PrusaSlicer-NonPlainar/lib/Slic3r/ExtrusionPath.pm

270 lines
9.4 KiB
Perl

package Slic3r::ExtrusionPath;
use Moo;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(EXTR_ROLE_PERIMETER EXTR_ROLE_SMALLPERIMETER EXTR_ROLE_EXTERNAL_PERIMETER
EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER
EXTR_ROLE_FILL EXTR_ROLE_SOLIDFILL EXTR_ROLE_TOPSOLIDFILL EXTR_ROLE_BRIDGE EXTR_ROLE_SKIRT
EXTR_ROLE_SUPPORTMATERIAL EXTR_ROLE_GAPFILL);
our %EXPORT_TAGS = (roles => \@EXPORT_OK);
use Slic3r::Geometry qw(PI X Y epsilon deg2rad rotate_points);
# the underlying Slic3r::Polyline objects holds the geometry
has 'polyline' => (
is => 'rw',
required => 1,
handles => [qw(merge_continuous_lines lines length reverse clip_end simplify)],
);
# height is the vertical thickness of the extrusion expressed in mm
has 'height' => (is => 'rw');
has 'flow_spacing' => (is => 'rw');
has 'role' => (is => 'rw', required => 1);
use constant EXTR_ROLE_PERIMETER => 0;
use constant EXTR_ROLE_SMALLPERIMETER => 1;
use constant EXTR_ROLE_EXTERNAL_PERIMETER => 2;
use constant EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER => 3;
use constant EXTR_ROLE_FILL => 4;
use constant EXTR_ROLE_SOLIDFILL => 5;
use constant EXTR_ROLE_TOPSOLIDFILL => 6;
use constant EXTR_ROLE_BRIDGE => 7;
use constant EXTR_ROLE_SKIRT => 8;
use constant EXTR_ROLE_SUPPORTMATERIAL => 9;
use constant EXTR_ROLE_GAPFILL => 10;
use constant PACK_FMT => 'ffca*';
# class or object method
sub pack {
my $self = shift;
my %args = @_;
if (ref $self) {
%args = map { $_ => $self->$_ } qw(height flow_spacing role polyline);
}
my $o = \ pack PACK_FMT,
$args{height} // -1,
$args{flow_spacing} || -1,
$args{role} // (die "Missing mandatory attribute 'role'"), #/
$args{polyline}->serialize;
bless $o, 'Slic3r::ExtrusionPath::Packed';
return $o;
}
# no-op, this allows to use both packed and non-packed objects in Collections
sub unpack { $_[0] }
sub clip_with_polygon {
my $self = shift;
my ($polygon) = @_;
return $self->clip_with_expolygon(Slic3r::ExPolygon->new($polygon));
}
sub clip_with_expolygon {
my $self = shift;
my ($expolygon) = @_;
my @paths = ();
foreach my $polyline ($self->polyline->clip_with_expolygon($expolygon)) {
push @paths, (ref $self)->new(
polyline => $polyline,
height => $self->height,
flow_spacing => $self->flow_spacing,
role => $self->role,
);
}
return @paths;
}
sub points {
my $self = shift;
return $self->polyline;
}
sub endpoints {
my $self = shift;
return ($self->points->[0], $self->points->[-1]);
}
sub is_printable { 1 }
sub split_at_acute_angles {
my $self = shift;
# calculate angle limit
my $angle_limit = abs(Slic3r::Geometry::deg2rad(40));
my @points = @{$self->p};
my @paths = ();
# take first two points
my @p = splice @points, 0, 2;
# loop until we have one spare point
while (my $p3 = shift @points) {
my $angle = abs(Slic3r::Geometry::angle3points($p[-1], $p[-2], $p3));
$angle = 2*PI - $angle if $angle > PI;
if ($angle < $angle_limit) {
# if the angle between $p[-2], $p[-1], $p3 is too acute
# then consider $p3 only as a starting point of a new
# path and stop the current one as it is
push @paths, (ref $self)->new(
polyline => Slic3r::Polyline->new(\@p),
role => $self->role,
height => $self->height,
);
@p = ($p3);
push @p, grep $_, shift @points or last;
} else {
push @p, $p3;
}
}
push @paths, (ref $self)->new(
polyline => Slic3r::Polyline->new(\@p),
role => $self->role,
height => $self->height,
) if @p > 1;
return @paths;
}
sub detect_arcs {
my $self = shift;
my ($max_angle, $len_epsilon) = @_;
$max_angle = deg2rad($max_angle || 15);
$len_epsilon ||= 10 / &Slic3r::SCALING_FACTOR;
my $parallel_degrees_limit = abs(Slic3r::Geometry::deg2rad(3));
my @points = @{$self->points};
