PrusaSlicer-NonPlainar/lib/Slic3r/Layer/Region.pm
2013-11-11 20:37:06 +01:00

610 lines
26 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package Slic3r::Layer::Region;
use Moo;
use List::Util qw(sum first);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(PI A B scale unscale chained_path_items points_coincide);
use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex
offset offset2 offset2_ex union_pt traverse_pt diff intersection
union diff);
use Slic3r::Surface ':types';
has 'layer' => (
is => 'ro',
weak_ref => 1,
required => 1,
trigger => 1,
handles => [qw(id slice_z print_z height flow config)],
);
has 'region' => (is => 'ro', required => 1, handles => [qw(extruders)]);
has 'perimeter_flow' => (is => 'rw');
has 'infill_flow' => (is => 'rw');
has 'solid_infill_flow' => (is => 'rw');
has 'top_infill_flow' => (is => 'rw');
has 'infill_area_threshold' => (is => 'lazy');
has 'overhang_width' => (is => 'lazy');
# collection of surfaces generated by slicing the original geometry
# divided by type top/bottom/internal
has 'slices' => (is => 'rw', default => sub { Slic3r::Surface::Collection->new });
# collection of extrusion paths/loops filling gaps
has 'thin_fills' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new });
# collection of surfaces for infill generation
has 'fill_surfaces' => (is => 'rw', default => sub { Slic3r::Surface::Collection->new });
# ordered collection of extrusion paths/loops to build all perimeters
has 'perimeters' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new });
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new });
sub BUILD {
my $self = shift;
$self->_update_flows;
}
sub _trigger_layer {
my $self = shift;
$self->_update_flows;
}
sub _update_flows {
my $self = shift;
return if !$self->region;
if ($self->id == 0) {
for (qw(perimeter infill solid_infill top_infill)) {
my $method = "${_}_flow";
$self->$method
($self->region->first_layer_flows->{$_} || $self->region->flows->{$_});
}
} else {
$self->perimeter_flow($self->region->flows->{perimeter});
$self->infill_flow($self->region->flows->{infill});
$self->solid_infill_flow($self->region->flows->{solid_infill});
$self->top_infill_flow($self->region->flows->{top_infill});
}
}
sub _build_overhang_width {
my $self = shift;
my $threshold_rad = PI/2 - atan2($self->perimeter_flow->width / $self->height / 2, 1);
return scale($self->height * ((cos $threshold_rad) / (sin $threshold_rad)));
}
sub _build_infill_area_threshold {
my $self = shift;
return $self->solid_infill_flow->scaled_spacing ** 2;
}
# build polylines from lines
sub make_surfaces {
my $self = shift;
my ($loops) = @_;
return if !@$loops;
$self->slices->clear;
$self->slices->append($self->_merge_loops($loops));
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("surfaces.svg",
#polylines => $loops,
red_polylines => [ grep $_->is_counter_clockwise, @$loops ],
green_polylines => [ grep !$_->is_counter_clockwise, @$loops ],
expolygons => [ map $_->expolygon, @{$self->slices} ],
);
}
}
sub _merge_loops {
my ($self, $loops, $safety_offset) = @_;
