PrusaSlicer-NonPlainar/src/libslic3r/SLAPrint.cpp
bubnikv 63a0d1aeee Added comments to the gettext dictionaries generated by the xgettext tool.
The prefix to be searched for in the source code comments is TRN
2019-04-18 10:13:56 +02:00

1831 lines
75 KiB
C++

#include "SLAPrint.hpp"
#include "SLA/SLASupportTree.hpp"
#include "SLA/SLABasePool.hpp"
#include "SLA/SLAAutoSupports.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "MTUtils.hpp"
#include <unordered_set>
#include <numeric>
#include <tbb/parallel_for.h>
#include <boost/filesystem/path.hpp>
#include <boost/log/trivial.hpp>
// For geometry algorithms with native Clipper types (no copies and conversions)
#include <libnest2d/backends/clipper/geometries.hpp>
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
#include "I18N.hpp"
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
class SLAPrintObject::SupportData {
public:
sla::EigenMesh3D emesh; // index-triangle representation
std::vector<sla::SupportPoint> support_points; // all the support points (manual/auto)
SupportTreePtr support_tree_ptr; // the supports
SlicedSupports support_slices; // sliced supports
inline SupportData(const TriangleMesh& trmesh): emesh(trmesh) {}
};
namespace {
// should add up to 100 (%)
const std::array<unsigned, slaposCount> OBJ_STEP_LEVELS =
{
30, // slaposObjectSlice,
20, // slaposSupportPoints,
10, // slaposSupportTree,
10, // slaposBasePool,
30, // slaposSliceSupports,
};
const std::array<std::string, slaposCount> OBJ_STEP_LABELS =
{
L("Slicing model"), // slaposObjectSlice,
L("Generating support points"), // slaposSupportPoints,
L("Generating support tree"), // slaposSupportTree,
L("Generating pad"), // slaposBasePool,
L("Slicing supports"), // slaposSliceSupports,
};
// Should also add up to 100 (%)
const std::array<unsigned, slapsCount> PRINT_STEP_LEVELS =
{
10, // slapsMergeSlicesAndEval
90, // slapsRasterize
};
const std::array<std::string, slapsCount> PRINT_STEP_LABELS =
{
L("Merging slices and calculating statistics"), // slapsStats
L("Rasterizing layers"), // slapsRasterize
};
}
void SLAPrint::clear()
{
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (SLAPrintObject *object : m_objects)
delete object;
m_objects.clear();
m_model.clear_objects();
}
// Transformation without rotation around Z and without a shift by X and Y.
static Transform3d sla_trafo(const SLAPrint& p, const ModelObject &model_object)
{
Vec3d corr = p.relative_correction();
ModelInstance &model_instance = *model_object.instances.front();
Vec3d offset = model_instance.get_offset();
Vec3d rotation = model_instance.get_rotation();
offset(0) = 0.;
offset(1) = 0.;
rotation(2) = 0.;
offset(Z) *= corr(Z);
auto trafo = Transform3d::Identity();
trafo.translate(offset);
trafo.scale(corr);
trafo.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()));
trafo.rotate(Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()));
trafo.rotate(Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
trafo.scale(model_instance.get_scaling_factor());
trafo.scale(model_instance.get_mirror());
if (model_instance.is_left_handed())
trafo = Eigen::Scaling(Vec3d(-1., 1., 1.)) * trafo;
return trafo;
}
// List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance.
static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &model_object)
{
std::vector<SLAPrintObject::Instance> instances;
assert(! model_object.instances.empty());
if (! model_object.instances.empty()) {
Vec3d rotation0 = model_object.instances.front()->get_rotation();
rotation0(2) = 0.;
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
instances.emplace_back(
model_instance->id(),
Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
float(Geometry::rotation_diff_z(rotation0, model_instance->get_rotation())));
}
}
return instances;
}
SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, const DynamicPrintConfig &config_in)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Make a copy of the config, normalize it.
DynamicPrintConfig config(config_in);
config.option("sla_print_settings_id", true);
config.option("sla_material_settings_id", true);
config.option("printer_settings_id", true);
config.normalize();
// Collect changes to print config.
t_config_option_keys print_diff = m_print_config.diff(config);
t_config_option_keys printer_diff = m_printer_config.diff(config);
t_config_option_keys material_diff = m_material_config.diff(config);
t_config_option_keys object_diff = m_default_object_config.diff(config);
t_config_option_keys placeholder_parser_diff = this->placeholder_parser().config_diff(config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call may stop the background processing.
bool invalidate_all_model_objects = false;
if (! print_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(print_diff, invalidate_all_model_objects));
if (! printer_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(printer_diff, invalidate_all_model_objects));
if (! material_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(material_diff, invalidate_all_model_objects));
// Apply variables to placeholder parser. The placeholder parser is currently used
// only to generate the output file name.
if (! placeholder_parser_diff.empty()) {
// update_apply_status(this->invalidate_step(slapsRasterize));
PlaceholderParser &pp = this->placeholder_parser();
pp.apply_config(config);
// Set the profile aliases for the PrintBase::output_filename()
pp.set("print_preset", config.option("sla_print_settings_id")->clone());
pp.set("material_preset", config.option("sla_material_settings_id")->clone());
pp.set("printer_preset", config.option("printer_settings_id")->clone());
}
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_print_config.apply_only(config, print_diff, true);
m_printer_config.apply_only(config, printer_diff, true);
// Handle changes to material config.
m_material_config.apply_only(config, material_diff, true);
// Handle changes to object config defaults
m_default_object_config.apply_only(config, object_diff, true);
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
ModelObjectStatus(ModelID id, Status status = Unknown) : id(id), status(status) {}
ModelID id;
Status status;
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
std::set<ModelObjectStatus> model_object_status;
// 1) Synchronize model objects.
if (model.id() != m_model.id() || invalidate_all_model_objects) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
for (SLAPrintObject *object : m_objects) {
model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
update_apply_status(object->invalidate_all_steps());
delete object;
}
m_objects.clear();
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
} else {
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancel_callback();
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old) {
if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
deleted_any = true;
} else
// Do not delete this ModelObject instance.
model_object = nullptr;
}
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
std::vector<SLAPrintObject*> print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (SLAPrintObject *print_object : print_objects_old) {
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
assert(it_status != model_object_status.end());
if (it_status->status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
}
}
}
// 2) Map print objects including their transformation matrices.
