PrusaSlicer-NonPlainar/lib/Slic3r/Layer.pm
2011-10-08 19:02:05 +02:00

538 lines
20 KiB
Perl

package Slic3r::Layer;
use Moo;
use Math::Clipper ':all';
use Math::ConvexHull qw(convex_hull);
use Slic3r::Geometry qw(polygon_lines points_coincide angle3points polyline_lines);
use XXX;
use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
# a sequential number of layer, starting at 0
has 'id' => (
is => 'ro',
#isa => 'Int',
required => 1,
);
# collection of spare segments generated by slicing the original geometry;
# these need to be merged in continuos (closed) polylines
has 'lines' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Line]',
default => sub { [] },
);
# collection of surfaces generated by slicing the original geometry
has 'surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface]',
default => sub { [] },
);
# collection of surfaces representing bridges
has 'bridges' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface::Bridge]',
default => sub { [] },
);
# collection of surfaces to make perimeters for
has 'perimeter_surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface]',
default => sub { [] },
);
# ordered collection of extrusion paths to build all perimeters
has 'perimeters' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
default => sub { [] },
);
# ordered collection of extrusion paths to build skirt loops
has 'skirts' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
default => sub { [] },
);
# collection of surfaces generated by offsetting the innermost perimeter(s)
# they represent boundaries of areas to fill
has 'fill_surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface::Collection]',
default => sub { [] },
);
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionPath]',
default => sub { [] },
);
sub z {
my $self = shift;
return $self->id * $Slic3r::layer_height / $Slic3r::resolution;
}
sub add_surface {
my $self = shift;
my (@vertices) = @_;
# convert arrayref points to Point objects
@vertices = map Slic3r::Point->cast($_), @vertices;
my $surface = Slic3r::Surface->new(
contour => Slic3r::Polyline::Closed->new(points => \@vertices),
);
push @{ $self->surfaces }, $surface;
# make sure our contour has its points in counter-clockwise order
$surface->contour->make_counter_clockwise;
return $surface;
}
sub add_line {
my $self = shift;
my ($line) = @_;
$line = Slic3r::Line->cast($line);
return if $line->a->coincides_with($line->b);
push @{ $self->lines }, $line;
return $line;
}
sub remove_line {
my $self = shift;
my ($line) = @_;
@{ $self->lines } = grep $_ ne $line, @{ $self->lines };
}
sub remove_surface {
my $self = shift;
my ($surface) = @_;
@{ $self->surfaces } = grep $_ ne $surface, @{ $self->surfaces };
}
# build polylines of lines which do not already belong to a surface
sub make_polylines {
my $self = shift;
my @lines = ();
push @lines, map $_->p, @{$self->lines};
#use Slic3r::SVG;
#Slic3r::SVG::output(undef, "lines.svg",
# lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
#);
my $get_point_id = sub { sprintf "%d,%d", @{$_[0]} };
my (%pointmap) = ();
foreach my $line (@lines) {
my $point_id = $get_point_id->($line->[A]);
$pointmap{$point_id} ||= [];
push @{ $pointmap{$point_id} }, $line;
}
my $n = 0;
my @polylines = ();
while (my $first_line = shift @lines) {
my @points = @$first_line;
my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1;
CYCLE: while (1) {
my $next_lines = $pointmap{ $get_point_id->($points[-1]) }
or die sprintf "No lines start at point %d,%d. This shouldn't happen", @{$points[-1]};
last CYCLE if !@$next_lines;
my @ordered_next_lines = sort
{ angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) }
0..$#$next_lines;
#if (@$next_lines > 1) {
# Slic3r::SVG::output(undef, "next_line.svg",
# lines => $next_lines,
# red_lines => [ polyline_lines([@points]) ],
# green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ],
# );
#}
my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