# Input loops are not suitable for evenodd nor nonzero fill types, as we might get
# two consecutive concentric loops having the same winding order - and we have to
# respect such order. In that case, evenodd would create wrong inversions, and nonzero
# would ignore holes inside two concentric contours.
# So we're ordering loops and collapse consecutive concentric loops having the same
# winding order.
# TODO: find a faster algorithm for this, maybe with some sort of binary search.
# If we computed a "nesting tree" we could also just remove the consecutive loops
# having the same winding order, and remove the extra one(s) so that we could just
# supply everything to offset_ex() instead of performing several union/diff calls.
# we sort by area assuming that the outermost loops have larger area;
# the previous sorting method, based on $b->encloses_point($a->[0]), failed to nest
# loops correctly in some edge cases when original model had overlapping facets
my @abs_area = map abs($_), my @area = map $_->area, @$loops;
my @sorted = sort { $abs_area[$b] <=> $abs_area[$a] } 0..$#$loops; # outer first
# we don't perform a safety offset now because it might reverse cw loops
my $slices = [];
for my $i (@sorted) {
# we rely on the already computed area to determine the winding order
# of the loops, since the Orientation() function provided by Clipper
# would do the same, thus repeating the calculation
$slices = ($area[$i] >= 0)
? [ $loops->[$i], @$slices ]
: diff($slices, [$loops->[$i]]);
}
# perform a safety offset to merge very close facets (TODO: find test case for this)
$safety_offset //= scale 0.0499;
$slices = offset2_ex($slices, +$safety_offset, -$safety_offset);
Slic3r::debugf "Layer %d (slice_z = %.2f, print_z = %.2f): %d surface(s) having %d holes detected from %d polylines\n",
$self->id, unscale($self->slice_z), $self->print_z,
scalar(@$slices), scalar(map @{$_->holes}, @$slices), scalar(@$loops)
if $Slic3r::debug;
return map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$slices;
}
sub make_perimeters {
my $self = shift;
my $perimeter_spacing = $self->perimeter_flow->scaled_spacing;
my $infill_spacing = $self->solid_infill_flow->scaled_spacing;
my $gap_area_threshold = $self->perimeter_flow->scaled_width ** 2;
$self->perimeters->clear;
$self->fill_surfaces->clear;
$self->thin_fills->clear;
my @contours = (); # array of Polygons with ccw orientation
my @holes = (); # array of Polygons with cw orientation
my @gaps = (); # array of Polygons
# we need to process each island separately because we might have different
# extra perimeters for each one
foreach my $surface (@{$self->slices}) {
# detect how many perimeters must be generated for this island
my $loop_number = $self->config->perimeters + ($surface->extra_perimeters || 0);
# generate loops
# (one more than necessary so that we can detect gaps even after the desired
# number of perimeters has been generated)
my @last = @{$surface->expolygon};
my @this_gaps = ();
for my $i (0 .. $loop_number) {
# external loop only needs half inset distance
my $spacing = ($i == 0)
? $perimeter_spacing / 2
: $perimeter_spacing;
my @offsets = @{offset2_ex(\@last, -1.5*$spacing, +0.5*$spacing)};
# clone polygons because these ExPolygons will go out of scope very soon
my @contours_offsets = map $_->contour->clone, @offsets;
my @holes_offsets = map $_->clone, map @{$_->holes}, @offsets;
@offsets = map $_->clone, (@contours_offsets, @holes_offsets); # turn @offsets from ExPolygons to Polygons
# where offset2() collapses the expolygon, then there's no room for an inner loop
# and we can extract the gap for later processing
if ($Slic3r::Config->gap_fill_speed > 0 && $self->config->fill_density > 0) {
my $diff = diff(
offset(\@last, -0.5*$spacing),
# +2 on the offset here makes sure that Clipper float truncation
# won't shrink the clip polygon to be smaller than intended.
offset(\@offsets, +0.5*$spacing + 2),
);
push @gaps, (@this_gaps = grep abs($_->area) >= $gap_area_threshold, @$diff);
}
last if !@offsets || $i == $loop_number;
push @contours, @contours_offsets;
push @holes, @holes_offsets;
@last = @offsets;
}
# make sure we don't infill narrow parts that are already gap-filled
# (we only consider this surface's gaps to reduce the diff() complexity)
@last = @{diff(\@last, \@this_gaps)};
# create one more offset to be used as boundary for fill
# we offset by half the perimeter spacing (to get to the actual infill boundary)
# and then we offset back and forth by half the infill spacing to only consider the
# non-collapsing regions
$self->fill_surfaces->append(
@{offset2_ex(
[ map $_->simplify_as_polygons(&Slic3r::SCALED_RESOLUTION), @{union_ex(\@last)} ],
-($perimeter_spacing/2 + $infill_spacing/2),
+$infill_spacing/2,
)}
);
}
# find nesting hierarchies separately for contours and holes
my $contours_pt = union_pt(\@contours);
my $holes_pt = union_pt(\@holes);
# prepare a coderef for traversing the PolyTree object
# external contours are root items of $contours_pt
# internal contours are the ones next to external
my $traverse;
$traverse = sub {
my ($polynodes, $depth, $is_contour) = @_;
