b38cc2c244
Conflicts: lib/Slic3r.pm lib/Slic3r/ExPolygon.pm lib/Slic3r/Fill.pm lib/Slic3r/Fill/Rectilinear.pm lib/Slic3r/GCode.pm lib/Slic3r/GUI/Plater.pm lib/Slic3r/Geometry/Clipper.pm lib/Slic3r/Layer/Region.pm lib/Slic3r/Print.pm lib/Slic3r/Print/Object.pm lib/Slic3r/TriangleMesh.pm t/shells.t xs/MANIFEST
1252 lines
55 KiB
Perl
1252 lines
55 KiB
Perl
package Slic3r::Print::Object;
|
||
use Moo;
|
||
|
||
use List::Util qw(min max sum first);
|
||
use Slic3r::ExtrusionPath ':roles';
|
||
use Slic3r::Geometry qw(Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points);
|
||
use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex
|
||
offset offset_ex offset2);
|
||
use Slic3r::Surface ':types';
|
||
|
||
has 'print' => (is => 'ro', weak_ref => 1, required => 1);
|
||
has 'input_file' => (is => 'rw', required => 0);
|
||
has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id
|
||
has 'size' => (is => 'rw', required => 1); # XYZ in scaled coordinates
|
||
has 'copies' => (is => 'rw', trigger => 1); # in scaled coordinates
|
||
has 'layers' => (is => 'rw', default => sub { [] });
|
||
has 'support_layers' => (is => 'rw', default => sub { [] });
|
||
has 'layer_height_ranges' => (is => 'rw', default => sub { [] }); # [ z_min, z_max, layer_height ]
|
||
has 'fill_maker' => (is => 'lazy');
|
||
has '_slice_z_table' => (is => 'lazy');
|
||
|
||
sub BUILD {
|
||
my $self = shift;
|
||
|
||
# make layers taking custom heights into account
|
||
my $print_z = my $slice_z = my $height = 0;
|
||
|
||
# add raft layers
|
||
for my $id (0 .. $Slic3r::Config->raft_layers-1) {
|
||
$height = ($id == 0)
|
||
? $Slic3r::Config->get_value('first_layer_height')
|
||
: $Slic3r::Config->layer_height;
|
||
|
||
$print_z += $height;
|
||
|
||
push @{$self->layers}, Slic3r::Layer->new(
|
||
object => $self,
|
||
id => $id,
|
||
height => $height,
|
||
print_z => $print_z,
|
||
slice_z => -1,
|
||
);
|
||
}
|
||
|
||
# loop until we have at least one layer and the max slice_z reaches the object height
|
||
my $max_z = unscale $self->size->[Z];
|
||
while (!@{$self->layers} || ($slice_z - $height) <= $max_z) {
|
||
my $id = $#{$self->layers} + 1;
|
||
|
||
# assign the default height to the layer according to the general settings
|
||
$height = ($id == 0)
|
||
? $Slic3r::Config->get_value('first_layer_height')
|
||
: $Slic3r::Config->layer_height;
|
||
|
||
# look for an applicable custom range
|
||
if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) {
|
||
$height = $range->[2];
|
||
|
||
# if user set custom height to zero we should just skip the range and resume slicing over it
|
||
if ($height == 0) {
|
||
$slice_z += $range->[1] - $range->[0];
|
||
next;
|
||
}
|
||
}
|
||
|
||
$print_z += $height;
|
||
$slice_z += $height/2;
|
||
|
||
### Slic3r::debugf "Layer %d: height = %s; slice_z = %s; print_z = %s\n", $id, $height, $slice_z, $print_z;
|
||
|
||
push @{$self->layers}, Slic3r::Layer->new(
|
||
object => $self,
|
||
id => $id,
|
||
height => $height,
|
||
print_z => $print_z,
|
||
slice_z => scale $slice_z,
|
||
);
|
||
|
||
$slice_z += $height/2; # add the other half layer
|
||
}
|
||
}
|
||
|
||
sub _build_fill_maker {
|
||
my $self = shift;
|
||
return Slic3r::Fill->new(object => $self);
|
||
}
|
||
|
||
sub _build__slice_z_table {
|
||
my $self = shift;
|
||
return Slic3r::Object::XS::ZTable->new([ map $_->slice_z, @{$self->layers} ]);
|
||
}
|
||
|
||
# This should be probably moved in Print.pm at the point where we sort Layer objects
|
||
sub _trigger_copies {
|
||
my $self = shift;
|
||
return unless @{$self->copies} > 1;
|
||
|
||
# order copies with a nearest neighbor search
|
||
@{$self->copies} = @{chained_path_points($self->copies)}
|
||
}
|
||
|
||
sub layer_count {
|
||
my $self = shift;
|
||
return scalar @{ $self->layers };
|
||
}
|
||
|
||
sub get_layer_range {
|
||
my $self = shift;
|
||
my ($min_z, $max_z) = @_;
|
||
|
||
my $min_layer = $self->_slice_z_table->lower_bound($min_z); # first layer whose slice_z is >= $min_z
|
||
return (
|
||
$min_layer,
|
||
$self->_slice_z_table->upper_bound($max_z, $min_layer)-1, # last layer whose slice_z is <= $max_z
|
||
);
|
||
}
|
||
|
||
sub bounding_box {
|
||
my $self = shift;
|
||
|
||
# since the object is aligned to origin, bounding box coincides with size
|
||
return Slic3r::Geometry::BoundingBox->new_from_points([ [0,0], $self->size ]);
|
||
}
|
||
|
||
sub slice {
|
||
my $self = shift;
|
||
my %params = @_;
|
||
|
||
# make sure all layers contain layer region objects for all regions
|
||
my $regions_count = $self->print->regions_count;
|
||
foreach my $layer (@{ $self->layers }) {
|
||
$layer->region($_) for 0 .. ($regions_count-1);
|
||
}
|
||
|
||
# process facets
|
||
for my $region_id (0 .. $#{$self->meshes}) {
|
||
my $mesh = $self->meshes->[$region_id]; # ignore undef meshes
|
||
|
||
my %lines = (); # layer_id => [ lines ]
|
||
my $apply_lines = sub {
|
||
my $lines = shift;
|
||
foreach my $layer_id (keys %$lines) {
|
||
$lines{$layer_id} ||= [];
|
||
push @{$lines{$layer_id}}, @{$lines->{$layer_id}};
|
||
}
|
||
};
|
||
Slic3r::parallelize(
|
||
disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets