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ModelID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ModelID id;
// Pointer to the old PrintObject
SLAPrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
std::multiset<PrintObjectStatus> print_object_status;
for (SLAPrintObject *print_object : m_objects)
print_object_status.emplace(PrintObjectStatus(print_object));
// 3) Synchronize ModelObjects & PrintObjects.
std::vector<SLAPrintObject*> print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
// PrintObject for this ModelObject, if it exists.
auto it_print_object_status = print_object_status.end();
if (it_status->status != ModelObjectStatus::New) {
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
const ModelObject &model_object_new = *model.objects[idx_model_object];
it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id()));
if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id())
it_print_object_status = print_object_status.end();
// Check whether a model part volume was added or removed, their transformations or order changed.
bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART);
bool sla_trafo_differs =
model_object.instances.empty() != model_object_new.instances.empty() ||
(! model_object.instances.empty() &&
(! sla_trafo(*this, model_object).isApprox(sla_trafo(*this, model_object_new)) ||
model_object.instances.front()->is_left_handed() != model_object_new.instances.front()->is_left_handed()));
if (model_parts_differ || sla_trafo_differs) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
if (it_print_object_status != print_object_status.end()) {
update_apply_status(it_print_object_status->print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
}
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else {
// Synchronize Object's config.
bool object_config_changed = model_object.config != model_object_new.config;
if (object_config_changed)
model_object.config = model_object_new.config;
if (! object_diff.empty() || object_config_changed) {
SLAPrintObjectConfig new_config = m_default_object_config;
normalize_and_apply_config(new_config, model_object.config);
if (it_print_object_status != print_object_status.end()) {
t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff));
it_print_object_status->print_object->config_apply_only(new_config, diff, true);
}
}
}
bool old_user_modified = model_object.sla_points_status == sla::PointsStatus::UserModified;
bool new_user_modified = model_object_new.sla_points_status == sla::PointsStatus::UserModified;
if ((old_user_modified && ! new_user_modified) || // switching to automatic supports from manual supports
(! old_user_modified && new_user_modified) || // switching to manual supports from automatic supports
(new_user_modified && model_object.sla_support_points != model_object_new.sla_support_points)) {
if (it_print_object_status != print_object_status.end())
update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints));
model_object.sla_points_status = model_object_new.sla_points_status;
model_object.sla_support_points = model_object_new.sla_support_points;
}
// Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
}
}
std::vector<SLAPrintObject::Instance> new_instances = sla_instances(model_object);
if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) {
// The SLAPrintObject is already there.
if (new_instances.empty()) {
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
} else {
if (new_instances != it_print_object_status->print_object->instances()) {
// Instances changed.
it_print_object_status->print_object->set_instances(new_instances);
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
}
print_objects_new.emplace_back(it_print_object_status->print_object);
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Reused;
}
} else if (! new_instances.empty()) {
auto print_object = new SLAPrintObject(this, &model_object);
// FIXME: this invalidates the transformed mesh in SLAPrintObject
// which is expensive to calculate (especially the raw_mesh() call)
print_object->set_trafo(sla_trafo(*this, model_object), model_object.instances.front()->is_left_handed());
print_object->set_instances(std::move(new_instances));
print_object->config_apply(config, true);
print_objects_new.emplace_back(print_object);
new_objects = true;
}
}
if (m_objects != print_objects_new) {
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
bool deleted_objects = false;
for (auto &pos : print_object_status)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
deleted_objects = true;
}
if (new_objects)
update_apply_status(false);
}
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
return static_cast<ApplyStatus>(apply_status);
}
// After calling the apply() function, set_task() may be called to limit the task to be processed by process().
void SLAPrint::set_task(const TaskParams &params)
{
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
int n_object_steps = int(params.to_object_step) + 1;
if (n_object_steps == 0)
n_object_steps = (int)slaposCount;
if (params.single_model_object.valid()) {
// Find the print object to be processed with priority.
SLAPrintObject *print_object = nullptr;
size_t idx_print_object = 0;
for (; idx_print_object < m_objects.size(); ++ idx_print_object)
if (m_objects[idx_print_object]->model_object()->id() == params.single_model_object) {
print_object = m_objects[idx_print_object];
break;
}
assert(print_object != nullptr);
// Find out whether the priority print object is being currently processed.
bool running = false;
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[istep])
// Step was skipped, cancel.
break;
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
// No step was skipped, and a wanted step is being processed. Don't cancel.
running = true;
break;
}
}
if (! running)
this->call_cancel_callback();
// Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway.
if (params.single_model_instance_only) {
// Suppress all the steps of other instances.
for (SLAPrintObject *po : m_objects)
for (int istep = 0; istep < (int)slaposCount; ++ istep)
po->m_stepmask[istep] = false;
} else if (! running) {
// Swap the print objects, so that the selected print_object is first in the row.
// At this point the background processing must be stopped, so it is safe to shuffle print objects.
if (idx_print_object != 0)
std::swap(m_objects.front(), m_objects[idx_print_object]);
}
// and set the steps for the current object.
for (int istep = 0; istep < n_object_steps; ++ istep)
print_object->m_stepmask[istep] = true;
for (int istep = n_object_steps; istep < (int)slaposCount; ++ istep)
print_object->m_stepmask[istep] = false;
} else {
// Slicing all objects.
bool running = false;
for (SLAPrintObject *print_object : m_objects)
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[istep]) {
// Step may have been skipped. Restart.
goto loop_end;
}
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
// This step is running, and the state cannot be changed due to the this->state_mutex() being locked.
// It is safe to manipulate m_stepmask of other SLAPrintObjects and SLAPrint now.
running = true;
goto loop_end;
}
}
loop_end:
if (! running)
this->call_cancel_callback();
for (SLAPrintObject *po : m_objects) {
for (int istep = 0; istep < n_object_steps; ++ istep)
po->m_stepmask[istep] = true;
for (int istep = n_object_steps; istep < (int)slaposCount; ++ istep)
po->m_stepmask[istep] = false;
}
}
if (params.to_object_step != -1 || params.to_print_step != -1) {
// Limit the print steps.
size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1;
for (; istep < m_stepmask.size(); ++ istep)
m_stepmask[istep] = false;
}
}
// Clean up after process() finished, either with success, error or if canceled.
// The adjustments on the SLAPrint / SLAPrintObject data due to set_task() are to be reverted here.
void SLAPrint::finalize()
{
for (SLAPrintObject *po : m_objects)
for (int istep = 0; istep < (int)slaposCount; ++ istep)
po->m_stepmask[istep] = true;
for (int istep = 0; istep < (int)slapsCount; ++ istep)
m_stepmask[istep] = true;
}
// Generate a recommended output file name based on the format template, default extension, and template parameters
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized).
std::string SLAPrint::output_filename() const
{
DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
return this->PrintBase::output_filename(m_print_config.output_filename_format.value, "sl1", &config);
}
namespace {
// Compile the argument for support creation from the static print config.
sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c) {
sla::SupportConfig scfg;
scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat();
scfg.head_back_radius_mm = 0.5*c.support_pillar_diameter.getFloat();
scfg.head_penetration_mm = c.support_head_penetration.getFloat();
scfg.head_width_mm = c.support_head_width.getFloat();
scfg.object_elevation_mm = c.support_object_elevation.getFloat();
scfg.bridge_slope = c.support_critical_angle.getFloat() * PI / 180.0 ;
scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat();
scfg.max_pillar_link_distance_mm = c.support_max_pillar_link_distance.getFloat();
switch(c.support_pillar_connection_mode.getInt()) {
case slapcmZigZag:
scfg.pillar_connection_mode = sla::PillarConnectionMode::zigzag; break;
case slapcmCross:
scfg.pillar_connection_mode = sla::PillarConnectionMode::cross; break;
case slapcmDynamic:
scfg.pillar_connection_mode = sla::PillarConnectionMode::dynamic; break;
}
scfg.ground_facing_only = c.support_buildplate_only.getBool();
scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat();
scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat();
scfg.base_height_mm = c.support_base_height.getFloat();
return scfg;
}
sla::PoolConfig make_pool_config(const SLAPrintObjectConfig& c) {
sla::PoolConfig pcfg;
pcfg.min_wall_thickness_mm = c.pad_wall_thickness.getFloat();
pcfg.wall_slope = c.pad_wall_slope.getFloat();
pcfg.edge_radius_mm = c.pad_edge_radius.getFloat();
pcfg.max_merge_distance_mm = c.pad_max_merge_distance.getFloat();
pcfg.min_wall_height_mm = c.pad_wall_height.getFloat();
return pcfg;
}
}
std::string SLAPrint::validate() const
{
for(SLAPrintObject * po : m_objects) {
const ModelObject *mo = po->model_object();
bool supports_en = po->config().supports_enable.getBool();
if(supports_en &&
mo->sla_points_status == sla::PointsStatus::UserModified &&
mo->sla_support_points.empty())
return L("Cannot proceed without support points! "
"Add support points or disable support generation.");
sla::SupportConfig cfg = make_support_cfg(po->config());
double pinhead_width =
2 * cfg.head_front_radius_mm +
cfg.head_width_mm +
2 * cfg.head_back_radius_mm -
cfg.head_penetration_mm;
if(supports_en && pinhead_width > cfg.object_elevation_mm)
return L("Elevation is too low for object.");
}
return "";
}
bool SLAPrint::invalidate_step(SLAPrintStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slapsMergeSlicesAndEval) {
invalidated |= this->invalidate_all_steps();
}
return invalidated;
}
void SLAPrint::process()
{
using namespace sla;
using ExPolygon = Slic3r::ExPolygon;
if(m_objects.empty()) return;
// Assumption: at this point the print objects should be populated only with
// the model objects we have to process and the instances are also filtered
// shortcut to initial layer height
double ilhd = m_material_config.initial_layer_height.getFloat();
auto ilh = float(ilhd);
auto ilhs = coord_t(ilhd / SCALING_FACTOR);
const size_t objcount = m_objects.size();
const unsigned min_objstatus = 0; // where the per object operations start
const unsigned max_objstatus = 50; // where the per object operations end
// the coefficient that multiplies the per object status values which
// are set up for <0, 100>. They need to be scaled into the whole process
const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0);
// The slicing will be performed on an imaginary 1D grid which starts from
// the bottom of the bounding box created around the supported model. So
// the first layer which is usually thicker will be part of the supports
// not the model geometry. Exception is when the model is not in the air
// (elevation is zero) and no pad creation was requested. In this case the
// model geometry starts on the ground level and the initial layer is part
// of it. In any case, the model and the supports have to be sliced in the
// same imaginary grid (the height vector argument to TriangleMeshSlicer).
// Slicing the model object. This method is oversimplified and needs to
// be compared with the fff slicing algorithm for verification
auto slice_model = [this, ilhs, ilh](SLAPrintObject& po) {
TriangleMesh mesh = po.transformed_mesh();
// We need to prepare the slice index...
double lhd = m_objects.front()->m_config.layer_height.getFloat();
float lh = float(lhd);
auto lhs = coord_t(lhd / SCALING_FACTOR);
auto&& bb3d = mesh.bounding_box();
double minZ = bb3d.min(Z) - po.get_elevation();
double maxZ = bb3d.max(Z);
auto minZs = coord_t(minZ / SCALING_FACTOR);
auto maxZs = coord_t(maxZ / SCALING_FACTOR);
po.m_slice_index.clear();
po.m_slice_index.reserve(size_t(maxZs - (minZs + ilhs) / lhs) + 1);
po.m_slice_index.emplace_back(minZs + ilhs, float(minZ) + ilh / 2.f, ilh);
for(coord_t h = minZs + ilhs + lhs; h <= maxZs; h += lhs) {
po.m_slice_index.emplace_back(h, float(h*SCALING_FACTOR) - lh / 2.f, lh);
}
// Just get the first record that is form the model:
auto slindex_it =
po.closest_slice_record(po.m_slice_index, float(bb3d.min(Z)));
if(slindex_it == po.m_slice_index.end())
//TRN To be shown at the status bar on SLA slicing error.
throw std::runtime_error(L("Slicing had to be stopped "
"due to an internal error."));
po.m_model_height_levels.clear();
po.m_model_height_levels.reserve(po.m_slice_index.size());
for(auto it = slindex_it; it != po.m_slice_index.end(); ++it)
{
po.m_model_height_levels.emplace_back(it->slice_level());
}
mesh.require_shared_vertices(); // TriangleMeshSlicer needs this
TriangleMeshSlicer slicer(&mesh);
po.m_model_slices.clear();
slicer.slice(po.m_model_height_levels,
float(po.config().slice_closing_radius.value),
&po.m_model_slices,
[this](){ throw_if_canceled(); });
auto mit = slindex_it;
double doffs = m_printer_config.absolute_correction.getFloat();
coord_t clpr_offs = coord_t(doffs / SCALING_FACTOR);
for(size_t id = 0;
id < po.m_model_slices.size() && mit != po.m_slice_index.end();
id++)
{
// We apply the printer correction offset here.
if(clpr_offs != 0)
po.m_model_slices[id] =
offset_ex(po.m_model_slices[id], clpr_offs);
mit->set_model_slice_idx(po, id); ++mit;
}
};
// In this step we check the slices, identify island and cover them with
// support points. Then we sprinkle the rest of the mesh.
auto support_points = [this, ostepd](SLAPrintObject& po) {
const ModelObject& mo = *po.m_model_object;
po.m_supportdata.reset(
new SLAPrintObject::SupportData(po.transformed_mesh()) );
// If supports are disabled, we can skip the model scan.
if(!po.m_config.supports_enable.getBool()) return;
BOOST_LOG_TRIVIAL(debug) << "Support point count "
<< mo.sla_support_points.size();
// Unless the user modified the points or we already did the calculation, we will do
// the autoplacement. Otherwise we will just blindly copy the frontend data
// into the backend cache.