push @points, $next_line->[B];
my $point_id = $get_point_id->($points[-1]);
if ($seen_points{$point_id}) {
splice @points, 0, $seen_points{$point_id};
last CYCLE;
}
$seen_points{$point_id} = $#points;
}
if (@points < 4 || !points_coincide($points[0], $points[-1])) {
next;
}
pop @points;
Slic3r::debugf "Discovered polyline of %d points\n", scalar(@points);
push @polylines, [@points];
}
#Slic3r::SVG::output(undef, "polylines.svg",
# polylines => [ @polylines ],
#);
return [ map Slic3r::Polyline::Closed->cast($_), @polylines ];
}
sub make_surfaces {
my $self = shift;
my ($polylines) = @_;
#use Slic3r::SVG;
#Slic3r::SVG::output_polygons($main::print, "polylines.svg", [ map $_->p, @$polylines ]);
# count how many other polylines enclose each polyline
# even = contour; odd = hole
my %enclosing_polylines = ();
my %enclosing_polylines_count = ();
my $max_depth = 0;
foreach my $polyline (@$polylines) {
# a polyline encloses another one if any point of it is enclosed
# in the other
my $point = $polyline->points->[0];
my $ordered_id = $polyline->id;
# find polylines contaning $point, and thus $polyline
$enclosing_polylines{$polyline} =
[ grep $_->id ne $ordered_id && $_->encloses_point($point), @$polylines ];
$enclosing_polylines_count{$polyline} = scalar @{ $enclosing_polylines{$polyline} };
$max_depth = $enclosing_polylines_count{$polyline}
if $enclosing_polylines_count{$polyline} > $max_depth;
}
# make a cache for contours and surfaces
my %surfaces = (); # contour => surface
# start looking at most inner polylines
for (; $max_depth > -1; $max_depth--) {
foreach my $polyline (@$polylines) {
next unless $enclosing_polylines_count{$polyline} == $max_depth;
my $surface;
if ($enclosing_polylines_count{$polyline} % 2 == 0) {
# this is a contour
$polyline->make_counter_clockwise;
$surface = Slic3r::Surface->new(contour => $polyline);
} else {
# this is a hole
$polyline->make_clockwise;
# find the enclosing polyline having immediately close depth
my ($contour) = grep $enclosing_polylines_count{$_} == ($max_depth-1),
@{ $enclosing_polylines{$polyline} };
if ($surfaces{$contour}) {
$surface = $surfaces{$contour};
$surface->add_hole($polyline);
} else {
$surface = Slic3r::Surface->new(
contour => $contour,
holes => [$polyline],
);
$surfaces{$contour} = $surface;
}
}
# check whether we already have this surface
next if grep $_->id eq $surface->id, @{ $self->surfaces };
$surface->surface_type('internal');
push @{ $self->surfaces }, $surface;
Slic3r::debugf "New surface: %s (%d holes: %s)\n",
$surface->id, scalar @{$surface->holes},
join(', ', map $_->id, @{$surface->holes}) || 'none'
if $Slic3r::debug;
}
}
}
sub merge_contiguous_surfaces {
my $self = shift;
if ($Slic3r::debug) {
Slic3r::debugf "Initial surfaces (%d):\n", scalar @{ $self->surfaces };
Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id,
($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces };
#Slic3r::SVG::output_polygons(undef, "polygons-before.svg", [ map $_->contour->p, @{$self->surfaces} ]);
}
my %resulting_surfaces = ();
# only merge surfaces with same type
foreach my $type (qw(bottom top internal)) {
my $clipper = Math::Clipper->new;
my @surfaces = grep $_->surface_type eq $type, @{$self->surfaces}
or next;
#Slic3r::SVG::output_polygons($main::print, "polygons-$type-before.svg", [ map $_->contour->p, @surfaces ]);
$clipper->add_subject_polygons([ map $_->contour->p, @surfaces ]);
my $result = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO);
$clipper->clear;
my @extra_holes = map @{$_->{holes}}, @$result;
$result = [ map $_->{outer}, @$result ];
#Slic3r::SVG::output_polygons($main::print, "polygons-$type-union.svg", $result);
# subtract bottom or top surfaces from internal
if ($type eq 'internal') {
$clipper->add_subject_polygons($result);
$clipper->add_clip_polygons([ map $_->{outer}, @{$resulting_surfaces{$_}} ])
for qw(bottom top);
$result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
$clipper->clear;
}