|
||
items => [ 0..$#{$mesh->facets} ],
|
||
thread_cb => sub {
|
||
my $q = shift;
|
||
my $result_lines = {};
|
||
while (defined (my $facet_id = $q->dequeue)) {
|
||
my $lines = $mesh->slice_facet($self, $facet_id);
|
||
foreach my $layer_id (keys %$lines) {
|
||
$result_lines->{$layer_id} ||= [];
|
||
push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} };
|
||
}
|
||
}
|
||
return $result_lines;
|
||
},
|
||
collect_cb => sub {
|
||
$apply_lines->($_[0]);
|
||
},
|
||
no_threads_cb => sub {
|
||
for (0..$#{$mesh->facets}) {
|
||
my $lines = $mesh->slice_facet($self, $_);
|
||
$apply_lines->($lines);
|
||
}
|
||
},
|
||
);
|
||
|
||
# free memory
|
||
undef $mesh;
|
||
undef $self->meshes->[$region_id];
|
||
|
||
foreach my $layer (@{ $self->layers }) {
|
||
Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n",
|
||
$layer->id, unscale $layer->slice_z if $Slic3r::debug;
|
||
|
||
my $layerm = $layer->regions->[$region_id];
|
||
my ($slicing_errors, $loops) = Slic3r::TriangleMesh::make_loops($lines{$layer->id});
|
||
$layer->slicing_errors(1) if $slicing_errors;
|
||
$layerm->make_surfaces($loops);
|
||
|
||
# free memory
|
||
delete $lines{$layer->id};
|
||
}
|
||
}
|
||
|
||
# free memory
|
||
$self->meshes(undef);
|
||
|
||
# remove last layer(s) if empty
|
||
pop @{$self->layers} while @{$self->layers} && (!map @{$_->slices}, @{$self->layers->[-1]->regions});
|
||
|
||
foreach my $layer (@{ $self->layers }) {
|
||
# merge all regions' slices to get islands
|
||
$layer->make_slices;
|
||
}
|
||
|
||
# detect slicing errors
|
||
my $warning_thrown = 0;
|
||
for my $i (0 .. $#{$self->layers}) {
|
||
my $layer = $self->layers->[$i];
|
||
next unless $layer->slicing_errors;
|
||
if (!$warning_thrown) {
|
||
warn "The model has overlapping or self-intersecting facets. I tried to repair it, "
|
||
. "however you might want to check the results or repair the input file and retry.\n";
|
||
$warning_thrown = 1;
|
||
}
|
||
|
||
# try to repair the layer surfaces by merging all contours and all holes from
|
||
# neighbor layers
|
||
Slic3r::debugf "Attempting to repair layer %d\n", $i;
|
||
|
||
foreach my $region_id (0 .. $#{$layer->regions}) {
|
||
my $layerm = $layer->region($region_id);
|
||
|
||
my (@upper_surfaces, @lower_surfaces);
|
||
for (my $j = $i+1; $j <= $#{$self->layers}; $j++) {
|
||
if (!$self->layers->[$j]->slicing_errors) {
|
||
@upper_surfaces = @{$self->layers->[$j]->region($region_id)->slices};
|
||
last;
|
||
}
|
||
}
|
||
for (my $j = $i-1; $j >= 0; $j--) {
|
||
if (!$self->layers->[$j]->slicing_errors) {
|
||
@lower_surfaces = @{$self->layers->[$j]->region($region_id)->slices};
|
||
last;
|
||
}
|
||
}
|
||
|
||
my $union = union_ex([
|
||
map $_->expolygon->contour, @upper_surfaces, @lower_surfaces,
|
||
]);
|
||
my $diff = diff_ex(
|
||
[ map @$_, @$union ],
|
||
[ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ],
|
||
);
|
||
|
||
$layerm->slices->clear;
|
||
$layerm->slices->append(
|
||
map Slic3r::Surface->new
|
||
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||
@$diff
|
||
);
|
||
}
|
||
|
||
# update layer slices after repairing the single regions
|
||
$layer->make_slices;
|
||
}
|
||
|
||
# remove empty layers from bottom
|
||
my $first_object_layer_id = $Slic3r::Config->raft_layers;
|
||
while (@{$self->layers} && !@{$self->layers->[$first_object_layer_id]->slices} && !map @{$_->thin_walls}, @{$self->layers->[$first_object_layer_id]->regions}) {
|
||
splice @{$self->layers}, $first_object_layer_id, 1;
|
||
for (my $i = $first_object_layer_id; $i <= $#{$self->layers}; $i++) {
|
||
$self->layers->[$i]->id($i);
|
||
}
|
||
}
|
||
}
|
||
|
||
sub make_perimeters {
|
||
my $self = shift;
|
||
|
||
# compare each layer to the one below, and mark those slices needing
|
||
# one additional inner perimeter, like the top of domed objects-
|
||
|
||
# this algorithm makes sure that at least one perimeter is overlapping
|
||
# but we don't generate any extra perimeter if fill density is zero, as they would be floating
|
||
# inside the object - infill_only_where_needed should be the method of choice for printing
|
||
# hollow objects
|
||
if ($Slic3r::Config->extra_perimeters && $Slic3r::Config->perimeters > 0 && $Slic3r::Config->fill_density > 0) {
|
||
for my $region_id (0 .. ($self->print->regions_count-1)) {
|
||
for my $layer_id (0 .. $self->layer_count-2) {
|
||
my $layerm = $self->layers->[$layer_id]->regions->[$region_id];
|
||
my $upper_layerm = $self->layers->[$layer_id+1]->regions->[$region_id];
|
||
my $perimeter_spacing = $layerm->perimeter_flow->scaled_spacing;
|
||
|
||
my $overlap = $perimeter_spacing; # one perimeter
|
||
|
||
my $diff = diff(
|
||
offset([ map @{$_->expolygon}, @{$layerm->slices} ], -($Slic3r::Config->perimeters * $perimeter_spacing)),
|
||
offset([ map @{$_->expolygon}, @{$upper_layerm->slices} ], -$overlap),
|
||
);
|
||
next if !@$diff;
|
||
# if we need more perimeters, $diff should contain a narrow region that we can collapse
|
||
|
||
$diff = diff(
|
||
$diff,
|
||
offset2($diff, -$perimeter_spacing, +$perimeter_spacing),
|
||
1,
|
||
);
|
||
next if !@$diff;
|
||