# use a nearest neighbor search to order these children
# TODO: supply second argument to chained_path_items() too?
my @nodes = @{Slic3r::Geometry::chained_path_items(
[ map [ ($_->{outer} // $_->{hole})->first_point, $_ ], @$polynodes ],
)};
my @loops = ();
foreach my $polynode (@nodes) {
push @loops, $traverse->($polynode->{children}, $depth+1, $is_contour);
# return ccw contours and cw holes
# GCode.pm will convert all of them to ccw, but it needs to know
# what the holes are in order to compute the correct inwards move
my $polygon = ($polynode->{outer} // $polynode->{hole})->clone;
$polygon->reverse if defined $polynode->{hole};
$polygon->reverse if !$is_contour;
my $role = EXTR_ROLE_PERIMETER;
if ($is_contour ? $depth == 0 : !@{ $polynode->{children} }) {
# external perimeters are root level in case of contours
# and items with no children in case of holes
$role = EXTR_ROLE_EXTERNAL_PERIMETER;
} elsif ($depth == 1 && $is_contour) {
$role = EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER;
}
push @loops, Slic3r::ExtrusionLoop->new(
polygon => $polygon,
role => $role,
flow_spacing => $self->perimeter_flow->spacing,
);
}
return @loops;
};
# order loops from inner to outer (in terms of object slices)
my @loops = (
(reverse $traverse->($holes_pt, 0)),
$traverse->($contours_pt, 0, 1),
);
# if brim will be printed, reverse the order of perimeters so that
# we continue inwards after having finished the brim
# TODO: add test for perimeter order
@loops = reverse @loops
if $Slic3r::Config->external_perimeters_first
|| ($self->layer->id == 0 && $Slic3r::Config->brim_width > 0);
# append perimeters
$self->perimeters->append(@loops);
# detect thin walls by offsetting slices by half extrusion inwards
# and add them as perimeters
if ($self->config->thin_walls) {
# we use spacing here because there could be a case where
# the slice collapses with width but doesn't collapse with spacing,
# thus causing both perimeters and medial axis to be generated
my $width = $self->perimeter_flow->scaled_spacing;
my $diff = diff_ex(
[ map $_->p, @{$self->slices} ],
offset2([ map $_->p, @{$self->slices} ], -$width*0.5, +$width*0.5),
1,
);
my $area_threshold = $width ** 2;
if (@$diff = grep { $_->area > $area_threshold } @$diff) {
my @p = map $_->medial_axis($width), @$diff;
my @paths = ();
for my $p (@p) {
my %params = (
role => EXTR_ROLE_EXTERNAL_PERIMETER,
flow_spacing => $self->perimeter_flow->spacing,
);
push @paths, $p->isa('Slic3r::Polygon')
? Slic3r::ExtrusionLoop->new(polygon => $p, %params)
: Slic3r::ExtrusionPath->new(polyline => $p, %params);
}
$self->perimeters->append(
map $_->clone, @{Slic3r::ExtrusionPath::Collection->new(@paths)->chained_path(0)}
);
Slic3r::debugf " %d thin walls detected\n", scalar(@paths) if $Slic3r::debug;
# in the mean time we subtract thin walls from the detected gaps so that we don't
# reprocess them, causing overlapping thin walls and zigzag.
@gaps = @{diff(
\@gaps,
[ map $_->grow($self->perimeter_flow->scaled_width), @p ],
1,
)};
}
}
$self->_fill_gaps(\@gaps);
}
sub _fill_gaps {
my $self = shift;
my ($gaps) = @_;
return unless @$gaps;
# turn gaps into ExPolygons
$gaps = union_ex($gaps);
my $filler = $self->layer->object->fill_maker->filler('rectilinear');
$filler->layer_id($self->layer->id);
# we should probably use this code to handle thin walls and remove that logic from
# make_surfaces(), but we need to enable dynamic extrusion width before as we can't
# use zigzag for thin walls.
# medial axis-based gap fill should benefit from detection of larger gaps too, so
# we could try with 1.5*$w for example, but that doesn't work well for zigzag fill
# because it tends to create very sparse points along the gap when the infill direction
# is not parallel to the gap (1.5*$w thus may only work well with a straight line)
my $w = $self->perimeter_flow->width;
my @widths = ($w, 0.4 * $w); # worth trying 0.2 too?
