line.has_z())
set_axis_max_feedrate(Z, line.z() * factor);
if (line.has_e())
set_axis_max_feedrate(E, line.e() * factor);
}
void GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
float value;
if (line.has_value('S', value)) {
// Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
// and it is also generated by Slic3r to control acceleration per extrusion type
// (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
set_acceleration(value);
if (line.has_value('T', value))
set_retract_acceleration(value);
} else {
// New acceleration format, compatible with the upstream Marlin.
if (line.has_value('P', value))
set_acceleration(value);
if (line.has_value('R', value))
set_retract_acceleration(value);
if (line.has_value('T', value)) {
// Interpret the T value as the travel acceleration in the new Marlin format.
//FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
// set_travel_acceleration(value);
}
}
}
void GCodeTimeEstimator::_processM205(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
if (line.has_x())
{
float max_jerk = line.x();
set_axis_max_jerk(X, max_jerk);
set_axis_max_jerk(Y, max_jerk);
}
if (line.has_y())
set_axis_max_jerk(Y, line.y());
if (line.has_z())
set_axis_max_jerk(Z, line.z());
if (line.has_e())
set_axis_max_jerk(E, line.e());
float value;
if (line.has_value('S', value))
set_minimum_feedrate(value);
if (line.has_value('T', value))
set_minimum_travel_feedrate(value);
}
void GCodeTimeEstimator::_processM221(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
float value_s;
float value_t;
if (line.has_value('S', value_s) && !line.has_value('T', value_t))
set_extrude_factor_override_percentage(value_s * 0.01f);
}
void GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
if (line.has_x())
set_axis_max_jerk(X, line.x() * MMMIN_TO_MMSEC);
if (line.has_y())
set_axis_max_jerk(Y, line.y() * MMMIN_TO_MMSEC);
if (line.has_z())
set_axis_max_jerk(Z, line.z() * MMMIN_TO_MMSEC);
if (line.has_e())
set_axis_max_jerk(E, line.e() * MMMIN_TO_MMSEC);
}
void GCodeTimeEstimator::_processM702(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
if (line.has('C')) {
// MK3 MMU2 specific M code:
// M702 C is expected to be sent by the custom end G-code when finalizing a print.
// The MK3 unit shall unload and park the active filament into the MMU2 unit.
float extra_time = get_filament_unload_time(get_extruder_id());
reset_extruder_id();
_simulate_st_synchronize(extra_time);
}
}
void GCodeTimeEstimator::_processT(const GCodeReader::GCodeLine& line)
{
std::string cmd = line.cmd();
if (cmd.length() > 1)
{
unsigned int id = (unsigned int)::strtol(cmd.substr(1).c_str(), nullptr, 10);
if (get_extruder_id() != id)
{
// Specific to the MK3 MMU2: The initial extruder ID is set to -1 indicating
// that the filament is parked in the MMU2 unit and there is nothing to be unloaded yet.
float extra_time = get_filament_unload_time(get_extruder_id());
set_extruder_id(id);
extra_time += get_filament_load_time(get_extruder_id());
_simulate_st_synchronize(extra_time);
}
}
}
bool GCodeTimeEstimator::_process_tags(const GCodeReader::GCodeLine& line)
{
std::string comment = line.comment();
// Color_Change_Tag
size_t pos = comment.find(Color_Change_Tag);
if (pos != comment.npos)
{
_process_custom_gcode_tag(CustomGCode::ColorChange);
return true;
}
// Pause_Print_Tag
pos = comment.find(Pause_Print_Tag);
if (pos != comment.npos)
{
_process_custom_gcode_tag(CustomGCode::PausePrint);
return true;
}
return false;
}
void GCodeTimeEstimator::_process_custom_gcode_tag(CustomGCode::Type code)
{
PROFILE_FUNC();
m_needs_custom_gcode_times = true;
//FIXME this simulates st_synchronize! is it correct?
// The estimated time may be longer than the real print time.