# diff contains the collapsed area
|
||
|
||
foreach my $slice (@{$layerm->slices}) {
|
||
my $extra_perimeters = 0;
|
||
CYCLE: while (1) {
|
||
# compute polygons representing the thickness of the hypotetical new internal perimeter
|
||
# of our slice
|
||
$extra_perimeters++;
|
||
my $hypothetical_perimeter = diff(
|
||
offset($slice->expolygon->arrayref, -($perimeter_spacing * ($Slic3r::Config->perimeters + $extra_perimeters-1))),
|
||
offset($slice->expolygon->arrayref, -($perimeter_spacing * ($Slic3r::Config->perimeters + $extra_perimeters))),
|
||
);
|
||
last CYCLE if !@$hypothetical_perimeter; # no extra perimeter is possible
|
||
|
||
# only add the perimeter if there's an intersection with the collapsed area
|
||
last CYCLE if !@{ intersection($diff, $hypothetical_perimeter) };
|
||
Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id;
|
||
$slice->extra_perimeters($extra_perimeters);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
Slic3r::parallelize(
|
||
items => sub { 0 .. ($self->layer_count-1) },
|
||
thread_cb => sub {
|
||
my $q = shift;
|
||
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
|
||
while (defined (my $layer_id = $q->dequeue)) {
|
||
$self->layers->[$layer_id]->make_perimeters;
|
||
}
|
||
},
|
||
collect_cb => sub {},
|
||
no_threads_cb => sub {
|
||
$_->make_perimeters for @{$self->layers};
|
||
},
|
||
);
|
||
}
|
||
|
||
sub detect_surfaces_type {
|
||
my $self = shift;
|
||
Slic3r::debugf "Detecting solid surfaces...\n";
|
||
|
||
# prepare a reusable subroutine to make surface differences
|
||
my $surface_difference = sub {
|
||
my ($subject_surfaces, $clip_surfaces, $result_type, $layerm) = @_;
|
||
my $expolygons = diff_ex(
|
||
[ map @$_, @$subject_surfaces ],
|
||
[ map @$_, @$clip_surfaces ],
|
||
1,
|
||
);
|
||
return map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
|
||
@$expolygons;
|
||
};
|
||
|
||
for my $region_id (0 .. ($self->print->regions_count-1)) {
|
||
for my $i (0 .. ($self->layer_count-1)) {
|
||
my $layerm = $self->layers->[$i]->regions->[$region_id];
|
||
|
||
# comparison happens against the *full* slices (considering all regions)
|
||
my $upper_layer = $self->layers->[$i+1];
|
||
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
|
||
|
||
my (@bottom, @top, @internal) = ();
|
||
|
||
# find top surfaces (difference between current surfaces
|
||
# of current layer and upper one)
|
||
if ($upper_layer) {
|
||
@top = $surface_difference->(
|
||
[ map $_->expolygon, @{$layerm->slices} ],
|
||
$upper_layer->slices,
|
||
S_TYPE_TOP,
|
||
$layerm,
|
||
);
|
||
} else {
|
||
# if no upper layer, all surfaces of this one are solid
|
||
# we clone surfaces because we're going to clear the slices collection
|
||
@top = map $_->clone, @{$layerm->slices};
|
||
$_->surface_type(S_TYPE_TOP) for @top;
|
||
}
|
||
|
||
# find bottom surfaces (difference between current surfaces
|
||
# of current layer and lower one)
|
||
if ($lower_layer) {
|
||
# lower layer's slices are already Surface objects
|
||
@bottom = $surface_difference->(
|
||
[ map $_->expolygon, @{$layerm->slices} ],
|
||
$lower_layer->slices,
|
||
S_TYPE_BOTTOM,
|
||
$layerm,
|
||
);
|
||
} else {
|
||
# if no lower layer, all surfaces of this one are solid
|
||
# we clone surfaces because we're going to clear the slices collection
|
||
@bottom = map $_->clone, @{$layerm->slices};
|
||
$_->surface_type(S_TYPE_BOTTOM) for @bottom;
|
||
}
|
||
|
||
# now, if the object contained a thin membrane, we could have overlapping bottom
|
||
# and top surfaces; let's do an intersection to discover them and consider them
|
||
# as bottom surfaces (to allow for bridge detection)
|
||
if (@top && @bottom) {
|
||
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
|
||
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->id, scalar(@$overlapping);
|
||
@top = $surface_difference->([map $_->expolygon, @top], $overlapping, S_TYPE_TOP, $layerm);
|
||
}
|
||
|
||
# find internal surfaces (difference between top/bottom surfaces and others)
|
||
@internal = $surface_difference->(
|
||
[ map $_->expolygon, @{$layerm->slices} ],
|
||
[ map $_->expolygon, @top, @bottom ],
|
||
S_TYPE_INTERNAL,
|
||
$layerm,
|
||
);
|
||
|
||
# save surfaces to layer
|
||
$layerm->slices->clear;
|
||
$layerm->slices->append(@bottom, @top, @internal);
|
||
|
||
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
|
||
$layerm->id, scalar(@bottom), scalar(@top), scalar(@internal);
|
||
}
|
||
|
||
# clip surfaces to the fill boundaries
|
||
foreach my $layer (@{$self->layers}) {
|
||
my $layerm = $layer->regions->[$region_id];
|
||
my $fill_boundaries = [ map $_->clone->p, @{$layerm->fill_surfaces} ];
|
||
$layerm->fill_surfaces->clear;
|
||
foreach my $surface (@{$layerm->slices}) {
|
||
my $intersection = intersection_ex(
|
||
[ $surface->p ],
|
||
$fill_boundaries,
|
||
);
|
||
$layerm->fill_surfaces->append(map Slic3r::Surface->new
|
||
(expolygon => $_, surface_type => $surface->surface_type),
|
||
@$intersection);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sub clip_fill_surfaces {
|
||
my $self = shift;
|
||
return unless $Slic3r::Config->infill_only_where_needed;
