PrusaSlicer-NonPlainar/src/libslic3r/GCode/CoolingBuffer.cpp
Lukas Matena a62bba2508 CoolingBuffer.cpp: Fixed a crash when encountering an invalid toolchange
This can happen if the user enters invalid toolchange through the custom gcodes
Such toolchange is now simply ignored by the CoolingBuffer, exporting gcode is NOT stopped, a log error is emitted
2019-09-10 11:46:18 +02:00

817 lines
40 KiB
C++

#include "../GCode.hpp"
#include "CoolingBuffer.hpp"
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/log/trivial.hpp>
#include <iostream>
#include <float.h>
#if 0
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif
#include <assert.h>
namespace Slic3r {
CoolingBuffer::CoolingBuffer(GCode &gcodegen) : m_gcodegen(gcodegen), m_current_extruder(0)
{
this->reset();
}
void CoolingBuffer::reset()
{
m_current_pos.assign(5, 0.f);
Vec3d pos = m_gcodegen.writer().get_position();
m_current_pos[0] = float(pos(0));
m_current_pos[1] = float(pos(1));
m_current_pos[2] = float(pos(2));
m_current_pos[4] = float(m_gcodegen.config().travel_speed.value);
}
struct CoolingLine
{
enum Type {
TYPE_SET_TOOL = 1 << 0,
TYPE_EXTRUDE_END = 1 << 1,
TYPE_BRIDGE_FAN_START = 1 << 2,
TYPE_BRIDGE_FAN_END = 1 << 3,
TYPE_G0 = 1 << 4,
TYPE_G1 = 1 << 5,
TYPE_ADJUSTABLE = 1 << 6,
TYPE_EXTERNAL_PERIMETER = 1 << 7,
// The line sets a feedrate.
TYPE_HAS_F = 1 << 8,
TYPE_WIPE = 1 << 9,
TYPE_G4 = 1 << 10,
TYPE_G92 = 1 << 11,
};
CoolingLine(unsigned int type, size_t line_start, size_t line_end) :
type(type), line_start(line_start), line_end(line_end),
length(0.f), feedrate(0.f), time(0.f), time_max(0.f), slowdown(false) {}
bool adjustable(bool slowdown_external_perimeters) const {
return (this->type & TYPE_ADJUSTABLE) &&
(! (this->type & TYPE_EXTERNAL_PERIMETER) || slowdown_external_perimeters) &&
this->time < this->time_max;
}
bool adjustable() const {
return (this->type & TYPE_ADJUSTABLE) && this->time < this->time_max;
}
size_t type;
// Start of this line at the G-code snippet.
size_t line_start;
// End of this line at the G-code snippet.
size_t line_end;
// XY Euclidian length of this segment.
float length;
// Current feedrate, possibly adjusted.
float feedrate;
// Current duration of this segment.
float time;
// Maximum duration of this segment.
float time_max;
// If marked with the "slowdown" flag, the line has been slowed down.
bool slowdown;
};
// Calculate the required per extruder time stretches.
struct PerExtruderAdjustments
{
// Calculate the total elapsed time per this extruder, adjusted for the slowdown.
float elapsed_time_total() const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
time_total += line.time;
return time_total;
}
// Calculate the total elapsed time when slowing down
// to the minimum extrusion feed rate defined for the current material.
float maximum_time_after_slowdown(bool slowdown_external_perimeters) const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
if (line.adjustable(slowdown_external_perimeters)) {
if (line.time_max == FLT_MAX)
return FLT_MAX;
else
time_total += line.time_max;
} else
time_total += line.time;
return time_total;
}
// Calculate the adjustable part of the total time.
float adjustable_time(bool slowdown_external_perimeters) const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
if (line.adjustable(slowdown_external_perimeters))
time_total += line.time;
return time_total;
}
// Calculate the non-adjustable part of the total time.
float non_adjustable_time(bool slowdown_external_perimeters) const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
if (! line.adjustable(slowdown_external_perimeters))
time_total += line.time;
return time_total;
}
// Slow down the adjustable extrusions to the minimum feedrate allowed for the current extruder material.