foreach my $width (@widths) {
my $flow = $self->perimeter_flow->clone(width => $width);
# extract the gaps having this width
my @this_width = map @{$_->offset_ex(+0.5*$flow->scaled_width)},
map @{$_->noncollapsing_offset_ex(-0.5*$flow->scaled_width)},
@$gaps;
if (0) { # remember to re-enable t/dynamic.t
# fill gaps using dynamic extrusion width, by treating them like thin polygons,
# thus generating the skeleton and using it to fill them
my %path_args = (
role => EXTR_ROLE_SOLIDFILL,
flow_spacing => $flow->spacing,
);
$self->thin_fills->append(map {
$_->isa('Slic3r::Polygon')
? Slic3r::ExtrusionLoop->new(polygon => $_, %path_args)->split_at_first_point # we should keep these as loops
: Slic3r::ExtrusionPath->new(polyline => $_, %path_args),
} map $_->medial_axis($flow->scaled_width), @this_width);
Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @this_width, $width
if @{ $self->thin_fills };
} else {
# fill gaps using zigzag infill
# since this is infill, we have to offset by half-extrusion width inwards
my @infill = map @{$_->offset_ex(-0.5*$flow->scaled_width)}, @this_width;
foreach my $expolygon (@infill) {
my ($params, @paths) = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNALSOLID),
density => 1,
flow_spacing => $flow->spacing,
);
# Split polylines into lines so that the chained_path() search
# at the final stage has more freedom and will choose starting
# points closer than last positions. OTOH, this will make such
# search slower. Probably, ExtrusionPath objects should support
# splitting nearby a given position so that we can choose the right
# entry point even in the middle of the path without needing a
# complex, slow, chained_path() search on all segments. TODO.
# Such logic will also avoid all the small travel moves that this
# line-splitting causes, and it will be applicable to other things
# too.
my @lines = map @{Slic3r::Polyline->new(@$_)->lines}, @paths;
@paths = map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_GAPFILL,
height => $self->height,
flow_spacing => $params->{flow_spacing},
), @lines;
$_->simplify($flow->scaled_width/3) for @paths;
$self->thin_fills->append(@paths);
}
}
# check what's left
@$gaps = @{diff_ex(
[ map @$_, @$gaps ],
[ map @$_, @this_width ],
)};
}
}
sub prepare_fill_surfaces {
my $self = shift;
# if no solid layers are requested, turn top/bottom surfaces to internal
if ($self->config->top_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for @{$self->fill_surfaces->filter_by_type(S_TYPE_TOP)};
}
if ($self->config->bottom_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for @{$self->fill_surfaces->filter_by_type(S_TYPE_BOTTOM)};
}
# turn too small internal regions into solid regions according to the user setting
if ($self->config->fill_density > 0) {
my $min_area = scale scale $self->config->solid_infill_below_area; # scaling an area requires two calls!
$_->surface_type(S_TYPE_INTERNALSOLID)
for grep { $_->area <= $min_area } @{$self->fill_surfaces->filter_by_type(S_TYPE_INTERNAL)};
}
}
sub process_external_surfaces {
my ($self, $lower_layer) = @_;
my @surfaces = @{$self->fill_surfaces};
my $margin = scale &Slic3r::EXTERNAL_INFILL_MARGIN;
my @bottom = ();
foreach my $surface (grep $_->surface_type == S_TYPE_BOTTOM, @surfaces) {
my $grown = $surface->expolygon->offset_ex(+$margin);
# detect bridge direction before merging grown surfaces otherwise adjacent bridges
# would get merged into a single one while they need different directions
# also, supply the original expolygon instead of the grown one, because in case
# of very thin (but still working) anchors, the grown expolygon would go beyond them
my $angle = $lower_layer
? $self->_detect_bridge_direction($surface->expolygon, $lower_layer)
: undef;
push @bottom, map $surface->clone(expolygon => $_, bridge_angle => $angle), @$grown;
}
my @top = ();
foreach my $surface (grep $_->surface_type == S_TYPE_TOP, @surfaces) {
# give priority to bottom surfaces
my $grown = diff_ex(
$surface->expolygon->offset(+$margin),
[ map $_->p, @bottom ],
);
push @top, map $surface->clone(expolygon => $_), @$grown;
}
# if we're slicing with no infill, we can't extend external surfaces
# over non-existent infill
my @fill_boundaries = $self->config->fill_density > 0
? @surfaces
: grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
# intersect the grown surfaces with the actual fill boundaries
my @new_surfaces = ();
foreach my $group (Slic3r::Surface->group(@top, @bottom)) {
push @new_surfaces,
map $group->[0]->clone(expolygon => $_),
@{intersection_ex(
[ map $_->p, @$group ],
[ map $_->p, @fill_boundaries ],
1, # to ensure adjacent expolygons are unified
)};
}
# subtract the new top surfaces from the other non-top surfaces and re-add them
my @other = grep $_->surface_type != S_TYPE_TOP && $_->surface_type != S_TYPE_BOTTOM, @surfaces;
foreach my $group (Slic3r::Surface->group(@other)) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex(
[ map $_->p, @$group ],
[ map $_->p, @new_surfaces ],
)};
}
$self->fill_surfaces->clear;
$self->fill_surfaces->append(@new_surfaces);
}
sub _detect_bridge_direction {
my ($self, $expolygon, $lower_layer) = @_;
my $grown = $expolygon->offset_ex(+$self->perimeter_flow->scaled_width);
my @lower = @{$lower_layer->slices}; # expolygons
# detect what edges lie on lower slices
my @edges = (); # polylines
foreach my $lower (@lower) {
# turn bridge contour and holes into polylines and then clip them
# with each lower slice's contour
my @clipped = map $_->split_at_first_point->clip_with_polygon($lower->contour), map @$_, @$grown;