# apply holes
$clipper->add_subject_polygons($result);
$result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
$clipper->clear;
$clipper->add_subject_polygons($result);
$clipper->add_clip_polygons([ @extra_holes ]) if @extra_holes;
$clipper->add_clip_polygons([ map $_->p, map @{$_->holes}, @surfaces ]);
my $result2 = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
$resulting_surfaces{$type} = $result2;
}
# remove overlapping surfaces
# (remove anything that is not internal from areas covered by internal surfaces)
# this may happen because of rounding of Z coordinates: the model could have
# features smaller than our layer height, so we'd get more things on a single
# layer
if (0) { # not proven to be necessary until now
my $clipper = Math::Clipper->new;
foreach my $type (qw(bottom top)) {
$clipper->clear;
$clipper->add_subject_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{$type}} ]);
$clipper->add_clip_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{internal}} ]);
$resulting_surfaces{$type} = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
}
}
# save surfaces
@{ $self->surfaces } = ();
foreach my $type (keys %resulting_surfaces) {
foreach my $p (@{ $resulting_surfaces{$type} }) {
push @{ $self->surfaces }, Slic3r::Surface->new(
surface_type => $type,
contour => Slic3r::Polyline::Closed->cast($p->{outer}),
holes => [
map Slic3r::Polyline::Closed->cast($_), @{$p->{holes}}
],
);
}
}
if ($Slic3r::debug) {
Slic3r::debugf "Final surfaces (%d):\n", scalar @{ $self->surfaces };
Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id,
($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces };
}
}
sub remove_small_surfaces {
my $self = shift;
my @good_surfaces = ();
foreach my $surface (@{$self->surfaces}) {
next if !$surface->contour->is_printable;
@{$surface->holes} = grep $_->is_printable, @{$surface->holes};
push @good_surfaces, $surface;
}
@{$self->surfaces} = @good_surfaces;
}
sub remove_small_perimeters {
my $self = shift;
my @good_perimeters = grep $_->is_printable, @{$self->perimeters};
Slic3r::debugf "removed %d unprintable perimeters\n", (@{$self->perimeters} - @good_perimeters)
if @good_perimeters != @{$self->perimeters};
@{$self->perimeters} = @good_perimeters;
}
# make bridges printable
sub process_bridges {
my $self = shift;
return if $self->id == 0;
# a bottom surface on a layer > 0 is either a bridge or a overhang
# or a combination of both
my @bottom_surfaces = grep $_->surface_type eq 'bottom', @{$self->surfaces} or return;
my @supporting_surfaces = grep $_->surface_type =~ /internal/, @{$self->surfaces};
SURFACE: foreach my $surface (@bottom_surfaces) {
# since we can't print concave bridges, we transform the surface
# in a convex polygon; this will print thin membranes eventually
my $surface_p = convex_hull($surface->contour->p);
# find all supported edges (as polylines, thus keeping notion of
# consecutive supported edges)
my @supported_polylines = ();
{
my @current_polyline = ();
EDGE: foreach my $edge (Slic3r::Geometry::polygon_lines($surface_p)) {
for (@supporting_surfaces) {
local $Slic3r::Geometry::epsilon = 1E+7;
if (Slic3r::Geometry::polygon_has_subsegment($_->contour->p, $edge)) {
push @current_polyline, $edge;
next EDGE;
}
}
if (@current_polyline) {
push @supported_polylines, [@current_polyline];
@current_polyline = ();
}
}
push @supported_polylines, [@current_polyline] if @current_polyline;
}
# defensive programming, this shouldn't happen
if (@supported_polylines == 0) {
Slic3r::debugf "Found bridge/overhang with no supports on layer %d; ignoring\n", $self->id;
next SURFACE;
}
if (@supported_polylines == 1) {
Slic3r::debugf "Found bridge/overhang with only one support on layer %d; ignoring\n", $self->id;
next SURFACE;
}
# now connect the first point to the last of each polyline
@supported_polylines = map [ $_->[0]->[0], $_->[-1]->[-1] ], @supported_polylines;
# @supported_polylines becomes actually an array of lines
# if we got more than two supports, get the longest two
if (@supported_polylines > 2) {