my @paths = ();
# we require at least 3 consecutive segments to form an arc
CYCLE: while (@points >= 4) {
POINT: for (my $i = 0; $i <= $#points - 3; $i++) {
my $s1 = Slic3r::Line->new($points[$i], $points[$i+1]);
my $s2 = Slic3r::Line->new($points[$i+1], $points[$i+2]);
my $s3 = Slic3r::Line->new($points[$i+2], $points[$i+3]);
my $s1_len = $s1->length;
my $s2_len = $s2->length;
my $s3_len = $s3->length;
# segments must have the same length
if (abs($s3_len - $s2_len) > $len_epsilon) {
# optimization: skip a cycle
$i++;
next;
}
next if abs($s2_len - $s1_len) > $len_epsilon;
# segments must have the same relative angle
my $s1_angle = $s1->atan;
my $s2_angle = $s2->atan;
my $s3_angle = $s3->atan;
$s1_angle += 2*PI if $s1_angle < 0;
$s2_angle += 2*PI if $s2_angle < 0;
$s3_angle += 2*PI if $s3_angle < 0;
my $s1s2_angle = $s2_angle - $s1_angle;
my $s2s3_angle = $s3_angle - $s2_angle;
next if abs($s1s2_angle - $s2s3_angle) > $parallel_degrees_limit;
next if abs($s1s2_angle) < $parallel_degrees_limit; # ignore parallel lines
next if $s1s2_angle > $max_angle; # ignore too sharp vertices
my @arc_points = ($points[$i], $points[$i+3]), # first and last points
# now look for more points
my $last_line_angle = $s3_angle;
my $last_j = $i+3;
for (my $j = $i+3; $j < $#points; $j++) {
my $line = Slic3r::Line->new($points[$j], $points[$j+1]);
last if abs($line->length - $s1_len) > $len_epsilon;
my $line_angle = $line->atan;
$line_angle += 2*PI if $line_angle < 0;
my $anglediff = $line_angle - $last_line_angle;
last if abs($s1s2_angle - $anglediff) > $parallel_degrees_limit;
# point $j+1 belongs to the arc
$arc_points[-1] = $points[$j+1];
$last_j = $j+1;
$last_line_angle = $line_angle;
}
# s1, s2, s3 form an arc
my $orientation = $s1->point_on_left($points[$i+2]) ? 'ccw' : 'cw';
# to find the center, we intersect the perpendicular lines
# passing by midpoints of $s1 and last segment
# a better method would be to draw all the perpendicular lines
# and find the centroid of the enclosed polygon, or to
# intersect multiple lines and find the centroid of the convex hull
# around the intersections
my $arc_center;
{
my $s1_mid = $s1->midpoint;
my $last_mid = Slic3r::Line->new($points[$last_j-1], $points[$last_j])->midpoint;
my $rotation_angle = PI/2 * ($orientation eq 'ccw' ? -1 : 1);
my $ray1 = Slic3r::Line->new($s1_mid, rotate_points($rotation_angle, $s1_mid, $points[$i+1]));
my $last_ray = Slic3r::Line->new($last_mid, rotate_points($rotation_angle, $last_mid, $points[$last_j]));
$arc_center = $ray1->intersection($last_ray, 0) or next POINT;
}
my $arc = Slic3r::ExtrusionPath::Arc->new(
polyline => Slic3r::Polyline->new(\@arc_points),
role => $self->role,
orientation => $orientation,
center => $arc_center,
radius => $arc_center->distance_to($points[$i]),
);
# points 0..$i form a linear path
push @paths, (ref $self)->new(
polyline => Slic3r::Polyline->new(@points[0..$i]),
role => $self->role,
height => $self->height,
) if $i > 0;
# add our arc
push @paths, $arc;
Slic3r::debugf "ARC DETECTED\n";
# remove arc points from path, leaving one
splice @points, 0, $last_j, ();
next CYCLE;
}
last;
}
# remaining points form a linear path
push @paths, (ref $self)->new(
polyline => Slic3r::Polyline->new(\@points),
role => $self->role,
height => $self->height,
) if @points > 1;
return @paths;
}
package Slic3r::ExtrusionPath::Packed;
sub unpack {
my $self = shift;
my ($height, $flow_spacing, $role, $polyline_s)
= unpack Slic3r::ExtrusionPath::PACK_FMT, $$self;
return Slic3r::ExtrusionPath->new(
height => ($height == -1) ? undef : $height,
flow_spacing => ($flow_spacing == -1) ? undef : $flow_spacing,
role => $role,
polyline => Slic3r::Polyline->deserialize($polyline_s),
);
}
1;