|
||
|
||
# We only want infill under ceilings; this is almost like an
|
||
# internal support material.
|
||
|
||
my $additional_margin = scale 3;
|
||
|
||
my @overhangs = ();
|
||
for my $layer_id (reverse 0..$#{$self->layers}) {
|
||
my $layer = $self->layers->[$layer_id];
|
||
|
||
# clip this layer's internal surfaces to @overhangs
|
||
foreach my $layerm (@{$layer->regions}) {
|
||
my @new_internal = map Slic3r::Surface->new(
|
||
expolygon => $_,
|
||
surface_type => S_TYPE_INTERNAL,
|
||
),
|
||
@{intersection_ex(
|
||
[ map @$_, @overhangs ],
|
||
[ map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ],
|
||
)};
|
||
my @new_surfaces = (
|
||
@new_internal,
|
||
(map $_->clone, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces}),
|
||
);
|
||
$layerm->fill_surfaces->clear;
|
||
$layerm->fill_surfaces->append(@new_surfaces);
|
||
}
|
||
|
||
# get this layer's overhangs
|
||
if ($layer_id > 0) {
|
||
my $lower_layer = $self->layers->[$layer_id-1];
|
||
# loop through layer regions so that we can use each region's
|
||
# specific overhang width
|
||
foreach my $layerm (@{$layer->regions}) {
|
||
my $overhang_width = $layerm->overhang_width;
|
||
# we want to support any solid surface, not just tops
|
||
# (internal solids might have been generated)
|
||
push @overhangs, map @{$_->offset_ex($additional_margin)}, @{intersection_ex(
|
||
[ map @{$_->expolygon}, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ],
|
||
[ map @$_, map @{$_->offset_ex(-$overhang_width)}, @{$lower_layer->slices} ],
|
||
)};
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sub bridge_over_infill {
|
||
my $self = shift;
|
||
return if $Slic3r::Config->fill_density == 1;
|
||
|
||
for my $layer_id (1..$#{$self->layers}) {
|
||
my $layer = $self->layers->[$layer_id];
|
||
my $lower_layer = $self->layers->[$layer_id-1];
|
||
|
||
foreach my $layerm (@{$layer->regions}) {
|
||
# compute the areas needing bridge math
|
||
my @internal_solid = grep $_->surface_type == S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces};
|
||
my @lower_internal = grep $_->surface_type == S_TYPE_INTERNAL, map @{$_->fill_surfaces}, @{$lower_layer->regions};
|
||
my $to_bridge = intersection_ex(
|
||
[ map $_->p, @internal_solid ],
|
||
[ map $_->p, @lower_internal ],
|
||
);
|
||
next unless @$to_bridge;
|
||
Slic3r::debugf "Bridging %d internal areas at layer %d\n", scalar(@$to_bridge), $layer_id;
|
||
|
||
# build the new collection of fill_surfaces
|
||
{
|
||
my @new_surfaces = map $_->clone, grep $_->surface_type != S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces};
|
||
push @new_surfaces, map Slic3r::Surface->new(
|
||
expolygon => $_,
|
||
surface_type => S_TYPE_INTERNALBRIDGE,
|
||
), @$to_bridge;
|
||
push @new_surfaces, map Slic3r::Surface->new(
|
||
expolygon => $_,
|
||
surface_type => S_TYPE_INTERNALSOLID,
|
||
), @{diff_ex(
|
||
[ map $_->p, @internal_solid ],
|
||
[ map @$_, @$to_bridge ],
|
||
1,
|
||
)};
|
||
$layerm->fill_surfaces->clear;
|
||
$layerm->fill_surfaces->append(@new_surfaces);
|
||
}
|
||
|
||
# exclude infill from the layers below if needed
|
||
# see discussion at https://github.com/alexrj/Slic3r/issues/240
|
||
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
|
||
if (0) {
|
||
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
|
||
for (my $i = $layer_id-1; $excess >= $self->layers->[$i]->height; $i--) {
|
||
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
|
||
foreach my $lower_layerm (@{$self->layers->[$i]->regions}) {
|
||
my @new_surfaces = ();
|
||
# subtract the area from all types of surfaces
|
||
foreach my $group (Slic3r::Surface->group(@{$lower_layerm->fill_surfaces})) {
|
||
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
|
||
@{diff_ex(
|
||
[ map $_->p, @$group ],
|
||
[ map @$_, @$to_bridge ],
|
||
)};
|
||
push @new_surfaces, map Slic3r::Surface->new(
|
||
expolygon => $_,
|
||
surface_type => S_TYPE_INTERNALVOID,
|
||
), @{intersection_ex(
|
||
[ map $_->p, @$group ],
|
||
[ map @$_, @$to_bridge ],
|
||
)};
|
||
}
|
||
$lower_layerm->fill_surfaces->clear;
|
||
$lower_layerm->fill_surfaces->append(@new_surfaces);
|
||
}
|
||
|
||
$excess -= $self->layers->[$i]->height;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sub discover_horizontal_shells {
|
||
my $self = shift;
|
||
|
||
Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n";
|
||
|
||
for my $region_id (0 .. ($self->print->regions_count-1)) {
|
||
for (my $i = 0; $i < $self->layer_count; $i++) {
|
||
my $layerm = $self->layers->[$i]->regions->[$region_id];
|
||
|
||
if ($Slic3r::Config->solid_infill_every_layers && $Slic3r::Config->fill_density > 0
|
||
&& ($i % $Slic3r::Config->solid_infill_every_layers) == 0) {
|
||
my @surfaces = @{$layerm->fill_surfaces};
|
||
for my $i (0..$#surfaces) {
|
||
next unless $surfaces[$i]->surface_type == S_TYPE_INTERNAL;
|
||
$layerm->fill_surfaces->set_surface_type($i, S_TYPE_INTERNALSOLID);
|
||
}
|
||
}
|
||
|
||
EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
|
||
# find slices of current type for current layer
|
||
# get both slices and fill_surfaces before the former contains the perimeters area
|
||
# and the latter contains the enlarged external surfaces
|
||
my $solid = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerm->slices}, @{$layerm->fill_surfaces} ];
|
||
next if !@$solid;
|
||
Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
|
||
|
||
my $solid_layers = ($type == S_TYPE_TOP)
|
||
? $Slic3r::Config->top_solid_layers
|
||
: $Slic3r::Config->bottom_solid_layers;
|
||
NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
|
||
abs($n - $i) <= $solid_layers-1;
|
||
($type == S_TYPE_TOP) ? $n-- : $n++) {
|
||
|
||
next if $n < 0 || $n >= $self->layer_count;
|
||
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
|
||
|
||
my @neighbor_fill_surfaces = @{$self->layers->[$n]->regions->[$region_id]->fill_surfaces};
|
||
|
||
# find intersection between neighbor and current layer's surfaces
|
||
# intersections have contours and holes
|
||
