PrusaSlicer-NonPlainar/lib/Slic3r/TriangleMesh.pm
2011-11-30 20:32:28 +01:00

453 lines
16 KiB
Perl

package Slic3r::TriangleMesh;
use Moo;
use Slic3r::Geometry qw(X Y Z A B PI epsilon same_point points_coincide angle3points
merge_collinear_lines nearest_point);
use XXX;
has 'facets' => (is => 'ro', default => sub { [] });
has 'edges' => (is => 'ro', default => sub { [] });
has 'edge_table' => (is => 'ro', default => sub { {} });
has 'edge_facets' => (is => 'ro', default => sub { {} });
use constant MIN => 0;
use constant MAX => 1;
sub make_edge_table {
my $self = shift;
@{$self->edges} = ();
%{$self->edge_table} = ();
%{$self->edge_facets} = ();
for (my $facet_index = 0; $facet_index <= $#{$self->facets}; $facet_index++) {
my $facet = $self->facets->[$facet_index];
foreach my $edge ($self->facet_edges($facet)) {
my $edge_id = $self->edge_id($edge);
if (!exists $self->edge_table->{$edge_id}) {
push @{$self->edges}, $edge;
$self->edge_table->{$edge_id} = $#{$self->edges};
$self->edge_facets->{$edge_id} = [];
}
my $edge_index = $self->edge_table->{$edge_id};
push @{$self->edge_facets->{$edge_id}}, $facet_index;
}
}
}
sub check_manifoldness {
my $self = shift;
$self->make_edge_table;
if (grep { @$_ != 2 } values %{$self->edge_facets}) {
warn "Warning: The input file is not manifold. You might want to check the "
. "resulting gcode before printing.\n";
}
}
sub make_loops {
my $self = shift;
my ($layer) = @_;
my @lines = @{$layer->lines};
# remove tangent edges
{
for (my $i = 0; $i <= $#lines; $i++) {
next unless defined $lines[$i] && $lines[$i]->facet_edge;
# if the line is a facet edge, find another facet edge
# having the same endpoints but in reverse order
for (my $j = $i+1; $j <= $#lines; $j++) {
next unless defined $lines[$j] && defined $lines[$j]->facet_edge;
next unless $lines[$j]->facet_edge eq $lines[$i]->facet_edge;
if (same_point($lines[$i]->a, $lines[$j]->b) && same_point($lines[$i]->b, $lines[$j]->a)) {
$lines[$j] = undef;
last;
}
}
}
}
my $sparse_lines = [ map $_->line, grep $_, @lines ];
# detect closed loops
if (0) {
printf "Layer was sliced at z = %f\n", $self->slice_z * $Slic3r::resolution;
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "lines.svg",
lines => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @lines ],
red_lines => [ grep $_->isa('Slic3r::Line::FacetEdge'), @lines ],
);
}
my (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
my $detect = sub {
my @lines = @$sparse_lines;
(@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
my (%pointmap, @pointmap_keys) = ();
foreach my $line (@lines) {
my $point_id = $get_point_id->($line->[A]);
if (!exists $pointmap{$point_id}) {
$pointmap{$point_id} = [];
push @pointmap_keys, $line->[A];
}
push @{ $pointmap{$point_id} }, $line;
}
my $n = 0;
while (my $first_line = shift @lines) {
next if $visited_lines{ $first_line->id };
my @points = @$first_line;
my @seen_lines = ($first_line);
my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1;
CYCLE: while (1) {
my $next_lines = $pointmap{ $get_point_id->($points[-1]) };
# shouldn't we find the point, let's try with a slower algorithm
# as approximation may make the coordinates differ
if (!$next_lines) {
my $nearest_point = nearest_point($points[-1], \@pointmap_keys);
#printf " we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point);
if ($nearest_point) {
local $Slic3r::Geometry::epsilon = 1000000;
$next_lines = $pointmap{$get_point_id->($nearest_point)}
if points_coincide($points[-1], $nearest_point);
}
}
if (0 && !$next_lines) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "no_lines.svg",
lines => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @lines ],
red_lines => [ grep $_->isa('Slic3r::Line::FacetEdge'), @lines ],
points => [ $points[-1] ],
no_arrows => 1,
);
}
$next_lines
or printf("No lines start at point %s. This shouldn't happen. Please check the model for manifoldness.\n", $get_point_id->($points[-1]));
last CYCLE if !$next_lines or !@$next_lines;
my @ordered_next_lines = sort
{ angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) }
0..$#$next_lines;
#if (@$next_lines > 1) {
# Slic3r::SVG::output(undef, "next_line.svg",
# lines => $next_lines,
# red_lines => [ polyline_lines([@points]) ],
# green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ],
# );
#}
my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
push @seen_lines, $next_line;
push @points, $next_line->[B];
my $point_id = $get_point_id->($points[-1]);
if ($seen_points{$point_id}) {
splice @points, 0, $seen_points{$point_id};
last CYCLE;
}
$seen_points{$point_id} = $#points;
}
if (@points < 4 || !points_coincide($points[0], $points[-1])) {
# discarding polyline
push @discarded_lines, @seen_lines;
if (@points > 2) {
push @discarded_polylines, [@points];
}
next;
}
$visited_lines{ $_->id } = 1 for @seen_lines;
pop @points;
Slic3r::debugf "Discovered polygon of %d points\n", scalar(@points);
push @polygons, Slic3r::Polygon->new(@points);
$polygons[-1]->cleanup;
}
};
$detect->();