if (mo.sla_points_status != sla::PointsStatus::UserModified) {
// Hypotetical use of the slice index:
// auto bb = po.transformed_mesh().bounding_box();
// auto range = po.get_slice_records(bb.min(Z));
// std::vector<float> heights; heights.reserve(range.size());
// for(auto& record : range) heights.emplace_back(record.slice_level());
// calculate heights of slices (slices are calculated already)
const std::vector<float>& heights = po.m_model_height_levels;
this->throw_if_canceled();
SLAAutoSupports::Config config;
const SLAPrintObjectConfig& cfg = po.config();
// the density config value is in percents:
config.density_relative = float(cfg.support_points_density_relative / 100.f);
config.minimal_distance = float(cfg.support_points_minimal_distance);
config.head_diameter = float(cfg.support_head_front_diameter);
// scaling for the sub operations
double d = ostepd * OBJ_STEP_LEVELS[slaposSupportPoints] / 100.0;
double init = m_report_status.status();
auto statuscb = [this, d, init](unsigned st)
{
double current = init + st * d;
if(std::round(m_report_status.status()) < std::round(current))
m_report_status(*this, current,
OBJ_STEP_LABELS[slaposSupportPoints]);
};
// Construction of this object does the calculation.
this->throw_if_canceled();
SLAAutoSupports auto_supports(po.transformed_mesh(),
po.m_supportdata->emesh,
po.get_model_slices(),
heights,
config,
[this]() { throw_if_canceled(); },
statuscb);
// Now let's extract the result.
const std::vector<sla::SupportPoint>& points = auto_supports.output();
this->throw_if_canceled();
po.m_supportdata->support_points = points;
BOOST_LOG_TRIVIAL(debug) << "Automatic support points: "
<< po.m_supportdata->support_points.size();
// Using RELOAD_SLA_SUPPORT_POINTS to tell the Plater to pass the update status to GLGizmoSlaSupports
m_report_status(*this, -1, L("Generating support points"), SlicingStatus::RELOAD_SLA_SUPPORT_POINTS);
}
else {
// There are either some points on the front-end, or the user removed them on purpose. No calculation will be done.
po.m_supportdata->support_points = po.transformed_support_points();
}
};
// In this step we create the supports
auto support_tree = [this, ostepd](SLAPrintObject& po)
{
if(!po.m_supportdata) return;
if(!po.m_config.supports_enable.getBool()) {
// Generate empty support tree. It can still host a pad
po.m_supportdata->support_tree_ptr.reset(new SLASupportTree());
return;
}
sla::SupportConfig scfg = make_support_cfg(po.m_config);
sla::Controller ctl;
// scaling for the sub operations
double d = ostepd * OBJ_STEP_LEVELS[slaposSupportTree] / 100.0;
double init = m_report_status.status();
ctl.statuscb = [this, d, init](unsigned st, const std::string&)
{
double current = init + st * d;
if(std::round(m_report_status.status()) < std::round(current))
m_report_status(*this, current,
OBJ_STEP_LABELS[slaposSupportTree]);
};
ctl.stopcondition = [this](){ return canceled(); };
ctl.cancelfn = [this]() { throw_if_canceled(); };
po.m_supportdata->support_tree_ptr.reset(
new SLASupportTree(po.m_supportdata->support_points,
po.m_supportdata->emesh, scfg, ctl));
throw_if_canceled();
// Create the unified mesh
auto rc = SlicingStatus::RELOAD_SCENE;
// This is to prevent "Done." being displayed during merged_mesh()
m_report_status(*this, -1, L("Visualizing supports"));
po.m_supportdata->support_tree_ptr->merged_mesh();
BOOST_LOG_TRIVIAL(debug) << "Processed support point count "
<< po.m_supportdata->support_points.size();
// Check the mesh for later troubleshooting.
if(po.support_mesh().empty())
BOOST_LOG_TRIVIAL(warning) << "Support mesh is empty";
m_report_status(*this, -1, L("Visualizing supports"), rc);
};
// This step generates the sla base pad
auto base_pool = [this](SLAPrintObject& po) {
// this step can only go after the support tree has been created
// and before the supports had been sliced. (or the slicing has to be
// repeated)
if(!po.m_supportdata || !po.m_supportdata->support_tree_ptr) {
BOOST_LOG_TRIVIAL(error) << "Uninitialized support data at "
<< "pad creation.";
return;
}
if(po.m_config.pad_enable.getBool())
{
double wt = po.m_config.pad_wall_thickness.getFloat();
double h = po.m_config.pad_wall_height.getFloat();
double md = po.m_config.pad_max_merge_distance.getFloat();
// Radius is disabled for now...
double er = 0; // po.m_config.pad_edge_radius.getFloat();
double tilt = po.m_config.pad_wall_slope.getFloat() * PI / 180.0;
double lh = po.m_config.layer_height.getFloat();
double elevation = po.m_config.support_object_elevation.getFloat();
if(!po.m_config.supports_enable.getBool()) elevation = 0;
sla::PoolConfig pcfg(wt, h, md, er, tilt);
ExPolygons bp;
double pad_h = sla::get_pad_fullheight(pcfg);
auto&& trmesh = po.transformed_mesh();
// This call can get pretty time consuming
auto thrfn = [this](){ throw_if_canceled(); };
if(elevation < pad_h) {
// we have to count with the model geometry for the base plate
sla::base_plate(trmesh, bp, float(pad_h), float(lh), thrfn);
}
pcfg.throw_on_cancel = thrfn;
po.m_supportdata->support_tree_ptr->add_pad(bp, pcfg);
} else {
po.m_supportdata->support_tree_ptr->remove_pad();
}
po.throw_if_canceled();
auto rc = SlicingStatus::RELOAD_SCENE;
m_report_status(*this, -1, L("Visualizing supports"), rc);
};
// Slicing the support geometries similarly to the model slicing procedure.
// If the pad had been added previously (see step "base_pool" than it will
// be part of the slices)
auto slice_supports = [this](SLAPrintObject& po) {
auto& sd = po.m_supportdata;
if(sd) sd->support_slices.clear();
if(sd && sd->support_tree_ptr) {
std::vector<float> heights; heights.reserve(po.m_slice_index.size());
for(auto& rec : po.m_slice_index) {
heights.emplace_back(rec.slice_level());
}
sd->support_slices = sd->support_tree_ptr->slice(
heights, float(po.config().slice_closing_radius.value));
}
double doffs = m_printer_config.absolute_correction.getFloat();
coord_t clpr_offs = coord_t(doffs / SCALING_FACTOR);
for(size_t i = 0;
i < sd->support_slices.size() && i < po.m_slice_index.size();
++i)
{
// We apply the printer correction offset here.
if(clpr_offs != 0)
sd->support_slices[i] =
offset_ex(sd->support_slices[i], clpr_offs);
po.m_slice_index[i].set_support_slice_idx(po, i);
}
// Using RELOAD_SLA_PREVIEW to tell the Plater to pass the update status to the 3D preview to load the SLA slices.