# we update $solid so that we limit the next neighbor layer to the areas that were
|
||
# found on this one - in other words, solid shells on one layer (for a given external surface)
|
||
# are always a subset of the shells found on the previous shell layer
|
||
# this approach allows for DWIM in hollow sloping vases, where we want bottom
|
||
# shells to be generated in the base but not in the walls (where there are many
|
||
# narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
|
||
# upper perimeter as an obstacle and shell will not be propagated to more upper layers
|
||
my $new_internal_solid = $solid = intersection_ex(
|
||
[ map @$_, @$solid ],
|
||
[ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ],
|
||
1,
|
||
);
|
||
next EXTERNAL if !@$new_internal_solid;
|
||
|
||
# make sure the new internal solid is wide enough, as it might get collapsed when
|
||
# spacing is added in Fill.pm
|
||
{
|
||
my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size
|
||
my $too_narrow = diff_ex(
|
||
[ map @$_, @$new_internal_solid ],
|
||
offset2([ map @$_, @$new_internal_solid ], -$margin, +$margin),
|
||
1,
|
||
);
|
||
|
||
# if some parts are going to collapse, use a different strategy according to fill density
|
||
if (@$too_narrow) {
|
||
if ($Slic3r::Config->fill_density > 0) {
|
||
# if we have internal infill, grow the collapsing parts and add the extra area to
|
||
# the neighbor layer as well as to our original surfaces so that we support this
|
||
# additional area in the next shell too
|
||
|
||
# make sure our grown surfaces don't exceed the fill area
|
||
my @grown = map @$_, @{intersection_ex(
|
||
offset([ map @$_, @$too_narrow ], +$margin),
|
||
[ map $_->p, @neighbor_fill_surfaces ],
|
||
)};
|
||
$new_internal_solid = $solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]);
|
||
} else {
|
||
# if we're printing a hollow object, we discard such small parts
|
||
$new_internal_solid = $solid = diff_ex(
|
||
[ map @$_, @$new_internal_solid ],
|
||
[ map @$_, @$too_narrow ],
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
# internal-solid are the union of the existing internal-solid surfaces
|
||
# and new ones
|
||
my $internal_solid = union_ex([
|
||
( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ),
|
||
( map @$_, @$new_internal_solid ),
|
||
]);
|
||
|
||
# subtract intersections from layer surfaces to get resulting internal surfaces
|
||
my $internal = diff_ex(
|
||
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ],
|
||
[ map @$_, @$internal_solid ],
|
||
1,
|
||
);
|
||
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
|
||
scalar(@$internal_solid), scalar(@$internal);
|
||
|
||
# assign resulting internal surfaces to layer
|
||
my $neighbor_fill_surfaces = $self->layers->[$n]->regions->[$region_id]->fill_surfaces;
|
||
$neighbor_fill_surfaces->clear;
|
||
$neighbor_fill_surfaces->append(map Slic3r::Surface->new
|
||
(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$internal);
|
||
|
||
# assign new internal-solid surfaces to layer
|
||
$neighbor_fill_surfaces->append(map Slic3r::Surface->new
|
||
(expolygon => $_, surface_type => S_TYPE_INTERNALSOLID), @$internal_solid);
|
||
|
||
# assign top and bottom surfaces to layer
|
||
foreach my $s (Slic3r::Surface->group(grep { ($_->surface_type == S_TYPE_TOP) || ($_->surface_type == S_TYPE_BOTTOM) } @neighbor_fill_surfaces)) {
|
||
my $solid_surfaces = diff_ex(
|
||
[ map $_->p, @$s ],
|
||
[ map @$_, @$internal_solid, @$internal ],
|
||
1,
|
||
);
|
||
$neighbor_fill_surfaces->append(map $s->[0]->clone(expolygon => $_), @$solid_surfaces);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
# combine fill surfaces across layers
|
||
sub combine_infill {
|
||
my $self = shift;
|
||
return unless $Slic3r::Config->infill_every_layers > 1 && $Slic3r::Config->fill_density > 0;
|
||
my $every = $Slic3r::Config->infill_every_layers;
|
||
|
||
my $layer_count = $self->layer_count;
|
||
my @layer_heights = map $self->layers->[$_]->height, 0 .. $layer_count-1;
|
||
|
||
for my $region_id (0 .. ($self->print->regions_count-1)) {
|
||
# limit the number of combined layers to the maximum height allowed by this regions' nozzle
|
||
my $nozzle_diameter = $self->print->regions->[$region_id]->extruders->{infill}->nozzle_diameter;
|
||
|
||
# define the combinations
|
||
my @combine = (); # layer_id => thickness in layers
|
||
{
|
||
my $current_height = my $layers = 0;
|
||
for my $layer_id (1 .. $#layer_heights) {
|
||
my $height = $self->layers->[$layer_id]->height;
|
||
|
||
if ($current_height + $height >= $nozzle_diameter || $layers >= $every) {
|
||
$combine[$layer_id-1] = $layers;
|
||
$current_height = $layers = 0;
|
||
}
|
||
|
||
$current_height += $height;
|
||
$layers++;
|
||
}
|
||
}
|
||
|
||
# skip bottom layer
|
||
for my $layer_id (1 .. $#combine) {
|
||
next unless ($combine[$layer_id] // 1) > 1;
|
||
my @layerms = map $self->layers->[$_]->regions->[$region_id],
|
||
($layer_id - ($combine[$layer_id]-1) .. $layer_id);
|
||
|
||
# only combine internal infill
|
||
for my $type (S_TYPE_INTERNAL) {
|
||
# we need to perform a multi-layer intersection, so let's split it in pairs
|
||
|
||
# initialize the intersection with the candidates of the lowest layer
|
||
my $intersection = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerms[0]->fill_surfaces} ];
|
||
|
||
# start looping from the second layer and intersect the current intersection with it
|
||
for my $layerm (@layerms[1 .. $#layerms]) {
|
||
$intersection = intersection_ex(
|
||
[ map @$_, @$intersection ],
|
||
[ map @{$_->expolygon}, grep $_->surface_type == $type, @{$layerm->fill_surfaces} ],
|
||
);
|
||
}
|
||
|
||
my $area_threshold = $layerms[0]->infill_area_threshold;
|
||
@$intersection = grep $_->area > $area_threshold, @$intersection;
|
||
next if !@$intersection;
|
||
Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
|
||
scalar(@$intersection),
|
||
($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
|
||
$layer_id-($every-1), $layer_id;
