PrusaSlicer-NonPlainar/src/slic3r/GUI/Camera.cpp
2020-02-28 14:59:59 +01:00

599 lines
19 KiB
C++

#include "libslic3r/libslic3r.h"
#include "Camera.hpp"
#if !ENABLE_THUMBNAIL_GENERATOR
#include "3DScene.hpp"
#endif // !ENABLE_THUMBNAIL_GENERATOR
#include "GUI_App.hpp"
#include "AppConfig.hpp"
#if ENABLE_CAMERA_STATISTICS
#include "Mouse3DController.hpp"
#endif // ENABLE_CAMERA_STATISTICS
#include <GL/glew.h>
// phi / theta angles to orient the camera.
static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f };
static const float VIEW_LEFT[2] = { 90.0f, 90.0f };
static const float VIEW_RIGHT[2] = { -90.0f, 90.0f };
static const float VIEW_TOP[2] = { 0.0f, 0.0f };
static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f };
static const float VIEW_FRONT[2] = { 0.0f, 90.0f };
static const float VIEW_REAR[2] = { 180.0f, 90.0f };
namespace Slic3r {
namespace GUI {
const double Camera::DefaultDistance = 1000.0;
#if ENABLE_THUMBNAIL_GENERATOR
const double Camera::DefaultZoomToBoxMarginFactor = 1.025;
const double Camera::DefaultZoomToVolumesMarginFactor = 1.025;
#endif // ENABLE_THUMBNAIL_GENERATOR
double Camera::FrustrumMinZRange = 50.0;
double Camera::FrustrumMinNearZ = 100.0;
double Camera::FrustrumZMargin = 10.0;
double Camera::MaxFovDeg = 60.0;
Camera::Camera()
: requires_zoom_to_bed(false)
, m_type(Perspective)
, m_target(Vec3d::Zero())
, m_zenit(45.0f)
, m_zoom(1.0)
, m_distance(DefaultDistance)
, m_gui_scale(1.0)
, m_view_matrix(Transform3d::Identity())
, m_view_rotation(1., 0., 0., 0.)
, m_projection_matrix(Transform3d::Identity())
{
set_default_orientation();
}
std::string Camera::get_type_as_string() const
{
switch (m_type)
{
case Unknown: return "unknown";
case Perspective: return "perspective";
default:
case Ortho: return "orthographic";
};
}
void Camera::set_type(EType type)
{
if (m_type != type)
{
m_type = type;
wxGetApp().app_config->set("use_perspective_camera", (m_type == Perspective) ? "1" : "0");
wxGetApp().app_config->save();
}
}
void Camera::set_type(const std::string& type)
{
set_type((type == "1") ? Perspective : Ortho);
}
void Camera::select_next_type()
{
unsigned char next = (unsigned char)m_type + 1;
if (next == (unsigned char)Num_types)
next = 1;
set_type((EType)next);
}
void Camera::set_target(const Vec3d& target)
{
Vec3d new_target = validate_target(target);
Vec3d new_displacement = new_target - m_target;
if (!new_displacement.isApprox(Vec3d::Zero()))
{
m_target = new_target;
m_view_matrix.translate(-new_displacement);
}
}
void Camera::update_zoom(double delta_zoom)
{
set_zoom(m_zoom / (1.0 - std::max(std::min(delta_zoom, 4.0), -4.0) * 0.1));
}
void Camera::set_zoom(double zoom)
{
// Don't allow to zoom too far outside the scene.
double zoom_min = min_zoom();
if (zoom_min > 0.0)
zoom = std::max(zoom, zoom_min);
// Don't allow to zoom too close to the scene.
m_zoom = std::min(zoom, max_zoom());
}
void Camera::select_view(const std::string& direction)
{
if (direction == "iso")
set_default_orientation();
else if (direction == "left")
look_at(m_target - m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ());
else if (direction == "right")
look_at(m_target + m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ());
else if (direction == "top")
look_at(m_target + m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY());
else if (direction == "bottom")
look_at(m_target - m_distance * Vec3d::UnitZ(), m_target, -Vec3d::UnitY());
else if (direction == "front")
look_at(m_target - m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ());
else if (direction == "rear")
look_at(m_target + m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ());
}
double Camera::get_fov() const
{
switch (m_type)
{
case Perspective:
return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1)));
default:
case Ortho:
return 0.0;
};
}
void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const
{
glsafe(::glViewport(0, 0, w, h));
glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data()));
}
void Camera::apply_view_matrix() const
{
glsafe(::glMatrixMode(GL_MODELVIEW));
glsafe(::glLoadIdentity());
glsafe(::glMultMatrixd(m_view_matrix.data()));
}
void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double far_z) const
{
double w = 0.0;
double h = 0.0;
double old_distance = m_distance;
m_frustrum_zs = calc_tight_frustrum_zs_around(box);
if (m_distance != old_distance)
// the camera has been moved re-apply view matrix
apply_view_matrix();
if (near_z > 0.0)
m_frustrum_zs.first = std::max(std::min(m_frustrum_zs.first, near_z), FrustrumMinNearZ);
if (far_z > 0.0)
m_frustrum_zs.second = std::max(m_frustrum_zs.second, far_z);
w = 0.5 * (double)m_viewport[2];
h = 0.5 * (double)m_viewport[3];
double inv_zoom = get_inv_zoom();
w *= inv_zoom;
h *= inv_zoom;
switch (m_type)
{
default:
case Ortho:
{
m_gui_scale = 1.0;
break;
}
case Perspective:
{
// scale near plane to keep w and h constant on the plane at z = m_distance
double scale = m_frustrum_zs.first / m_distance;
w *= scale;
h *= scale;
m_gui_scale = scale;
break;
}
}
glsafe(::glMatrixMode(GL_PROJECTION));
glsafe(::glLoadIdentity());
switch (m_type)
{
default:
case Ortho:
{
glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
break;
}
case Perspective:
{
glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
break;
}
}
glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data()));
glsafe(::glMatrixMode(GL_MODELVIEW));
}
#if ENABLE_THUMBNAIL_GENERATOR
void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor)
#else
void Camera::zoom_to_box(const BoundingBoxf3& box, int canvas_w, int canvas_h)
#endif // ENABLE_THUMBNAIL_GENERATOR
{
// Calculate the zoom factor needed to adjust the view around the given box.