# Now, if we got a clean and manifold model then @polygons would contain everything
# we need to draw our layer. In real life, sadly, things are different and it is likely
# that the above algorithm wasn't able to detect every polygon. This may happen because
# of non-manifoldness or because of many close lines, often overlapping; both situations
# make a head-to-tail search difficult.
# On the other hand, we can safely assume that every polygon we detected is correct, as
# the above algorithm is quite strict. We can take a brute force approach to connect any
# other line.
# So, let's first check what lines were not detected as part of polygons.
if (@discarded_lines) {
Slic3r::debugf " %d lines out of %d were discarded and %d polylines were not closed\n",
scalar(@discarded_lines), scalar(@lines), scalar(@discarded_polylines);
print " Warning: errors while parsing this layer (dirty or non-manifold model).\n";
print " Retrying with slower algorithm.\n";
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "layer" . $self->id . "_detected.svg",
white_polygons => \@polygons,
);
Slic3r::SVG::output(undef, "layer" . $self->id . "_discarded_lines.svg",
red_lines => \@discarded_lines,
);
Slic3r::SVG::output(undef, "layer" . $self->id . "_discarded_polylines.svg",
polylines => \@discarded_polylines,
);
}
$sparse_lines = merge_collinear_lines($sparse_lines);
eval { $detect->(); };
warn $@ if $@;
if (@discarded_lines) {
print " Warning: even slow detection algorithm threw errors. Review the output before printing.\n";
$layer->slicing_errors(1);
}
}
return [@polygons];
}
sub rotate {
my $self = shift;
my ($deg) = @_;
return if $deg == 0;
my $rad = Slic3r::Geometry::deg2rad($deg);
foreach my $facet (@{$self->facets}) {
my ($normal, @vertices) = @$facet;
foreach my $vertex (@vertices) {
@$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, undef, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]);
}
}
}
sub scale {
my $self = shift;
my ($factor) = @_;
return if $factor == 1;
foreach my $facet (@{$self->facets}) {
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
foreach my $vertex (@vertices) {
$vertex->[$_] *= $factor for X,Y,Z;
}
}
}
sub move {
my $self = shift;
my (@shift) = @_;
foreach my $facet (@{$self->facets}) {
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
foreach my $vertex (@vertices) {
$vertex->[$_] += $shift[$_] for X,Y,Z;
}
}
}
sub duplicate {
my $self = shift;
my (@shift) = @_;
my @new_facets = ();
foreach my $facet (@{$self->facets}) {
# transform vertex coordinates
my ($normal, @vertices) = @$facet;
push @new_facets, [ $normal ];
foreach my $vertex (@vertices) {
push @{$new_facets[-1]}, [ map $vertex->[$_] + ($shift[$_] || 0), (X,Y,Z) ];
}
}
push @{$self->facets}, @new_facets;
}
sub bounding_box {
my $self = shift;
my @extents = (map [99999999999, -99999999999], X,Y,Z);
foreach my $facet (@{$self->facets}) {
my ($normal, @vertices) = @$facet;
foreach my $vertex (@vertices) {
for (X,Y,Z) {
$extents[$_][MIN] = $vertex->[$_] if $vertex->[$_] < $extents[$_][MIN];
$extents[$_][MAX] = $vertex->[$_] if $vertex->[$_] > $extents[$_][MAX];
}
}
}
return @extents;
}
sub size {
my $self = shift;
my @extents = $self->bounding_box;
return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z);
}
sub _facet {
my $self = shift;
my ($print, $facet_index, $normal, @vertices) = @_;
Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n",
$facet_index, map @$_, @vertices
if $Slic3r::debug;
# find the vertical extents of the facet
my ($min_z, $max_z) = (99999999999, -99999999999);
foreach my $vertex (@vertices) {
$min_z = $vertex->[Z] if $vertex->[Z] < $min_z;
$max_z = $vertex->[Z] if $vertex->[Z] > $max_z;
}
Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z;
if ($min_z == $max_z) {
Slic3r::debugf "Facet is horizontal; ignoring\n";
return;
}