|
||
|
||
# $intersection now contains the regions that can be combined across the full amount of layers
|
||
# so let's remove those areas from all layers
|
||
|
||
my @intersection_with_clearance = map @{$_->offset(
|
||
$layerms[-1]->solid_infill_flow->scaled_width / 2
|
||
+ $layerms[-1]->perimeter_flow->scaled_width / 2
|
||
# Because fill areas for rectilinear and honeycomb are grown
|
||
# later to overlap perimeters, we need to counteract that too.
|
||
+ (($type == S_TYPE_INTERNALSOLID || $Slic3r::Config->fill_pattern =~ /(rectilinear|honeycomb)/)
|
||
? $layerms[-1]->solid_infill_flow->scaled_width * &Slic3r::INFILL_OVERLAP_OVER_SPACING
|
||
: 0)
|
||
)}, @$intersection;
|
||
|
||
|
||
foreach my $layerm (@layerms) {
|
||
my @this_type = grep $_->surface_type == $type, @{$layerm->fill_surfaces};
|
||
my @other_types = map $_->clone, grep $_->surface_type != $type, @{$layerm->fill_surfaces};
|
||
|
||
my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type),
|
||
@{diff_ex(
|
||
[ map @{$_->expolygon}, @this_type ],
|
||
[ @intersection_with_clearance ],
|
||
)};
|
||
|
||
# apply surfaces back with adjusted depth to the uppermost layer
|
||
if ($layerm->id == $layer_id) {
|
||
push @new_this_type,
|
||
map Slic3r::Surface->new(
|
||
expolygon => $_,
|
||
surface_type => $type,
|
||
thickness => sum(map $_->height, @layerms),
|
||
thickness_layers => scalar(@layerms),
|
||
),
|
||
@$intersection;
|
||
} else {
|
||
# save void surfaces
|
||
push @this_type,
|
||
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNALVOID),
|
||
@{intersection_ex(
|
||
[ map @{$_->expolygon}, @this_type ],
|
||
[ @intersection_with_clearance ],
|
||
)};
|
||
}
|
||
|
||
$layerm->fill_surfaces->clear;
|
||
$layerm->fill_surfaces->append(@new_this_type, @other_types);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sub generate_support_material {
|
||
my $self = shift;
|
||
return if $self->layer_count < 2;
|
||
|
||
my $flow = $self->print->support_material_flow;
|
||
|
||
# how much we extend support around the actual contact area
|
||
#my $margin = $flow->scaled_width / 2;
|
||
my $margin = scale 3;
|
||
|
||
# increment used to reach $margin in steps to avoid trespassing thin objects
|
||
my $margin_step = $margin/3;
|
||
|
||
# if user specified a custom angle threshold, convert it to radians
|
||
my $threshold_rad;
|
||
if ($Slic3r::Config->support_material_threshold) {
|
||
$threshold_rad = deg2rad($Slic3r::Config->support_material_threshold + 1); # +1 makes the threshold inclusive
|
||
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
|
||
}
|
||
|
||
# shape of contact area
|
||
my $contact_loops = 1;
|
||
my $circle_distance = 3 * $flow->scaled_width;
|
||
my $circle;
|
||
{
|
||
# TODO: make sure teeth between circles are compatible with support material flow
|
||
my $r = 1.5 * $flow->scaled_width;
|
||
$circle = Slic3r::Polygon->new(map [ $r * cos $_, $r * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
|
||
}
|
||
|
||
# determine contact areas
|
||
my %contact = (); # contact_z => [ polygons ]
|
||
my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer
|
||
for my $layer_id (1 .. $#{$self->layers}) {
|
||
my $layer = $self->layers->[$layer_id];
|
||
my $lower_layer = $self->layers->[$layer_id-1];
|
||
|
||
# detect overhangs and contact areas needed to support them
|
||
my (@overhang, @contact) = ();
|
||
foreach my $layerm (@{$layer->regions}) {
|
||
my $fw = $layerm->perimeter_flow->scaled_width;
|
||
my $diff;
|
||
|
||
# If a threshold angle was specified, use a different logic for detecting overhangs.
|
||
if (defined $threshold_rad || $layer_id <= $Slic3r::Config->support_material_enforce_layers) {
|
||
my $d = defined $threshold_rad
|
||
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
|
||
: 0;
|
||
|
||
$diff = diff(
|
||
offset([ map $_->p, @{$layerm->slices} ], -$d),
|
||
[ map @$_, @{$lower_layer->slices} ],
|
||
);
|
||
|
||
# only enforce spacing from the object ($fw/2) if the threshold angle
|
||
# is not too high: in that case, $d will be very small (as we need to catch
|
||
# very short overhangs), and such contact area would be eaten by the
|
||
# enforced spacing, resulting in high threshold angles to be almost ignored
|
||
$diff = diff(
|
||
offset($diff, $d - $fw/2),
|
||
[ map @$_, @{$lower_layer->slices} ],
|
||
) if $d > $fw/2;
|
||
} else {
|
||
$diff = diff(
|
||
offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
|
||
[ map @$_, @{$lower_layer->slices} ],
|
||
);
|
||
# $diff now contains the ring or stripe comprised between the boundary of
|
||
# lower slices and the centerline of the last perimeter in this overhanging layer.
|
||
# Void $diff means that there's no upper perimeter whose centerline is
|
||
# outside the lower slice boundary, thus no overhang
|
||
}
|
||
|
||
next if !@$diff;
|
||
push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
|
||
|
||
# Let's define the required contact area by using a max gap of half the upper
|
||
# extrusion width and extending the area according to the configured margin.
|
||
# We increment the area in steps because we don't want our support to overflow
|
||
# on the other side of the object (if it's very thin).
|
||
{
|
||
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
|
||
for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) {
|
||
$diff = diff(
|
||
offset($diff, $_),
|
||
\@slices_margin,
|
||
);
|
||
}
|
||
}
|
||
push @contact, @$diff;
|
||
}
|
||
next if !@contact;
|
||
|
||
# now apply the contact areas to the layer were they need to be made
|
||
{
|
||
# get the average nozzle diameter used on this layer
|
||
my @nozzle_diameters = map $_->nozzle_diameter,
|
||
map { $_->perimeter_flow, $_->solid_infill_flow }
|
||
@{$layer->regions};
|
||
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
|
||
|
||
my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
|
||
###$contact_z = $layer->print_z - $layer->height;
|
||
|
||
# ignore this contact area if it's too low
|
||
next if $contact_z < $Slic3r::Config->first_layer_height;
|
||
|
||
$contact{$contact_z} = [ @contact ];
|
||
$overhang{$contact_z} = [ @overhang ];
|
||
}
|
||
}
|
||
my @contact_z = sort keys %contact;
|
||
|
||
# find object top surfaces
|
||
# we'll use them to clip our support and detect where does it stick
|
||
my %top = (); # print_z => [ expolygons ]
|
||
{
|
||
my $projection = [];
|
||
foreach my $layer (reverse @{$self->layers}) {
|
||
if (my @top = grep $_->surface_type == S_TYPE_TOP, map @{$_->slices}, @{$layer->regions}) {
|
||
# compute projection of the contact areas above this top layer
|
||
# first add all the 'new' contact areas to the current projection
|
||
# ('new' means all the areas that are lower than the last top layer
|
||
# we considered)
|
||
my $min_top = min(keys %top) // max(keys %contact);
|
||
push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ < $min_top } keys %contact;
|
||
|
||
# now find whether any projection falls onto this top surface
|
||
my $touching = intersection($projection, [ map $_->p, @top ]);
|
||
if (@$touching) {
|
||
$top{ $layer->print_z } = $touching;
|
||
}
|
||
|
||
# remove the areas that touched from the projection that will continue on
|
||
# next, lower, top surfaces
|
||
$projection = diff($projection, $touching);
|
||
}
|
||
}
|
||
}
|
||
my @top_z = sort keys %top;
|
||
|
||
# we now know the upper and lower boundaries for our support material object
|
||
# (@contact_z and @top_z), so we can generate intermediate layers
|
||
my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $Slic3r::Config, $flow);