// Used by both proportional and non-proportional slow down.
float slowdown_to_minimum_feedrate(bool slowdown_external_perimeters) {
float time_total = 0.f;
for (CoolingLine &line : lines) {
if (line.adjustable(slowdown_external_perimeters)) {
assert(line.time_max >= 0.f && line.time_max < FLT_MAX);
line.slowdown = true;
line.time = line.time_max;
line.feedrate = line.length / line.time;
}
time_total += line.time;
}
return time_total;
}
// Slow down each adjustable G-code line proportionally by a factor.
// Used by the proportional slow down.
float slow_down_proportional(float factor, bool slowdown_external_perimeters) {
assert(factor >= 1.f);
float time_total = 0.f;
for (CoolingLine &line : lines) {
if (line.adjustable(slowdown_external_perimeters)) {
line.slowdown = true;
line.time = std::min(line.time_max, line.time * factor);
line.feedrate = line.length / line.time;
}
time_total += line.time;
}
return time_total;
}
// Sort the lines, adjustable first, higher feedrate first.
// Used by non-proportional slow down.
void sort_lines_by_decreasing_feedrate() {
std::sort(lines.begin(), lines.end(), [](const CoolingLine &l1, const CoolingLine &l2) {
bool adj1 = l1.adjustable();
bool adj2 = l2.adjustable();
return (adj1 == adj2) ? l1.feedrate > l2.feedrate : adj1;
});
for (n_lines_adjustable = 0;
n_lines_adjustable < lines.size() && this->lines[n_lines_adjustable].adjustable();
++ n_lines_adjustable);
time_non_adjustable = 0.f;
for (size_t i = n_lines_adjustable; i < lines.size(); ++ i)
time_non_adjustable += lines[i].time;
}
// Calculate the maximum time stretch when slowing down to min_feedrate.
// Slowdown to min_feedrate shall be allowed for this extruder's material.
// Used by non-proportional slow down.
float time_stretch_when_slowing_down_to_feedrate(float min_feedrate) const {
float time_stretch = 0.f;
assert(this->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < n_lines_adjustable; ++ i) {
const CoolingLine &line = lines[i];
if (line.feedrate > min_feedrate)
time_stretch += line.time * (line.feedrate / min_feedrate - 1.f);
}
return time_stretch;
}
// Slow down all adjustable lines down to min_feedrate.
// Slowdown to min_feedrate shall be allowed for this extruder's material.
// Used by non-proportional slow down.
void slow_down_to_feedrate(float min_feedrate) {
assert(this->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < n_lines_adjustable; ++ i) {
CoolingLine &line = lines[i];
if (line.feedrate > min_feedrate) {
line.time *= std::max(1.f, line.feedrate / min_feedrate);
line.feedrate = min_feedrate;
line.slowdown = true;
}
}
}
// Extruder, for which the G-code will be adjusted.
unsigned int extruder_id = 0;
// Is the cooling slow down logic enabled for this extruder's material?
bool cooling_slow_down_enabled = false;
// Slow down the print down to min_print_speed if the total layer time is below slowdown_below_layer_time.
float slowdown_below_layer_time = 0.f;
// Minimum print speed allowed for this extruder.
float min_print_speed = 0.f;
// Parsed lines.
std::vector<CoolingLine> lines;
// The following two values are set by sort_lines_by_decreasing_feedrate():
// Number of adjustable lines, at the start of lines.
size_t n_lines_adjustable = 0;
// Non-adjustable time of lines starting with n_lines_adjustable.
float time_non_adjustable = 0;
// Current total time for this extruder.
float time_total = 0;
// Maximum time for this extruder, when the maximum slow down is applied.
float time_maximum = 0;
// Temporaries for processing the slow down. Both thresholds go from 0 to n_lines_adjustable.
size_t idx_line_begin = 0;
size_t idx_line_end = 0;
};
// Calculate a new feedrate when slowing down by time_stretch for segments faster than min_feedrate.