m_report_status(*this, -2, "", SlicingStatus::RELOAD_SLA_PREVIEW);
};
// Merging the slices from all the print objects into one slice grid and
// calculating print statistics from the merge result.
auto merge_slices_and_eval_stats = [this, ilhs]() {
// clear the rasterizer input
m_printer_input.clear();
size_t mx = 0;
for(SLAPrintObject * o : m_objects) {
if(auto m = o->get_slice_index().size() > mx) mx = m;
}
m_printer_input.reserve(mx);
auto eps = coord_t(SCALED_EPSILON);
for(SLAPrintObject * o : m_objects) {
coord_t gndlvl = o->get_slice_index().front().print_level() - ilhs;
for(const SliceRecord& slicerecord : o->get_slice_index()) {
coord_t lvlid = slicerecord.print_level() - gndlvl;
// Neat trick to round the layer levels to the grid.
lvlid = eps * (lvlid / eps);
auto it = std::lower_bound(m_printer_input.begin(),
m_printer_input.end(),
PrintLayer(lvlid));
if(it == m_printer_input.end() || it->level() != lvlid)
it = m_printer_input.insert(it, PrintLayer(lvlid));
it->add(slicerecord);
}
}
m_print_statistics.clear();
using ClipperPoint = ClipperLib::IntPoint;
using ClipperPolygon = ClipperLib::Polygon; // see clipper_polygon.hpp in libnest2d
using ClipperPolygons = std::vector<ClipperPolygon>;
namespace sl = libnest2d::shapelike; // For algorithms
// If the raster has vertical orientation, we will flip the coordinates
bool flpXY = m_printer_config.display_orientation.getInt() == SLADisplayOrientation::sladoPortrait;
// Set up custom union and diff functions for clipper polygons
auto polyunion = [] (const ClipperPolygons& subjects)
{
ClipperLib::Clipper clipper;
bool closed = true;
for(auto& path : subjects) {
clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
clipper.AddPaths(path.Holes, ClipperLib::ptSubject, closed);
}
auto mode = ClipperLib::pftPositive;
return libnest2d::clipper_execute(clipper, ClipperLib::ctUnion, mode, mode);
};
auto polydiff = [](const ClipperPolygons& subjects, const ClipperPolygons& clips)
{
ClipperLib::Clipper clipper;
bool closed = true;
for(auto& path : subjects) {
clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
clipper.AddPaths(path.Holes, ClipperLib::ptSubject, closed);
}
for(auto& path : clips) {
clipper.AddPath(path.Contour, ClipperLib::ptClip, closed);
clipper.AddPaths(path.Holes, ClipperLib::ptClip, closed);
}
auto mode = ClipperLib::pftPositive;
return libnest2d::clipper_execute(clipper, ClipperLib::ctDifference, mode, mode);
};
// libnest calculates positive area for clockwise polygons, Slic3r is in counter-clockwise
auto areafn = [](const ClipperPolygon& poly) { return - sl::area(poly); };
const double area_fill = m_printer_config.area_fill.getFloat()*0.01;// 0.5 (50%);
const double fast_tilt = m_printer_config.fast_tilt_time.getFloat();// 5.0;
const double slow_tilt = m_printer_config.slow_tilt_time.getFloat();// 8.0;
const double init_exp_time = m_material_config.initial_exposure_time.getFloat();
const double exp_time = m_material_config.exposure_time.getFloat();
const int fade_layers_cnt = m_default_object_config.faded_layers.getInt();// 10 // [3;20]
const double width = m_printer_config.display_width.getFloat() / SCALING_FACTOR;
const double height = m_printer_config.display_height.getFloat() / SCALING_FACTOR;
const double display_area = width*height;
const coord_t clpr_back_offs = - coord_t(m_printer_config.absolute_correction.getFloat() / SCALING_FACTOR);
// get polygons for all instances in the object
auto get_all_polygons =
[flpXY](const ExPolygons& input_polygons,
const std::vector<SLAPrintObject::Instance>& instances,
bool is_lefthanded)
{
ClipperPolygons polygons;
polygons.reserve(input_polygons.size() * instances.size());
for (const ExPolygon& polygon : input_polygons) {
if(polygon.contour.empty()) continue;
for (size_t i = 0; i < instances.size(); ++i)
{
ClipperPolygon poly;
// We need to reverse if flpXY OR is_lefthanded is true but
// not if both are true which is a logical inequality (XOR)
bool needreverse = flpXY != is_lefthanded;
// should be a move
poly.Contour.reserve(polygon.contour.size() + 1);
auto& cntr = polygon.contour.points;
if(needreverse)
for(auto it = cntr.rbegin(); it != cntr.rend(); ++it)
poly.Contour.emplace_back(it->x(), it->y());
else
for(auto& p : cntr)
poly.Contour.emplace_back(p.x(), p.y());
for(auto& h : polygon.holes) {
poly.Holes.emplace_back();
auto& hole = poly.Holes.back();
hole.reserve(h.points.size() + 1);
if(needreverse)
for(auto it = h.points.rbegin(); it != h.points.rend(); ++it)
hole.emplace_back(it->x(), it->y());
else
for(auto& p : h.points)
hole.emplace_back(p.x(), p.y());
}
if(is_lefthanded) {
for(auto& p : poly.Contour) p.X = -p.X;
for(auto& h : poly.Holes) for(auto& p : h) p.X = -p.X;
}
sl::rotate(poly, double(instances[i].rotation));
sl::translate(poly, ClipperPoint{instances[i].shift(X),
instances[i].shift(Y)});
if (flpXY) {
for(auto& p : poly.Contour) std::swap(p.X, p.Y);
for(auto& h : poly.Holes) for(auto& p : h) std::swap(p.X, p.Y);
}
polygons.emplace_back(std::move(poly));
}
}
return polygons;
};
double supports_volume(0.0);
double models_volume(0.0);
double estim_time(0.0);
size_t slow_layers = 0;
size_t fast_layers = 0;
const double delta_fade_time = (init_exp_time - exp_time) / (fade_layers_cnt + 1);
double fade_layer_time = init_exp_time;
SpinMutex mutex;
using Lock = std::lock_guard<SpinMutex>;
// Going to parallel:
auto printlayerfn = [this,
// functions and read only vars
get_all_polygons, polyunion, polydiff, areafn,
area_fill, display_area, exp_time, init_exp_time, fast_tilt, slow_tilt, delta_fade_time, clpr_back_offs,
// write vars
&mutex, &models_volume, &supports_volume, &estim_time, &slow_layers,
&fast_layers, &fade_layer_time](size_t sliced_layer_cnt)
{
PrintLayer& layer = m_printer_input[sliced_layer_cnt];
// vector of slice record references
auto& slicerecord_references = layer.slices();
if(slicerecord_references.empty()) return;
// Layer height should match for all object slices for a given level.