|
||
|
||
# if we wanted to apply some special logic to the first support layers lying on
|
||
# object's top surfaces this is the place to detect them
|
||
|
||
# Let's now determine shells (interface layers) and normal support below them.
|
||
# Let's now fill each support layer by generating shells (interface layers) and
|
||
# clipping support area to the actual object boundaries.
|
||
my %interface = (); # layer_id => [ polygons ]
|
||
my %support = (); # layer_id => [ polygons ]
|
||
my $interface_layers = $Slic3r::Config->support_material_interface_layers;
|
||
for my $layer_id (0 .. $#support_layers) {
|
||
my $z = $support_layers[$layer_id];
|
||
my $this = $contact{$z} // next;
|
||
# count contact layer as interface layer
|
||
for (my $i = $layer_id; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
|
||
$z = $support_layers[$i];
|
||
# Compute interface area on this layer as diff of upper contact area
|
||
# (or upper interface area) and layer slices.
|
||
# This diff is responsible of the contact between support material and
|
||
# the top surfaces of the object. We should probably offset the top
|
||
# surfaces before performing the diff, but this needs investigation.
|
||
$this = $interface{$i} = diff(
|
||
[
|
||
@$this,
|
||
@{ $interface{$i} || [] },
|
||
],
|
||
[
|
||
@{ $top{$z} || [] },
|
||
],
|
||
1,
|
||
);
|
||
}
|
||
|
||
# determine what layers does our support belong to
|
||
for (my $i = $layer_id-$interface_layers; $i >= 0; $i--) {
|
||
$z = $support_layers[$i];
|
||
# Compute support area on this layer as diff of upper support area
|
||
# and layer slices.
|
||
$this = $support{$i} = diff(
|
||
[
|
||
@$this,
|
||
@{ $support{$i} || [] },
|
||
],
|
||
[
|
||
@{ $top{$z} || [] },
|
||
@{ $interface{$i} || [] },
|
||
],
|
||
1,
|
||
);
|
||
}
|
||
}
|
||
|
||
push @{$self->support_layers}, map Slic3r::Layer::Support->new(
|
||
object => $self,
|
||
id => $_,
|
||
height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]),
|
||
print_z => $support_layers[$_],
|
||
slice_z => -1,
|
||
slices => [],
|
||
), 0 .. $#support_layers;
|
||
|
||
Slic3r::debugf "Generating patterns\n";
|
||
|
||
# prepare fillers
|
||
my $pattern = $Slic3r::Config->support_material_pattern;
|
||
my @angles = ($Slic3r::Config->support_material_angle);
|
||
if ($pattern eq 'rectilinear-grid') {
|
||
$pattern = 'rectilinear';
|
||
push @angles, $angles[0] + 90;
|
||
}
|
||
|
||
my %fillers = (
|
||
interface => $self->fill_maker->filler('rectilinear'),
|
||
support => $self->fill_maker->filler($pattern),
|
||
);
|
||
|
||
my $interface_angle = $Slic3r::Config->support_material_angle + 90;
|
||
my $interface_spacing = $Slic3r::Config->support_material_interface_spacing + $flow->spacing;
|
||
my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
|
||
my $support_spacing = $Slic3r::Config->support_material_spacing + $flow->spacing;
|
||
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
|
||
|
||
my $process_layer = sub {
|
||
my ($layer_id) = @_;
|
||
my $result = { contact => [], interface => [], support => [] };
|
||
|
||
$contact{$layer_id} ||= [];
|
||
$interface{$layer_id} ||= [];
|
||
$support{$layer_id} ||= [];
|
||
|
||
# contact
|
||
if ((my $contact = $contact{$support_layers[$layer_id]}) && $contact_loops > 0) {
|
||
my $overhang = $overhang{$support_layers[$layer_id]};
|
||
$contact = [ grep $_->is_counter_clockwise, @$contact ];
|
||
|
||
# generate the outermost loop
|
||
my @loops0;
|
||
{
|
||
# find centerline of the external loop of the contours
|
||
my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
|
||
|
||
# apply a pattern to the loop
|
||
my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
|
||
@loops0 = @{diff(
|
||
[ @external_loops ],
|
||
[ map $circle->clone->translate(@$_), @positions ],
|
||
)};
|
||
}
|
||
|
||
# make more loops
|
||
my @loops = @loops0;
|
||
for my $i (2..$contact_loops) {
|
||
my $d = ($i-1) * $flow->scaled_spacing;
|
||
push @loops, offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing);
|
||
}
|
||
|
||
# clip such loops to the side oriented towards the object
|
||
@loops = map Slic3r::Polyline->new(@$_),
|
||
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
|
||
[ offset_ex([ map @$_, @$overhang ], +scale 3) ],
|
||
[ map Slic3r::Polygon->new(@$_)->split_at_first_point, @loops ],
|
||
) };
|
||
|
||
# subtract loops from the contact area to detect the remaining part
|
||
$interface{$layer_id} = intersection(
|
||
$interface{$layer_id},
|
||
[ offset2(\@loops0, -($contact_loops) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing) ],
|
||
);
|
||
|
||
# transform loops into ExtrusionPath objects
|
||
@loops = map Slic3r::ExtrusionPath->pack(
|
||
polyline => $_,
|
||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||
flow_spacing => $flow->spacing,
|
||
), @loops;
|
||
|
||
$result->{contact} = [ @loops ];
|
||
}
|
||
|
||
# interface
|
||
if (@{$interface{$layer_id}}) {
|
||
$fillers{interface}->angle($interface_angle);
|
||
|
||
# steal some space from support
|
||
$interface{$layer_id} = intersection(
|
||
[ offset($interface{$layer_id}, scale 3) ],
|
||
[ @{$interface{$layer_id}}, @{$support{$layer_id}} ],
|
||
);
|
||
$support{$layer_id} = diff(