# calculate the layer extents
# (the -1 and +1 here are used as a quick and dirty replacement for some
# complex calculation of the first layer height ratio logic)
my $min_layer = int($min_z * $Slic3r::resolution / $Slic3r::layer_height) - 1;
$min_layer = 0 if $min_layer < 0;
my $max_layer = int($max_z * $Slic3r::resolution / $Slic3r::layer_height) + 1;
Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer;
# reorder vertices so that the first one is the one with lowest Z
# this is needed to get all intersection lines in a consistent order
# (external on the right of the line)
{
my @z_order = sort { $vertices[$a][Z] <=> $vertices[$b][Z] } 0..2;
@vertices = (splice(@vertices, $z_order[0]), splice(@vertices, 0, $z_order[0]));
}
for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) {
my $layer = $print->layer($layer_id);
$layer->add_line($_) for $self->intersect_facet($facet_index, \@vertices, $layer->slice_z);
}
}
sub intersect_facet {
my $self = shift;
my ($facet_index, $vertices, $z) = @_;
# build the three segments of the triangle facet
my @edges = $self->facet_edges($vertices);
my (@lines, @points, @intersection_points, @points_on_layer) = ();
foreach my $edge (@edges) {
my ($a, $b) = @$edge;
my $edge_id = $self->edge_id($edge);
#printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z;
if (abs($a->[Z] - $b->[Z]) < epsilon && abs($a->[Z] - $z) < epsilon) {
# edge is horizontal and belongs to the current layer
my $edge_type = (grep $_->[Z] > $z, @$vertices) ? 'bottom' : 'top';
($a, $b) = ($b, $a) if $edge_type eq 'bottom';
push @lines, Slic3r::TriangleMesh::IntersectionLine->new(
a => [$a->[X], $a->[Y]],
b => [$b->[X], $b->[Y]],
a_id => sprintf("%f,%f", @$a[X,Y]),
b_id => sprintf("%f,%f", @$b[X,Y]),
facet_edge => $edge_type,
facet_index => $facet_index,
);
#print "Horizontal edge at $z!\n";
} elsif (abs($a->[Z] - $z) < epsilon) {
#print "A point on plane $z!\n";
push @points, [ $a->[X], $a->[Y], sprintf("%f,%f", @$a[X,Y]) ];
push @points_on_layer, $#points;
} elsif (abs($b->[Z] - $z) < epsilon) {
#print "B point on plane $z!\n";
push @points, [ $b->[X], $b->[Y], sprintf("%f,%f", @$b[X,Y]) ];
push @points_on_layer, $#points;
} elsif (($a->[Z] < ($z - epsilon) && $b->[Z] > ($z + epsilon))
|| ($b->[Z] < ($z - epsilon) && $a->[Z] > ($z + epsilon))) {
# edge intersects the current layer; calculate intersection
push @points, [
$b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]),
$edge_id,
$edge_id,
];
push @intersection_points, $#points;
#print "Intersects at $z!\n";
}
}
return @lines if @lines;
if (@points_on_layer == 2 && @intersection_points == 1) {
$points[ $points_on_layer[1] ] = undef;
@points = grep $_, @points;
}
if (@points_on_layer == 2 && @intersection_points == 0) {
if (same_point(map $points[$_], @points_on_layer)) {
return ();
}
}
if (@points) {
# defensive programming:
die "Facets must intersect each plane 0 or 2 times" if @points != 2;
# connect points:
return Slic3r::TriangleMesh::IntersectionLine->new(
a => [$points[A][X], $points[A][Y]],
b => [$points[B][X], $points[B][Y]],
a_id => $points[A][2],
b_id => $points[B][2],
facet_index => $facet_index,
prev_facet_index => ($points[A][3] ? +(grep $_ != $facet_index, @{$self->edge_facets->{$points[A][3]}})[0] || undef : undef),
next_facet_index => ($points[B][3] ? +(grep $_ != $facet_index, @{$self->edge_facets->{$points[B][3]}})[0] || undef : undef),
);
#printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points;
}
return ();
}
sub facet_edges {
my $self = shift;
my ($facet) = @_;
# ignore the normal if provided
my @vertices = @$facet[-3..-1];
return (
[ $vertices[0], $vertices[1] ],
[ $vertices[1], $vertices[2] ],
[ $vertices[2], $vertices[0] ],
)
}
sub edge_id {
my $self = shift;
my ($edge) = @_;
my @point_ids = map sprintf("%f,%f,%f", @$_), @$edge;
return join "-", sort @point_ids;
}
1;