// Used by non-proportional slow down.
float new_feedrate_to_reach_time_stretch(
std::vector<PerExtruderAdjustments*>::const_iterator it_begin, std::vector<PerExtruderAdjustments*>::const_iterator it_end,
float min_feedrate, float time_stretch, size_t max_iter = 20)
{
float new_feedrate = min_feedrate;
for (size_t iter = 0; iter < max_iter; ++ iter) {
float nomin = 0;
float denom = time_stretch;
for (auto it = it_begin; it != it_end; ++ it) {
assert((*it)->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < (*it)->n_lines_adjustable; ++i) {
const CoolingLine &line = (*it)->lines[i];
if (line.feedrate > min_feedrate) {
nomin += line.time * line.feedrate;
denom += line.time;
}
}
}
assert(denom > 0);
if (denom < 0)
return min_feedrate;
new_feedrate = nomin / denom;
assert(new_feedrate > min_feedrate - EPSILON);
if (new_feedrate < min_feedrate + EPSILON)
goto finished;
for (auto it = it_begin; it != it_end; ++ it)
for (size_t i = 0; i < (*it)->n_lines_adjustable; ++i) {
const CoolingLine &line = (*it)->lines[i];
if (line.feedrate > min_feedrate && line.feedrate < new_feedrate)
// Some of the line segments taken into account in the calculation of nomin / denom are now slower than new_feedrate,
// which makes the new_feedrate lower than it should be.
// Re-run the calculation with a new min_feedrate limit, so that the segments with current feedrate lower than new_feedrate
// are not taken into account.
goto not_finished_yet;
}
goto finished;
not_finished_yet:
min_feedrate = new_feedrate;
}
// Failed to find the new feedrate for the time_stretch.
finished:
// Test whether the time_stretch was achieved.
#ifndef NDEBUG
{
float time_stretch_final = 0.f;
for (auto it = it_begin; it != it_end; ++ it)
time_stretch_final += (*it)->time_stretch_when_slowing_down_to_feedrate(new_feedrate);
assert(std::abs(time_stretch - time_stretch_final) < EPSILON);
}
#endif /* NDEBUG */
return new_feedrate;
}
std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_id)
{
std::vector<PerExtruderAdjustments> per_extruder_adjustments = this->parse_layer_gcode(gcode, m_current_pos);
float layer_time_stretched = this->calculate_layer_slowdown(per_extruder_adjustments);
return this->apply_layer_cooldown(gcode, layer_id, layer_time_stretched, per_extruder_adjustments);
}
// Parse the layer G-code for the moves, which could be adjusted.
// Return the list of parsed lines, bucketed by an extruder.
std::vector<PerExtruderAdjustments> CoolingBuffer::parse_layer_gcode(const std::string &gcode, std::vector<float> &current_pos) const
{
const FullPrintConfig &config = m_gcodegen.config();
const std::vector<Extruder> &extruders = m_gcodegen.writer().extruders();
unsigned int num_extruders = 0;
for (const Extruder &ex : extruders)
num_extruders = std::max(ex.id() + 1, num_extruders);
std::vector<PerExtruderAdjustments> per_extruder_adjustments(extruders.size());
std::vector<size_t> map_extruder_to_per_extruder_adjustment(num_extruders, 0);
for (size_t i = 0; i < extruders.size(); ++ i) {
PerExtruderAdjustments &adj = per_extruder_adjustments[i];
unsigned int extruder_id = extruders[i].id();
adj.extruder_id = extruder_id;
adj.cooling_slow_down_enabled = config.cooling.get_at(extruder_id);
adj.slowdown_below_layer_time = config.slowdown_below_layer_time.get_at(extruder_id);
adj.min_print_speed = config.min_print_speed.get_at(extruder_id);
map_extruder_to_per_extruder_adjustment[extruder_id] = i;
}
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
unsigned int current_extruder = m_current_extruder;
PerExtruderAdjustments *adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
const char *line_start = gcode.c_str();
const char *line_end = line_start;
const char extrusion_axis = config.get_extrusion_axis()[0];
// Index of an existing CoolingLine of the current adjustment, which holds the feedrate setting command
// for a sequence of extrusion moves.
size_t active_speed_modifier = size_t(-1);
for (; *line_start != 0; line_start = line_end)
{
while (*line_end != '\n' && *line_end != 0)
++ line_end;
// sline will not contain the trailing '\n'.
std::string sline(line_start, line_end);
// CoolingLine will contain the trailing '\n'.