|
||
$support{$layer_id},
|
||
$interface{$layer_id},
|
||
);
|
||
|
||
my @paths = ();
|
||
foreach my $expolygon (offset_ex($interface{$layer_id}, -$flow->scaled_width/2)) {
|
||
my @p = $fillers{interface}->fill_surface(
|
||
Slic3r::Surface->new(expolygon => $expolygon),
|
||
density => $interface_density,
|
||
flow_spacing => $flow->spacing,
|
||
complete => 1,
|
||
);
|
||
my $params = shift @p;
|
||
|
||
push @paths, map Slic3r::ExtrusionPath->pack(
|
||
polyline => Slic3r::Polyline->new(@$_),
|
||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||
height => undef,
|
||
flow_spacing => $params->{flow_spacing},
|
||
), @p;
|
||
}
|
||
$result->{interface} = [ @paths ];
|
||
}
|
||
|
||
# support or flange
|
||
if (@{$support{$layer_id}}) {
|
||
my $filler = $fillers{support};
|
||
$filler->angle($angles[ ($layer_id) % @angles ]);
|
||
my $density = $support_density;
|
||
my $flow_spacing = $flow->spacing;
|
||
|
||
# TODO: use offset2_ex()
|
||
my $to_infill = offset_ex(union($support{$layer_id}), -$flow->scaled_width/2);
|
||
my @paths = ();
|
||
|
||
# base flange
|
||
if ($layer_id == 0) {
|
||
$filler = $fillers{interface};
|
||
$filler->angle($Slic3r::Config->support_material_angle + 90);
|
||
$density = 0.5;
|
||
$flow_spacing = $self->print->first_layer_support_material_flow->spacing;
|
||
} else {
|
||
# draw a perimeter all around support infill
|
||
# TODO: use brim ordering algorithm
|
||
push @paths, map Slic3r::ExtrusionPath->pack(
|
||
polyline => $_->split_at_first_point,
|
||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||
height => undef,
|
||
flow_spacing => $flow->spacing,
|
||
), map @$_, @$to_infill;
|
||
|
||
# TODO: use offset2_ex()
|
||
$to_infill = [ offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing) ];
|
||
}
|
||
|
||
foreach my $expolygon (@$to_infill) {
|
||
my @p = $filler->fill_surface(
|
||
Slic3r::Surface->new(expolygon => $expolygon),
|
||
density => $density,
|
||
flow_spacing => $flow_spacing,
|
||
complete => 1,
|
||
);
|
||
my $params = shift @p;
|
||
|
||
push @paths, map Slic3r::ExtrusionPath->pack(
|
||
polyline => Slic3r::Polyline->new(@$_),
|
||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||
height => undef,
|
||
flow_spacing => $params->{flow_spacing},
|
||
), @p;
|
||
}
|
||
|
||
$result->{support} = [ @paths ];
|
||
}
|
||
|
||
# islands
|
||
$result->{islands} = union_ex([
|
||
@{$interface{$layer_id} || []},
|
||
@{$support{$layer_id} || []},
|
||
]);
|
||
|
||
return $result;
|
||
};
|
||
|
||
my $apply = sub {
|
||
my ($layer_id, $result) = @_;
|
||
my $layer = $self->support_layers->[$layer_id];
|
||
|
||
my $interface_collection = Slic3r::ExtrusionPath::Collection->new(paths => [ @{$result->{contact}}, @{$result->{interface}} ]);
|
||
$layer->support_interface_fills($interface_collection) if @{$interface_collection->paths} > 0;
|
||
|
||
my $support_collection = Slic3r::ExtrusionPath::Collection->new(paths => $result->{support});
|
||
$layer->support_fills($support_collection) if @{$support_collection->paths} > 0;
|
||
|
||
$layer->support_islands($result->{islands});
|
||
};
|
||
Slic3r::parallelize(
|
||
items => [ 0 .. $#{$self->support_layers} ],
|
||
thread_cb => sub {
|
||
my $q = shift;
|
||
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
|
||
my $result = {};
|
||
while (defined (my $layer_id = $q->dequeue)) {
|
||
$result->{$layer_id} = $process_layer->($layer_id);
|
||
}
|
||
return $result;
|
||
},
|
||
collect_cb => sub {
|
||
my $result = shift;
|
||
$apply->($_, $result->{$_}) for keys %$result;
|
||
},
|
||
no_threads_cb => sub {
|
||
$apply->($_, $process_layer->($_)) for 0 .. $#{$self->support_layers};
|
||
},
|
||
);
|
||
}
|
||
|
||
sub _compute_support_layers {
|
||
my ($contact_z, $top_z, $config, $flow) = @_;
|
||
|
||
# quick table to check whether a given Z is a top surface
|
||
my %top = map { $_ => 1 } @$top_z;
|
||
|
||
# determine layer height for any non-contact layer
|
||
# we use max() to prevent many ultra-thin layers to be inserted in case
|
||
# layer_height > nozzle_diameter * 0.75
|
||
my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75);
|
||
|
||
my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z,
|
||
(map { $_ + $flow->nozzle_diameter } @$top_z);
|
||
|
||
# enforce first layer height
|
||
my $first_layer_height = $config->get_value('first_layer_height');
|
||
shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height;
|
||
unshift @support_layers, $first_layer_height;
|
||
|
||
for (my $i = $#support_layers; $i >= 0; $i--) {
|
||
my $target_height = $support_material_height;
|
||
if ($i > 0 && $top{ $support_layers[$i-1] }) {
|
||
$target_height = $flow->nozzle_diameter;
|
||
}
|
||
|
||
# enforce first layer height
|
||
if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height)
|
||
|| ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
|
||
splice @support_layers, $i, 0, ($support_layers[$i] - $target_height);
|
||
$i++;
|
||
}
|
||
}
|
||
|
||
# remove duplicates and make sure all 0.x values have the leading 0
|
||
{
|
||
my %sl = map { 1 * $_ => 1 } @support_layers;
|
||
@support_layers = sort { $a <=> $b } keys %sl;
|
||
}
|
||
|
||
return @support_layers;
|
||
}
|
||
|
||
1;
|