const auto l_height = double(slicerecord_references.front().get().layer_height());
// Calculation of the consumed material
ClipperPolygons model_polygons;
ClipperPolygons supports_polygons;
size_t c = std::accumulate(layer.slices().begin(), layer.slices().end(), 0u, [](size_t a, const SliceRecord& sr) {
return a + sr.get_slice(soModel).size();
});
model_polygons.reserve(c);
c = std::accumulate(layer.slices().begin(), layer.slices().end(), 0u, [](size_t a, const SliceRecord& sr) {
return a + sr.get_slice(soModel).size();
});
supports_polygons.reserve(c);
for(const SliceRecord& record : layer.slices()) {
const SLAPrintObject *po = record.print_obj();
const ExPolygons &rawmodelslices = record.get_slice(soModel);
const ExPolygons &modelslices = clpr_back_offs != 0 ? offset_ex(rawmodelslices, clpr_back_offs) : rawmodelslices;
bool is_lefth = record.print_obj()->is_left_handed();
if (!modelslices.empty()) {
ClipperPolygons v = get_all_polygons(modelslices, po->instances(), is_lefth);
for(ClipperPolygon& p_tmp : v) model_polygons.emplace_back(std::move(p_tmp));
}
const ExPolygons &rawsupportslices = record.get_slice(soSupport);
const ExPolygons &supportslices = clpr_back_offs != 0 ? offset_ex(rawsupportslices, clpr_back_offs) : rawsupportslices;
if (!supportslices.empty()) {
ClipperPolygons v = get_all_polygons(supportslices, po->instances(), is_lefth);
for(ClipperPolygon& p_tmp : v) supports_polygons.emplace_back(std::move(p_tmp));
}
}
model_polygons = polyunion(model_polygons);
double layer_model_area = 0;
for (const ClipperPolygon& polygon : model_polygons)
layer_model_area += areafn(polygon);
if (layer_model_area < 0 || layer_model_area > 0) {
Lock lck(mutex); models_volume += layer_model_area * l_height;
}
if(!supports_polygons.empty()) {
if(model_polygons.empty()) supports_polygons = polyunion(supports_polygons);
else supports_polygons = polydiff(supports_polygons, model_polygons);
// allegedly, union of subject is done withing the diff according to the pftPositive polyFillType
}
double layer_support_area = 0;
for (const ClipperPolygon& polygon : supports_polygons)
layer_support_area += areafn(polygon);
if (layer_support_area < 0 || layer_support_area > 0) {
Lock lck(mutex); supports_volume += layer_support_area * l_height;
}
// Here we can save the expensively calculated polygons for printing
ClipperPolygons trslices;
trslices.reserve(model_polygons.size() + supports_polygons.size());
for(ClipperPolygon& poly : model_polygons) trslices.emplace_back(std::move(poly));
for(ClipperPolygon& poly : supports_polygons) trslices.emplace_back(std::move(poly));
layer.transformed_slices(polyunion(trslices));
// Calculation of the slow and fast layers to the future controlling those values on FW
const bool is_fast_layer = (layer_model_area + layer_support_area) <= display_area*area_fill;
const double tilt_time = is_fast_layer ? fast_tilt : slow_tilt;
{ Lock lck(mutex);
if (is_fast_layer)
fast_layers++;
else
slow_layers++;
// Calculation of the printing time
if (sliced_layer_cnt < 3)
estim_time += init_exp_time;
else if (fade_layer_time > exp_time)
{
fade_layer_time -= delta_fade_time;
estim_time += fade_layer_time;
}
else
estim_time += exp_time;
estim_time += tilt_time;
}
};
// sequential version for debugging:
// for(size_t i = 0; i < m_printer_input.size(); ++i) printlayerfn(i);
tbb::parallel_for<size_t, decltype(printlayerfn)>(0, m_printer_input.size(), printlayerfn);
m_print_statistics.support_used_material = supports_volume * SCALING_FACTOR * SCALING_FACTOR;
m_print_statistics.objects_used_material = models_volume * SCALING_FACTOR * SCALING_FACTOR;
// Estimated printing time
// A layers count o the highest object
if (m_printer_input.size() == 0)
m_print_statistics.estimated_print_time = "N/A";
else
m_print_statistics.estimated_print_time = get_time_dhms(float(estim_time));
m_print_statistics.fast_layers_count = fast_layers;
m_print_statistics.slow_layers_count = slow_layers;
m_report_status(*this, -2, "", SlicingStatus::RELOAD_SLA_PREVIEW);
};
// Rasterizing the model objects, and their supports
auto rasterize = [this, max_objstatus]() {
if(canceled()) return;
// collect all the keys
// If the raster has vertical orientation, we will flip the coordinates
bool flpXY = m_printer_config.display_orientation.getInt() ==
SLADisplayOrientation::sladoPortrait;
{ // create a raster printer for the current print parameters
// I don't know any better
auto& ocfg = m_objects.front()->m_config;
auto& matcfg = m_material_config;
auto& printcfg = m_printer_config;
double w = printcfg.display_width.getFloat();
double h = printcfg.display_height.getFloat();
auto pw = unsigned(printcfg.display_pixels_x.getInt());
auto ph = unsigned(printcfg.display_pixels_y.getInt());
double lh = ocfg.layer_height.getFloat();
double exp_t = matcfg.exposure_time.getFloat();
double iexp_t = matcfg.initial_exposure_time.getFloat();
double gamma = m_printer_config.gamma_correction.getFloat();
if(flpXY) { std::swap(w, h); std::swap(pw, ph); }
m_printer.reset(
new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t,
flpXY? SLAPrinter::RO_PORTRAIT :
SLAPrinter::RO_LANDSCAPE,
gamma));
}
// Allocate space for all the layers
SLAPrinter& printer = *m_printer;
auto lvlcnt = unsigned(m_printer_input.size());
printer.layers(lvlcnt);
// coefficient to map the rasterization state (0-99) to the allocated
// portion (slot) of the process state
double sd = (100 - max_objstatus) / 100.0;
// slot is the portion of 100% that is realted to rasterization
unsigned slot = PRINT_STEP_LEVELS[slapsRasterize];
// pst: previous state
double pst = m_report_status.status();
double increment = (slot * sd) / m_printer_input.size();
double dstatus = m_report_status.status();
SpinMutex slck;
// procedure to process one height level. This will run in parallel
auto lvlfn =
[this, &slck, &printer, increment, &dstatus, &pst]
(unsigned level_id)
{
if(canceled()) return;
PrintLayer& printlayer = m_printer_input[level_id];
// Switch to the appropriate layer in the printer
printer.begin_layer(level_id);
for(const ClipperLib::Polygon& poly : printlayer.transformed_slices())
printer.draw_polygon(poly, level_id);
// Finish the layer for later saving it.