_simulate_st_synchronize(0.f);
if (m_custom_gcode_time_cache != 0.0f)
{
m_custom_gcode_times.push_back({code, m_custom_gcode_time_cache});
m_custom_gcode_time_cache = 0.0f;
}
}
void GCodeTimeEstimator::_simulate_st_synchronize(float extra_time)
{
PROFILE_FUNC();
m_time += extra_time;
m_custom_gcode_time_cache += extra_time;
_calculate_time(0);
}
void GCodeTimeEstimator::_forward_pass()
{
PROFILE_FUNC();
for (int i = 0; i + 1 < (int)m_blocks.size(); ++i)
_planner_forward_pass_kernel(m_blocks[i], m_blocks[i + 1]);
}
void GCodeTimeEstimator::_reverse_pass()
{
PROFILE_FUNC();
for (int i = (int)m_blocks.size() - 1; i > 0; -- i)
_planner_reverse_pass_kernel(m_blocks[i - 1], m_blocks[i]);
}
void GCodeTimeEstimator::_planner_forward_pass_kernel(Block& prev, Block& curr)
{
PROFILE_FUNC();
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!prev.flags.nominal_length)
{
if (prev.feedrate.entry < curr.feedrate.entry)
{
float entry_speed = std::min(curr.feedrate.entry, Block::max_allowable_speed(-prev.acceleration, prev.feedrate.entry, prev.distance));
// Check for junction speed change
if (curr.feedrate.entry != entry_speed)
{
curr.feedrate.entry = entry_speed;
curr.flags.recalculate = true;
}
}
}
}
void GCodeTimeEstimator::_planner_reverse_pass_kernel(Block& curr, Block& next)
{
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (curr.feedrate.entry != curr.max_entry_speed)
{
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if (!curr.flags.nominal_length && (curr.max_entry_speed > next.feedrate.entry))
curr.feedrate.entry = std::min(curr.max_entry_speed, Block::max_allowable_speed(-curr.acceleration, next.feedrate.entry, curr.distance));
else
curr.feedrate.entry = curr.max_entry_speed;
curr.flags.recalculate = true;
}
}
void GCodeTimeEstimator::_recalculate_trapezoids()
{
PROFILE_FUNC();
Block* curr = nullptr;
Block* next = nullptr;
for (size_t i = 0; i < m_blocks.size(); ++ i)
{
Block& b = m_blocks[i];
curr = next;
next = &b;
if (curr != nullptr)
{
// Recalculate if current block entry or exit junction speed has changed.
if (curr->flags.recalculate || next->flags.recalculate)
{
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
Block block = *curr;
block.feedrate.exit = next->feedrate.entry;
block.calculate_trapezoid();
curr->trapezoid = block.trapezoid;
curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed
}
}
}
// Last/newest block in buffer. Always recalculated.
if (next != nullptr)
{
Block block = *next;
block.feedrate.exit = next->safe_feedrate;
block.calculate_trapezoid();
next->trapezoid = block.trapezoid;
next->flags.recalculate = false;
}
}
std::string GCodeTimeEstimator::_get_time_dhms(float time_in_secs)
{
int days = (int)(time_in_secs / 86400.0f);
time_in_secs -= (float)days * 86400.0f;
int hours = (int)(time_in_secs / 3600.0f);
time_in_secs -= (float)hours * 3600.0f;
int minutes = (int)(time_in_secs / 60.0f);
time_in_secs -= (float)minutes * 60.0f;
char buffer[64];
if (days > 0)
::sprintf(buffer, "%dd %dh %dm %ds", days, hours, minutes, (int)time_in_secs);
else if (hours > 0)
::sprintf(buffer, "%dh %dm %ds", hours, minutes, (int)time_in_secs);
else if (minutes > 0)
::sprintf(buffer, "%dm %ds", minutes, (int)time_in_secs);
else
::sprintf(buffer, "%ds", (int)time_in_secs);
return buffer;
}
std::string GCodeTimeEstimator::_get_time_dhm(float time_in_secs)
{
char buffer[64];
int minutes = int(std::round(time_in_secs / 60.));
if (minutes <= 0) {
::sprintf(buffer, "%ds", (int)time_in_secs);
} else {
int days = minutes / 1440;
minutes -= days * 1440;
int hours = minutes / 60;
minutes -= hours * 60;
if (days > 0)
::sprintf(buffer, "%dd %dh %dm", days, hours, minutes);
else if (hours > 0)
::sprintf(buffer, "%dh %dm", hours, minutes);
else
::sprintf(buffer, "%dm", minutes);
}
return buffer;
}
std::string GCodeTimeEstimator::_get_time_minutes(float time_in_secs)
{
return std::to_string((int)(::roundf(time_in_secs / 60.0f)));
}
#if ENABLE_MOVE_STATS
void GCodeTimeEstimator::_log_moves_stats() const
{
float moves_count = 0.0f;
for (const MovesStatsMap::value_type& move : _moves_stats)
{
moves_count += (float)move.second.count;
}
for (const MovesStatsMap::value_type& move : _moves_stats)
{
std::cout << MOVE_TYPE_STR[move.first];
std::cout << ": count " << move.second.count << " (" << 100.0f * (float)move.second.count / moves_count << "%)";
std::cout << " - time: " << move.second.time << "s (" << 100.0f * move.second.time / m_time << "%)";
std::cout << std::endl;
}
std::cout << std::endl;
}
#endif // ENABLE_MOVE_STATS
}
#endif // !ENABLE_GCODE_VIEWER