if (@clipped == 2) {
# If the split_at_first_point() call above happens to split the polygon inside the clipping area
# we would get two consecutive polylines instead of a single one, so we use this ugly hack to
# recombine them back into a single one in order to trigger the @edges == 2 logic below.
# This needs to be replaced with something way better.
if (points_coincide($clipped[0][0], $clipped[-1][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[-1]}, @{$clipped[0]}));
}
if (points_coincide($clipped[-1][0], $clipped[0][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[0]}, @{$clipped[1]}));
}
}
push @edges, @clipped;
}
Slic3r::debugf "Found bridge on layer %d with %d support(s)\n", $self->id, scalar(@edges);
return undef if !@edges;
my $bridge_angle = undef;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge_$expolygon.svg",
expolygons => [ $expolygon ],
red_expolygons => [ @lower ],
polylines => [ @edges ],
);
}
if (@edges == 2) {
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
my @midpoints = map $_->midpoint, @chords;
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line_between_midpoints->direction);
} elsif (@edges == 1) {
# TODO: this case includes both U-shaped bridges and plain overhangs;
# we need a trapezoidation algorithm to detect the actual bridged area
# and separate it from the overhang area.
# in the mean time, we're treating as overhangs all cases where
# our supporting edge is a straight line
if (@{$edges[0]} > 2) {
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line->direction);
}
} elsif (@edges) {
# inset the bridge expolygon; we'll use this one to clip our test lines
my $inset = $expolygon->offset_ex($self->infill_flow->scaled_width);
# detect anchors as intersection between our bridge expolygon and the lower slices
my $anchors = intersection_ex(
[ @$grown ],
[ map @$_, @lower ],
1, # safety offset required to avoid Clipper from detecting empty intersection while Boost actually found some @edges
);
# we'll now try several directions using a rudimentary visibility check:
# bridge in several directions and then sum the length of lines having both
# endpoints within anchors
my %directions = (); # angle => score
my $angle_increment = PI/36; # 5°
my $line_increment = $self->infill_flow->scaled_width;
for (my $angle = 0; $angle <= PI; $angle += $angle_increment) {
# rotate everything - the center point doesn't matter
$_->rotate($angle, [0,0]) for @$inset, @$anchors;
# generate lines in this direction
my $bounding_box = Slic3r::Geometry::BoundingBox->new_from_points([ map @$_, map @$_, @$anchors ]);
my @lines = ();
for (my $x = $bounding_box->x_min; $x <= $bounding_box->x_max; $x += $line_increment) {
push @lines, [ [$x, $bounding_box->y_min], [$x, $bounding_box->y_max] ];
}
# TODO: use a multi_polygon_multi_linestring_intersection() call
my @clipped_lines = map Slic3r::Line->new(@$_),
map @{ Boost::Geometry::Utils::polygon_multi_linestring_intersection($_->pp, \@lines) }, @$inset;
# remove any line not having both endpoints within anchors
@clipped_lines = grep {
my $line = $_;
!(first { $_->encloses_point_quick($line->a) } @$anchors)
&& !(first { $_->encloses_point_quick($line->b) } @$anchors);
} @clipped_lines;
# sum length of bridged lines
$directions{-$angle} = sum(map $_->length, @clipped_lines) // 0;
}
# this could be slightly optimized with a max search instead of the sort
my @sorted_directions = sort { $directions{$a} <=> $directions{$b} } keys %directions;
# the best direction is the one causing most lines to be bridged
$bridge_angle = Slic3r::Geometry::rad2deg_dir($sorted_directions[-1]);
}
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
$self->id, $bridge_angle if defined $bridge_angle;
return $bridge_angle;
}
1;