if (*line_end == '\n')
++ line_end;
CoolingLine line(0, line_start - gcode.c_str(), line_end - gcode.c_str());
if (boost::starts_with(sline, "G0 "))
line.type = CoolingLine::TYPE_G0;
else if (boost::starts_with(sline, "G1 "))
line.type = CoolingLine::TYPE_G1;
else if (boost::starts_with(sline, "G92 "))
line.type = CoolingLine::TYPE_G92;
if (line.type) {
// G0, G1 or G92
// Parse the G-code line.
std::vector<float> new_pos(current_pos);
const char *c = sline.data() + 3;
for (;;) {
// Skip whitespaces.
for (; *c == ' ' || *c == '\t'; ++ c);
if (*c == 0 || *c == ';')
break;
// Parse the axis.
size_t axis = (*c >= 'X' && *c <= 'Z') ? (*c - 'X') :
(*c == extrusion_axis) ? 3 : (*c == 'F') ? 4 : size_t(-1);
if (axis != size_t(-1)) {
new_pos[axis] = float(atof(++c));
if (axis == 4) {
// Convert mm/min to mm/sec.
new_pos[4] /= 60.f;
if ((line.type & CoolingLine::TYPE_G92) == 0)
// This is G0 or G1 line and it sets the feedrate. This mark is used for reducing the duplicate F calls.
line.type |= CoolingLine::TYPE_HAS_F;
}
}
// Skip this word.
for (; *c != ' ' && *c != '\t' && *c != 0; ++ c);
}
bool external_perimeter = boost::contains(sline, ";_EXTERNAL_PERIMETER");
bool wipe = boost::contains(sline, ";_WIPE");
if (external_perimeter)
line.type |= CoolingLine::TYPE_EXTERNAL_PERIMETER;
if (wipe)
line.type |= CoolingLine::TYPE_WIPE;
if (boost::contains(sline, ";_EXTRUDE_SET_SPEED") && ! wipe) {
line.type |= CoolingLine::TYPE_ADJUSTABLE;
active_speed_modifier = adjustment->lines.size();
}
if ((line.type & CoolingLine::TYPE_G92) == 0) {
// G0 or G1. Calculate the duration.
if (config.use_relative_e_distances.value)
// Reset extruder accumulator.
current_pos[3] = 0.f;
float dif[4];
for (size_t i = 0; i < 4; ++ i)
dif[i] = new_pos[i] - current_pos[i];
float dxy2 = dif[0] * dif[0] + dif[1] * dif[1];
float dxyz2 = dxy2 + dif[2] * dif[2];
if (dxyz2 > 0.f) {
// Movement in xyz, calculate time from the xyz Euclidian distance.
line.length = sqrt(dxyz2);
} else if (std::abs(dif[3]) > 0.f) {
// Movement in the extruder axis.
line.length = std::abs(dif[3]);
}
line.feedrate = new_pos[4];
assert((line.type & CoolingLine::TYPE_ADJUSTABLE) == 0 || line.feedrate > 0.f);
if (line.length > 0)
line.time = line.length / line.feedrate;
line.time_max = line.time;
if ((line.type & CoolingLine::TYPE_ADJUSTABLE) || active_speed_modifier != size_t(-1))
line.time_max = (adjustment->min_print_speed == 0.f) ? FLT_MAX : std::max(line.time, line.length / adjustment->min_print_speed);
if (active_speed_modifier < adjustment->lines.size() && (line.type & CoolingLine::TYPE_G1)) {
// Inside the ";_EXTRUDE_SET_SPEED" blocks, there must not be a G1 Fxx entry.
assert((line.type & CoolingLine::TYPE_HAS_F) == 0);
CoolingLine &sm = adjustment->lines[active_speed_modifier];
assert(sm.feedrate > 0.f);
sm.length += line.length;
sm.time += line.time;
if (sm.time_max != FLT_MAX) {
if (line.time_max == FLT_MAX)
sm.time_max = FLT_MAX;
else
sm.time_max += line.time_max;
}
// Don't store this line.
line.type = 0;
}
}
current_pos = std::move(new_pos);
} else if (boost::starts_with(sline, ";_EXTRUDE_END")) {
line.type = CoolingLine::TYPE_EXTRUDE_END;
active_speed_modifier = size_t(-1);
} else if (boost::starts_with(sline, toolchange_prefix)) {
unsigned int new_extruder = (unsigned int)atoi(sline.c_str() + toolchange_prefix.size());
// Only change extruder in case the number is meaningful. User could provide an out-of-range index through custom gcodes - those shall be ignored.