printer.finish_layer(level_id);
// Status indication guarded with the spinlock
{
std::lock_guard<SpinMutex> lck(slck);
dstatus += increment;
double st = std::round(dstatus);
if(st > pst) {
m_report_status(*this, st,
PRINT_STEP_LABELS[slapsRasterize]);
pst = st;
}
}
};
// last minute escape
if(canceled()) return;
// Sequential version (for testing)
// for(unsigned l = 0; l < lvlcnt; ++l) process_level(l);
// Print all the layers in parallel
tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
// Set statistics values to the printer
m_printer->set_statistics({(m_print_statistics.objects_used_material + m_print_statistics.support_used_material)/1000,
double(m_default_object_config.faded_layers.getInt()),
double(m_print_statistics.slow_layers_count),
double(m_print_statistics.fast_layers_count)
});
};
using slaposFn = std::function<void(SLAPrintObject&)>;
using slapsFn = std::function<void(void)>;
std::array<slaposFn, slaposCount> pobj_program =
{
slice_model,
support_points,
support_tree,
base_pool,
slice_supports
};
std::array<slapsFn, slapsCount> print_program =
{
merge_slices_and_eval_stats,
rasterize
};
double st = min_objstatus;
unsigned incr = 0;
BOOST_LOG_TRIVIAL(info) << "Start slicing process.";
// TODO: this loop could run in parallel but should not exhaust all the CPU
// power available
// Calculate the support structures first before slicing the supports, so that the preview will get displayed ASAP for all objects.
std::vector<SLAPrintObjectStep> step_ranges = { slaposObjectSlice, slaposSliceSupports, slaposCount };
for (size_t idx_range = 0; idx_range + 1 < step_ranges.size(); ++ idx_range) {
for(SLAPrintObject * po : m_objects) {
BOOST_LOG_TRIVIAL(info) << "Slicing object " << po->model_object()->name;
for (int s = int(step_ranges[idx_range]); s < int(step_ranges[idx_range + 1]); ++s) {
auto currentstep = static_cast<SLAPrintObjectStep>(s);
// Cancellation checking. Each step will check for cancellation
// on its own and return earlier gracefully. Just after it returns
// execution gets to this point and throws the canceled signal.
throw_if_canceled();
st += incr * ostepd;
if(po->m_stepmask[currentstep] && po->set_started(currentstep)) {
m_report_status(*this, st, OBJ_STEP_LABELS[currentstep]);
pobj_program[currentstep](*po);
throw_if_canceled();
po->set_done(currentstep);
}
incr = OBJ_STEP_LEVELS[currentstep];
}
}
}
std::array<SLAPrintStep, slapsCount> printsteps = {
slapsMergeSlicesAndEval, slapsRasterize
};
// this would disable the rasterization step
// m_stepmask[slapsRasterize] = false;
double pstd = (100 - max_objstatus) / 100.0;
st = max_objstatus;
for(size_t s = 0; s < print_program.size(); ++s) {
auto currentstep = printsteps[s];
throw_if_canceled();
if(m_stepmask[currentstep] && set_started(currentstep))
{
m_report_status(*this, st, PRINT_STEP_LABELS[currentstep]);
print_program[currentstep]();
throw_if_canceled();
set_done(currentstep);
}
st += PRINT_STEP_LEVELS[currentstep] * pstd;
}
// If everything vent well
m_report_status(*this, 100, L("Slicing done"));
}
bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys, bool &invalidate_all_model_objects)
{
if (opt_keys.empty())
return false;
static std::unordered_set<std::string> steps_full = {
"initial_layer_height",
"material_correction",
"relative_correction",
"absolute_correction",
"gamma_correction"
};
// Cache the plenty of parameters, which influence the final rasterization only,
// or they are only notes not influencing the rasterization step.
static std::unordered_set<std::string> steps_rasterize = {
"exposure_time",
"initial_exposure_time",
"display_width",
"display_height",
"display_pixels_x",
"display_pixels_y",
"display_orientation"
};
static std::unordered_set<std::string> steps_ignore = {
"bed_shape",
"max_print_height",
"printer_technology",
"output_filename_format",
"fast_tilt_time",
"slow_tilt_time",
"area_fill"
};
std::vector<SLAPrintStep> steps;
std::vector<SLAPrintObjectStep> osteps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_rasterize.find(opt_key) != steps_rasterize.end()) {
// These options only affect the final rasterization, or they are just notes without influence on the output,
// so there is nothing to invalidate.
steps.emplace_back(slapsMergeSlicesAndEval);
} else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
// These steps have no influence on the output. Just ignore them.
} else if (steps_full.find(opt_key) != steps_full.end()) {
steps.emplace_back(slapsMergeSlicesAndEval);
osteps.emplace_back(slaposObjectSlice);
invalidate_all_model_objects = true;
} else {
// All values should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintStep step : steps)
invalidated |= this->invalidate_step(step);
sort_remove_duplicates(osteps);
for (SLAPrintObjectStep ostep : osteps)
for (SLAPrintObject *object : m_objects)
invalidated |= object->invalidate_step(ostep);
return invalidated;
}
// Returns true if an object step is done on all objects and there's at least one object.
bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
{
if (m_objects.empty())
return false;
tbb::mutex::scoped_lock lock(this->state_mutex());
for (const SLAPrintObject *object : m_objects)
if (! object->is_step_done_unguarded(step))
return false;
return true;
}
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
Inherited(print, model_object),
m_stepmask(slaposCount, true),
m_transformed_rmesh( [this](TriangleMesh& obj){
obj = m_model_object->raw_mesh(); obj.transform(m_trafo);
})
{
}
SLAPrintObject::~SLAPrintObject() {}
// Called by SLAPrint::apply_config().
// This method only accepts SLAPrintObjectConfig option keys.