my %lengths = map { $_ => Slic3r::Geometry::line_length($_) } @supported_polylines;
@supported_polylines = sort { $lengths{"$a"} <=> $lengths{"$b"} } @supported_polylines;
@supported_polylines = @supported_polylines[-2,-1];
}
# connect the midpoints, that will give the the optimal infill direction
my @midpoints = map Slic3r::Geometry::midpoint($_), @supported_polylines;
my $bridge_angle = -Slic3r::Geometry::rad2deg(Slic3r::Geometry::line_atan(\@midpoints) + PI/2);
Slic3r::debugf "Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle;
# detect which neighbor surfaces are now supporting our bridge
my @supporting_neighbor_surfaces = ();
foreach my $supporting_surface (@supporting_surfaces) {
local $Slic3r::Geometry::epsilon = 1E+7;
push @supporting_neighbor_surfaces, $supporting_surface
if grep Slic3r::Geometry::polygon_has_vertex($supporting_surface->contour->p, $_),
map $_->[0], @supported_polylines;
}
# defensive programming, this shouldn't happen
if (@supporting_neighbor_surfaces == 0) {
Slic3r::debugf "Couldn't find supporting surfaces on layer %d; ignoring\n", $self->id;
next SURFACE;
}
# now, extend our bridge by taking a portion of supporting surfaces
{
# offset the bridge by the specified amount of mm
my $bridge_offset = ${ offset([$surface_p], $Slic3r::bridge_overlap / $Slic3r::resolution, $Slic3r::resolution * 100, JT_MITER, 2) }[0];
# calculate the new bridge
my $clipper = Math::Clipper->new;
$clipper->add_subject_polygon($surface_p);
$clipper->add_subject_polygons([ map $_->p, @supporting_neighbor_surfaces ]);
$clipper->add_clip_polygon($bridge_offset);
my $intersection = $clipper->execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO);
push @{$self->bridges}, map Slic3r::Surface::Bridge->cast_from_polygon($_,
surface_type => 'bottom',
bridge_angle => $bridge_angle,
), @$intersection;
}
}
}
# generates a set of surfaces that will be used to make perimeters
# thus, we need to merge internal surfaces and bridges
sub detect_perimeter_surfaces {
my $self = shift;
# little optimization: skip the Clipper UNION if we have no bridges
if (!@{$self->bridges}) {
push @{$self->perimeter_surfaces}, @{$self->surfaces};
} else {
my $clipper = Math::Clipper->new;
$clipper->add_subject_polygons([ map $_->p, grep $_->surface_type =~ /internal/, @{$self->surfaces} ]);
$clipper->add_clip_polygons([ map $_->p, @{$self->bridges} ]);
my $union = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO);
push @{$self->perimeter_surfaces},
map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'),
@$union;
push @{$self->perimeter_surfaces},
grep $_->surface_type !~ /internal/ && ($_->surface_type ne 'bottom' || $self->id == 0),
@{$self->surfaces};
}
}
# splits fill_surfaces in internal and bridge surfaces
sub split_bridges_fills {
my $self = shift;
my $clipper = Math::Clipper->new;
foreach my $surf_coll (@{$self->fill_surfaces}) {
my @surfaces = @{$surf_coll->surfaces};
@{$surf_coll->surfaces} = ();
# intersect fill_surfaces with bridges to get actual bridges
foreach my $bridge (@{$self->bridges}) {
$clipper->clear;
$clipper->add_subject_polygons([ map $_->p, @surfaces ]);
$clipper->add_clip_polygon($bridge->contour->p);
my $intersection = $clipper->ex_execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO);
push @{$surf_coll->surfaces}, map Slic3r::Surface::Bridge->cast_from_expolygon($_,
surface_type => 'bottom',
bridge_angle => $bridge->bridge_angle,
), @$intersection;
}
# difference between fill_surfaces and bridges are the other surfaces
foreach my $surface (@surfaces) {
$clipper->clear;
$clipper->add_subject_polygons([ $surface->p ]);
$clipper->add_clip_polygons([ map $_->contour->p, @{$self->bridges} ]);
my $difference = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
push @{$surf_coll->surfaces}, map Slic3r::Surface->cast_from_expolygon($_,
surface_type => $surface->surface_type), @$difference;
}
}
}
1;