if (new_extruder < map_extruder_to_per_extruder_adjustment.size()) {
if (new_extruder != current_extruder) {
// Switch the tool.
line.type = CoolingLine::TYPE_SET_TOOL;
current_extruder = new_extruder;
adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
}
}
else {
// Only log the error in case of MM printer. Single extruder printers likely ignore any T anyway.
if (map_extruder_to_per_extruder_adjustment.size() > 1)
BOOST_LOG_TRIVIAL(error) << "CoolingBuffer encountered an invalid toolchange, maybe from a custom gcode: " << sline;
}
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_START")) {
line.type = CoolingLine::TYPE_BRIDGE_FAN_START;
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_END")) {
line.type = CoolingLine::TYPE_BRIDGE_FAN_END;
} else if (boost::starts_with(sline, "G4 ")) {
// Parse the wait time.
line.type = CoolingLine::TYPE_G4;
size_t pos_S = sline.find('S', 3);
size_t pos_P = sline.find('P', 3);
line.time = line.time_max = float(
(pos_S > 0) ? atof(sline.c_str() + pos_S + 1) :
(pos_P > 0) ? atof(sline.c_str() + pos_P + 1) * 0.001 : 0.);
}
if (line.type != 0)
adjustment->lines.emplace_back(std::move(line));
}
return per_extruder_adjustments;
}
// Slow down an extruder range proportionally down to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline float extruder_range_slow_down_proportional(
std::vector<PerExtruderAdjustments*>::iterator it_begin,
std::vector<PerExtruderAdjustments*>::iterator it_end,
// Elapsed time for the extruders already processed.
float elapsed_time_total0,
// Initial total elapsed time before slow down.
float elapsed_time_before_slowdown,
// Target time for the complete layer (all extruders applied).
float slowdown_below_layer_time)
{
// Total layer time after the slow down has been applied.
float total_after_slowdown = elapsed_time_before_slowdown;
// Now decide, whether the external perimeters shall be slowed down as well.
float max_time_nep = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
max_time_nep += (*it)->maximum_time_after_slowdown(false);
if (max_time_nep > slowdown_below_layer_time) {
// It is sufficient to slow down the non-external perimeter moves to reach the target layer time.
// Slow down the non-external perimeters proportionally.
float non_adjustable_time = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
non_adjustable_time += (*it)->non_adjustable_time(false);
// The following step is a linear programming task due to the minimum movement speeds of the print moves.
// Run maximum 5 iterations until a good enough approximation is reached.
for (size_t iter = 0; iter < 5; ++ iter) {
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
assert(factor > 1.f);
total_after_slowdown = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
total_after_slowdown += (*it)->slow_down_proportional(factor, false);
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
break;
}
} else {
// Slow down everything. First slow down the non-external perimeters to maximum.
for (auto it = it_begin; it != it_end; ++ it)
(*it)->slowdown_to_minimum_feedrate(false);
// Slow down the external perimeters proportionally.
float non_adjustable_time = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
non_adjustable_time += (*it)->non_adjustable_time(true);
for (size_t iter = 0; iter < 5; ++ iter) {
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
assert(factor > 1.f);
total_after_slowdown = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
total_after_slowdown += (*it)->slow_down_proportional(factor, true);
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
break;
}
}
return total_after_slowdown;
}
// Slow down an extruder range to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline void extruder_range_slow_down_non_proportional(
std::vector<PerExtruderAdjustments*>::iterator it_begin,
std::vector<PerExtruderAdjustments*>::iterator it_end,
float time_stretch)
{
// Slow down. Try to equalize the feedrates.
std::vector<PerExtruderAdjustments*> by_min_print_speed(it_begin, it_end);
// Find the next highest adjustable feedrate among the extruders.
float feedrate = 0;
for (PerExtruderAdjustments *adj : by_min_print_speed) {
adj->idx_line_begin = 0;
adj->idx_line_end = 0;
assert(adj->idx_line_begin < adj->n_lines_adjustable);
if (adj->lines[adj->idx_line_begin].feedrate > feedrate)
feedrate = adj->lines[adj->idx_line_begin].feedrate;
}
assert(feedrate > 0.f);
// Sort by min_print_speed, maximum speed first.