bool SLAPrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<SLAPrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "layer_height"
|| opt_key == "faded_layers"
|| opt_key == "pad_enable"
|| opt_key == "pad_wall_thickness"
|| opt_key == "supports_enable"
|| opt_key == "support_object_elevation"
|| opt_key == "slice_closing_radius") {
steps.emplace_back(slaposObjectSlice);
} else if (
opt_key == "support_points_density_relative"
|| opt_key == "support_points_minimal_distance") {
steps.emplace_back(slaposSupportPoints);
} else if (
opt_key == "support_head_front_diameter"
|| opt_key == "support_head_penetration"
|| opt_key == "support_head_width"
|| opt_key == "support_pillar_diameter"
|| opt_key == "support_pillar_connection_mode"
|| opt_key == "support_buildplate_only"
|| opt_key == "support_base_diameter"
|| opt_key == "support_base_height"
|| opt_key == "support_critical_angle"
|| opt_key == "support_max_bridge_length"
|| opt_key == "support_max_pillar_link_distance"
) {
steps.emplace_back(slaposSupportTree);
} else if (
opt_key == "pad_wall_height"
|| opt_key == "pad_max_merge_distance"
|| opt_key == "pad_wall_slope"
|| opt_key == "pad_edge_radius") {
steps.emplace_back(slaposBasePool);
} else {
// All keys should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slaposObjectSlice) {
invalidated |= this->invalidate_all_steps();
} else if (step == slaposSupportPoints) {
invalidated |= this->invalidate_steps({ slaposSupportTree, slaposBasePool, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSupportTree) {
invalidated |= this->invalidate_steps({ slaposBasePool, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposBasePool) {
invalidated |= this->invalidate_steps({slaposSliceSupports});
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSliceSupports) {
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
}
return invalidated;
}
bool SLAPrintObject::invalidate_all_steps()
{
return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
}
double SLAPrintObject::get_elevation() const {
bool se = m_config.supports_enable.getBool();
double ret = se? m_config.support_object_elevation.getFloat() : 0;
// if the pad is enabled, then half of the pad height is its base plate
if(m_config.pad_enable.getBool()) {
// Normally the elevation for the pad itself would be the thickness of
// its walls but currently it is half of its thickness. Whatever it
// will be in the future, we provide the config to the get_pad_elevation
// method and we will have the correct value
sla::PoolConfig pcfg = make_pool_config(m_config);
ret += sla::get_pad_elevation(pcfg);
}
return ret;
}
double SLAPrintObject::get_current_elevation() const
{
bool se = m_config.supports_enable.getBool();
bool has_supports = is_step_done(slaposSupportTree);
bool has_pad = is_step_done(slaposBasePool);
if(!has_supports && !has_pad)
return 0;
else if(has_supports && !has_pad)
return se ? m_config.support_object_elevation.getFloat() : 0;
return get_elevation();
}
Vec3d SLAPrint::relative_correction() const
{
Vec3d corr(1., 1., 1.);
if(printer_config().relative_correction.values.size() == 2) {
corr(X) = printer_config().relative_correction.values[0];
corr(Y) = printer_config().relative_correction.values[0];
corr(Z) = printer_config().relative_correction.values[1];
}
if(material_config().material_correction.values.size() == 2) {
corr(X) *= material_config().material_correction.values[0];
corr(Y) *= material_config().material_correction.values[0];
corr(Z) *= material_config().material_correction.values[1];
}
return corr;
}
namespace { // dummy empty static containers for return values in some methods
const std::vector<ExPolygons> EMPTY_SLICES;
const TriangleMesh EMPTY_MESH;
const ExPolygons EMPTY_SLICE;
}
const SliceRecord SliceRecord::EMPTY(0, std::nanf(""), 0.f);
const std::vector<sla::SupportPoint>& SLAPrintObject::get_support_points() const
{
return m_supportdata->support_points;
}
const std::vector<ExPolygons> &SLAPrintObject::get_support_slices() const
{
// assert(is_step_done(slaposSliceSupports));
if (!m_supportdata) return EMPTY_SLICES;
return m_supportdata->support_slices;
}
const ExPolygons &SliceRecord::get_slice(SliceOrigin o) const
{
size_t idx = o == soModel ? m_model_slices_idx :
m_support_slices_idx;
if(m_po == nullptr) return EMPTY_SLICE;
const std::vector<ExPolygons>& v = o == soModel? m_po->get_model_slices() :
m_po->get_support_slices();
if(idx >= v.size()) return EMPTY_SLICE;
return idx >= v.size() ? EMPTY_SLICE : v[idx];
}
bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const
{
switch (step) {
case slaposSupportTree:
return ! this->support_mesh().empty();
case slaposBasePool:
return ! this->pad_mesh().empty();
default:
return false;
}
}
TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const
{
switch (step) {
case slaposSupportTree:
return this->support_mesh();
case slaposBasePool:
return this->pad_mesh();
default:
return TriangleMesh();
}
}
const TriangleMesh& SLAPrintObject::support_mesh() const
{
if(m_config.supports_enable.getBool() && m_supportdata &&
m_supportdata->support_tree_ptr) {
return m_supportdata->support_tree_ptr->merged_mesh();
}
return EMPTY_MESH;
}
const TriangleMesh& SLAPrintObject::pad_mesh() const
{
if(m_config.pad_enable.getBool() && m_supportdata && m_supportdata->support_tree_ptr)
return m_supportdata->support_tree_ptr->get_pad();
return EMPTY_MESH;
}
const TriangleMesh &SLAPrintObject::transformed_mesh() const {
// we need to transform the raw mesh...
// currently all the instances share the same x and y rotation and scaling
// so we have to extract those from e.g. the first instance and apply to the
// raw mesh. This is also true for the support points.
// BUT: when the support structure is spawned for each instance than it has
// to omit the X, Y rotation and scaling as those have been already applied
// or apply an inverse transformation on the support structure after it
// has been created.
return m_transformed_rmesh.get();
}
std::vector<sla::SupportPoint> SLAPrintObject::transformed_support_points() const
{
assert(m_model_object != nullptr);
std::vector<sla::SupportPoint>& spts = m_model_object->sla_support_points;
// this could be cached as well
std::vector<sla::SupportPoint> ret;
ret.reserve(spts.size());
for(sla::SupportPoint& sp : spts) {
Vec3d transformed_pos = trafo() * Vec3d(sp.pos(0), sp.pos(1), sp.pos(2));
ret.emplace_back(transformed_pos(0), transformed_pos(1), transformed_pos(2), sp.head_front_radius, sp.is_new_island);
}
return ret;
}
DynamicConfig SLAPrintStatistics::config() const
{
DynamicConfig config;
const std::string print_time = Slic3r::short_time(this->estimated_print_time);
config.set_key_value("print_time", new ConfigOptionString(print_time));
config.set_key_value("objects_used_material", new ConfigOptionFloat(this->objects_used_material));
config.set_key_value("support_used_material", new ConfigOptionFloat(this->support_used_material));
config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
return config;
}
DynamicConfig SLAPrintStatistics::placeholders()
{
DynamicConfig config;
for (const std::string &key : {
"print_time", "total_cost", "total_weight",
"objects_used_material", "support_used_material" })
config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
return config;
}
std::string SLAPrintStatistics::finalize_output_path(const std::string &path_in) const
{
std::string final_path;
try {
boost::filesystem::path path(path_in);
DynamicConfig cfg = this->config();
PlaceholderParser pp;
std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
}
catch (const std::exception &ex) {
BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
final_path = path_in;
}
return final_path;
}
void SLAPrint::StatusReporter::operator()(
SLAPrint &p, double st, const std::string &msg, unsigned flags)
{
m_st = st;
BOOST_LOG_TRIVIAL(info) << st << "% " << msg;
p.set_status(int(std::round(st)), msg, flags);
}
} // namespace Slic3r