std::sort(by_min_print_speed.begin(), by_min_print_speed.end(),
[](const PerExtruderAdjustments *p1, const PerExtruderAdjustments *p2){ return p1->min_print_speed > p2->min_print_speed; });
// Slow down, fast moves first.
for (;;) {
// For each extruder, find the span of lines with a feedrate close to feedrate.
for (PerExtruderAdjustments *adj : by_min_print_speed) {
for (adj->idx_line_end = adj->idx_line_begin;
adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate - EPSILON;
++ adj->idx_line_end) ;
}
// Find the next highest adjustable feedrate among the extruders.
float feedrate_next = 0.f;
for (PerExtruderAdjustments *adj : by_min_print_speed)
if (adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate_next)
feedrate_next = adj->lines[adj->idx_line_end].feedrate;
// Slow down, limited by max(feedrate_next, min_print_speed).
for (auto adj = by_min_print_speed.begin(); adj != by_min_print_speed.end();) {
// Slow down at most by time_stretch.
if ((*adj)->min_print_speed == 0.f) {
// All the adjustable speeds are now lowered to the same speed,
// and the minimum speed is set to zero.
float time_adjustable = 0.f;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
time_adjustable += (*it)->adjustable_time(true);
float rate = (time_adjustable + time_stretch) / time_adjustable;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_proportional(rate, true);
return;
} else {
float feedrate_limit = std::max(feedrate_next, (*adj)->min_print_speed);
bool done = false;
float time_stretch_max = 0.f;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
time_stretch_max += (*it)->time_stretch_when_slowing_down_to_feedrate(feedrate_limit);
if (time_stretch_max >= time_stretch) {
feedrate_limit = new_feedrate_to_reach_time_stretch(adj, by_min_print_speed.end(), feedrate_limit, time_stretch, 20);
done = true;
} else
time_stretch -= time_stretch_max;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_to_feedrate(feedrate_limit);
if (done)
return;
}
// Skip the other extruders with nearly the same min_print_speed, as they have been processed already.
auto next = adj;
for (++ next; next != by_min_print_speed.end() && (*next)->min_print_speed > (*adj)->min_print_speed - EPSILON; ++ next);
adj = next;
}
if (feedrate_next == 0.f)
// There are no other extrusions available for slow down.
break;
for (PerExtruderAdjustments *adj : by_min_print_speed) {
adj->idx_line_begin = adj->idx_line_end;
feedrate = feedrate_next;
}
}
}
// Calculate slow down for all the extruders.
float CoolingBuffer::calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
// Sort the extruders by an increasing slowdown_below_layer_time.
// The layers with a lower slowdown_below_layer_time are slowed down
// together with all the other layers with slowdown_below_layer_time above.
std::vector<PerExtruderAdjustments*> by_slowdown_time;
by_slowdown_time.reserve(per_extruder_adjustments.size());
// Only insert entries, which are adjustable (have cooling enabled and non-zero stretchable time).
// Collect total print time of non-adjustable extruders.
float elapsed_time_total0 = 0.f;
for (PerExtruderAdjustments &adj : per_extruder_adjustments) {
// Curren total time for this extruder.
adj.time_total = adj.elapsed_time_total();
// Maximum time for this extruder, when all extrusion moves are slowed down to min_extrusion_speed.
adj.time_maximum = adj.maximum_time_after_slowdown(true);
if (adj.cooling_slow_down_enabled && adj.lines.size() > 0) {
by_slowdown_time.emplace_back(&adj);
if (! m_cooling_logic_proportional)
// sorts the lines, also sets adj.time_non_adjustable
adj.sort_lines_by_decreasing_feedrate();
} else
elapsed_time_total0 += adj.elapsed_time_total();
}
std::sort(by_slowdown_time.begin(), by_slowdown_time.end(),
[](const PerExtruderAdjustments *adj1, const PerExtruderAdjustments *adj2)
{ return adj1->slowdown_below_layer_time < adj2->slowdown_below_layer_time; });
for (auto cur_begin = by_slowdown_time.begin(); cur_begin != by_slowdown_time.end(); ++ cur_begin) {
PerExtruderAdjustments &adj = *(*cur_begin);
// Calculate the current adjusted elapsed_time_total over the non-finalized extruders.
float total = elapsed_time_total0;
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
total += (*it)->time_total;
float slowdown_below_layer_time = adj.slowdown_below_layer_time * 1.001f;
if (total > slowdown_below_layer_time) {
// The current total time is above the minimum threshold of the rest of the extruders, don't adjust anything.
} else {
// Adjust this and all the following (higher config.slowdown_below_layer_time) extruders.
// Sum maximum slow down time as if everything was slowed down including the external perimeters.
float max_time = elapsed_time_total0;
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
max_time += (*it)->time_maximum;
if (max_time > slowdown_below_layer_time) {
if (m_cooling_logic_proportional)
extruder_range_slow_down_proportional(cur_begin, by_slowdown_time.end(), elapsed_time_total0, total, slowdown_below_layer_time);
else
extruder_range_slow_down_non_proportional(cur_begin, by_slowdown_time.end(), slowdown_below_layer_time - total);
} else {
// Slow down to maximum possible.
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
(*it)->slowdown_to_minimum_feedrate(true);
}
}
elapsed_time_total0 += adj.elapsed_time_total();
}
return elapsed_time_total0;
}
// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
// Returns the adjusted G-code.
std::string CoolingBuffer::apply_layer_cooldown(
// Source G-code for the current layer.
const std::string &gcode,
// ID of the current layer, used to disable fan for the first n layers.
size_t layer_id,
// Total time of this layer after slow down, used to control the fan.
float layer_time,
// Per extruder list of G-code lines and their cool down attributes.
std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
// First sort the adjustment lines by of multiple extruders by their position in the source G-code.
std::vector<const CoolingLine*> lines;
{
size_t n_lines = 0;
for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
n_lines += adj.lines.size();
lines.reserve(n_lines);
for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
for (const CoolingLine &line : adj.lines)
lines.emplace_back(&line);
std::sort(lines.begin(), lines.end(), [](const CoolingLine *ln1, const CoolingLine *ln2) { return ln1->line_start < ln2->line_start; } );
}
// Second generate the adjusted G-code.
std::string new_gcode;
new_gcode.reserve(gcode.size() * 2);
int fan_speed = -1;
bool bridge_fan_control = false;
int bridge_fan_speed = 0;
auto change_extruder_set_fan = [ this, layer_id, layer_time, &new_gcode, &fan_speed, &bridge_fan_control, &bridge_fan_speed ]() {
const FullPrintConfig &config = m_gcodegen.config();
#define EXTRUDER_CONFIG(OPT) config.OPT.get_at(m_current_extruder)
int min_fan_speed = EXTRUDER_CONFIG(min_fan_speed);
int fan_speed_new = EXTRUDER_CONFIG(fan_always_on) ? min_fan_speed : 0;
if (layer_id >= (size_t)EXTRUDER_CONFIG(disable_fan_first_layers)) {
int max_fan_speed = EXTRUDER_CONFIG(max_fan_speed);
float slowdown_below_layer_time = float(EXTRUDER_CONFIG(slowdown_below_layer_time));
float fan_below_layer_time = float(EXTRUDER_CONFIG(fan_below_layer_time));
if (EXTRUDER_CONFIG(cooling)) {
if (layer_time < slowdown_below_layer_time) {
// Layer time very short. Enable the fan to a full throttle.
fan_speed_new = max_fan_speed;
} else if (layer_time < fan_below_layer_time) {
// Layer time quite short. Enable the fan proportionally according to the current layer time.
assert(layer_time >= slowdown_below_layer_time);
double t = (layer_time - slowdown_below_layer_time) / (fan_below_layer_time - slowdown_below_layer_time);
fan_speed_new = int(floor(t * min_fan_speed + (1. - t) * max_fan_speed) + 0.5);
}
}
bridge_fan_speed = EXTRUDER_CONFIG(bridge_fan_speed);
#undef EXTRUDER_CONFIG
bridge_fan_control = bridge_fan_speed > fan_speed_new;
} else {
bridge_fan_control = false;
bridge_fan_speed = 0;
fan_speed_new = 0;
}
if (fan_speed_new != fan_speed) {
fan_speed = fan_speed_new;
new_gcode += m_gcodegen.writer().set_fan(fan_speed);
}
};
const char *pos = gcode.c_str();
int current_feedrate = 0;
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
change_extruder_set_fan();
for (const CoolingLine *line : lines) {
const char *line_start = gcode.c_str() + line->line_start;
const char *line_end = gcode.c_str() + line->line_end;
if (line_start > pos)
new_gcode.append(pos, line_start - pos);
if (line->type & CoolingLine::TYPE_SET_TOOL) {
unsigned int new_extruder = (unsigned int)atoi(line_start + toolchange_prefix.size());
if (new_extruder != m_current_extruder) {
m_current_extruder = new_extruder;
change_extruder_set_fan();
}
new_gcode.append(line_start, line_end - line_start);
} else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_START) {
if (bridge_fan_control)
new_gcode += m_gcodegen.writer().set_fan(bridge_fan_speed, true);
} else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_END) {
if (bridge_fan_control)
new_gcode += m_gcodegen.writer().set_fan(fan_speed, true);
} else if (line->type & CoolingLine::TYPE_EXTRUDE_END) {
// Just remove this comment.
} else if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE | CoolingLine::TYPE_HAS_F)) {
// Find the start of a comment, or roll to the end of line.
const char *end = line_start;
for (; end < line_end && *end != ';'; ++ end);
// Find the 'F' word.
const char *fpos = strstr(line_start + 2, " F") + 2;
int new_feedrate = current_feedrate;
bool modify = false;
assert(fpos != nullptr);
if (line->slowdown) {
modify = true;
new_feedrate = int(floor(60. * line->feedrate + 0.5));
} else {
new_feedrate = atoi(fpos);
if (new_feedrate != current_feedrate) {
// Append the line without the comment.
new_gcode.append(line_start, end - line_start);
current_feedrate = new_feedrate;
} else if ((line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) || line->length == 0.) {
// Feedrate does not change and this line does not move the print head. Skip the complete G-code line including the G-code comment.
end = line_end;
} else {
// Remove the feedrate from the G0/G1 line.
modify = true;
}
}
if (modify) {
if (new_feedrate != current_feedrate) {
// Replace the feedrate.
new_gcode.append(line_start, fpos - line_start);
current_feedrate = new_feedrate;
char buf[64];
sprintf(buf, "%d", int(current_feedrate));
new_gcode += buf;
} else {
// Remove the feedrate word.
const char *f = fpos;
// Roll the pointer before the 'F' word.
for (f -= 2; f > line_start && (*f == ' ' || *f == '\t'); -- f);
// Append up to the F word, without the trailing whitespace.
new_gcode.append(line_start, f - line_start + 1);
}
// Skip the non-whitespaces of the F parameter up the comment or end of line.
for (; fpos != end && *fpos != ' ' && *fpos != ';' && *fpos != '\n'; ++fpos);
// Append the rest of the line without the comment.
if (fpos < end)
new_gcode.append(fpos, end - fpos);
// There should never be an empty G1 statement emited by the filter. Such lines should be removed completely.
assert(new_gcode.size() < 4 || new_gcode.substr(new_gcode.size() - 4) != "G1 \n");
}
// Process the rest of the line.
if (end < line_end) {
if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) {
// Process comments, remove ";_EXTRUDE_SET_SPEED", ";_EXTERNAL_PERIMETER", ";_WIPE"
std::string comment(end, line_end);
boost::replace_all(comment, ";_EXTRUDE_SET_SPEED", "");
if (line->type & CoolingLine::TYPE_EXTERNAL_PERIMETER)
boost::replace_all(comment, ";_EXTERNAL_PERIMETER", "");
if (line->type & CoolingLine::TYPE_WIPE)
boost::replace_all(comment, ";_WIPE", "");
new_gcode += comment;
} else {
// Just attach the rest of the source line.
new_gcode.append(end, line_end - end);
}
}
} else {
new_gcode.append(line_start, line_end - line_start);
}
pos = line_end;
}
const char *gcode_end = gcode.c_str() + gcode.size();
if (pos < gcode_end)
new_gcode.append(pos, gcode_end - pos);
return new_gcode;
}
} // namespace Slic3r