#if ENABLE_THUMBNAIL_GENERATOR
double zoom = calc_zoom_to_bounding_box_factor(box, margin_factor);
#else
double zoom = calc_zoom_to_bounding_box_factor(box, canvas_w, canvas_h);
#endif // ENABLE_THUMBNAIL_GENERATOR
if (zoom > 0.0)
{
m_zoom = zoom;
// center view around box center
set_target(box.center());
}
}
#if ENABLE_THUMBNAIL_GENERATOR
void Camera::zoom_to_volumes(const GLVolumePtrs& volumes, double margin_factor)
{
Vec3d center;
double zoom = calc_zoom_to_volumes_factor(volumes, center, margin_factor);
if (zoom > 0.0)
{
m_zoom = zoom;
// center view around the calculated center
set_target(center);
}
}
#endif // ENABLE_THUMBNAIL_GENERATOR
#if ENABLE_CAMERA_STATISTICS
void Camera::debug_render() const
{
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
std::string type = get_type_as_string();
if (wxGetApp().plater()->get_mouse3d_controller().is_running() || (wxGetApp().app_config->get("use_free_camera") == "1"))
type += "/free";
else
type += "/constrained";
Vec3f position = get_position().cast<float>();
Vec3f target = m_target.cast<float>();
float distance = (float)get_distance();
float zenit = (float)m_zenit;
Vec3f forward = get_dir_forward().cast<float>();
Vec3f right = get_dir_right().cast<float>();
Vec3f up = get_dir_up().cast<float>();
float nearZ = (float)m_frustrum_zs.first;
float farZ = (float)m_frustrum_zs.second;
float deltaZ = farZ - nearZ;
float zoom = (float)m_zoom;
float fov = (float)get_fov();
std::array<int, 4>viewport = get_viewport();
float gui_scale = (float)get_gui_scale();
ImGui::InputText("Type", type.data(), type.length(), ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("Zenit", &zenit, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputInt4("Viewport", viewport.data(), ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
imgui.end();
}
#endif // ENABLE_CAMERA_STATISTICS
void Camera::rotate_on_sphere(double delta_azimut_rad, double delta_zenit_rad, bool apply_limits)
{
m_zenit += Geometry::rad2deg(delta_zenit_rad);
if (apply_limits) {
if (m_zenit > 90.0f) {
delta_zenit_rad -= Geometry::deg2rad(m_zenit - 90.0f);
m_zenit = 90.0f;
}
else if (m_zenit < -90.0f) {
delta_zenit_rad -= Geometry::deg2rad(m_zenit + 90.0f);
m_zenit = -90.0f;
}
}
Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ());
m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right());
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
}
// Virtual trackball, rotate around an axis, where the eucledian norm of the axis gives the rotation angle in radians.
void Camera::rotate_local_around_target(const Vec3d& rotation_rad)
{
double angle = rotation_rad.norm();
if (std::abs(angle) > EPSILON) {
Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
Vec3d axis = m_view_rotation.conjugate() * rotation_rad.normalized();
m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis));
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
update_zenit();
}
}
double Camera::min_zoom() const
{
return 0.7 * calc_zoom_to_bounding_box_factor(m_scene_box);
}
std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const
{
std::pair<double, double> ret;
auto& [near_z, far_z] = ret;
// box in eye space
BoundingBoxf3 eye_box = box.transformed(m_view_matrix);
near_z = -eye_box.max(2);
far_z = -eye_box.min(2);
// apply margin
near_z -= FrustrumZMargin;
far_z += FrustrumZMargin;
// ensure min size
if (far_z - near_z < FrustrumMinZRange)
{
double mid_z = 0.5 * (near_z + far_z);
double half_size = 0.5 * FrustrumMinZRange;
near_z = mid_z - half_size;
far_z = mid_z + half_size;
}
if (near_z < FrustrumMinNearZ)
{
float delta = FrustrumMinNearZ - near_z;
set_distance(m_distance + delta);
near_z += delta;
far_z += delta;
}
else if ((near_z > 2.0 * FrustrumMinNearZ) && (m_distance > DefaultDistance))
{
float delta = m_distance - DefaultDistance;
set_distance(DefaultDistance);
near_z -= delta;
far_z -= delta;
}
return ret;
}
#if ENABLE_THUMBNAIL_GENERATOR
double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double margin_factor) const
#else
double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, int canvas_w, int canvas_h) const
#endif // ENABLE_THUMBNAIL_GENERATOR
{
double max_bb_size = box.max_size();
if (max_bb_size == 0.0)
return -1.0;
// project the box vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes
Vec3d right = get_dir_right();
Vec3d up = get_dir_up();
Vec3d forward = get_dir_forward();
Vec3d bb_center = box.center();
// box vertices in world space
std::vector<Vec3d> vertices;
vertices.reserve(8);
vertices.push_back(box.min);
vertices.emplace_back(box.max(0), box.min(1), box.min(2));
vertices.emplace_back(box.max(0), box.max(1), box.min(2));
vertices.emplace_back(box.min(0), box.max(1), box.min(2));
vertices.emplace_back(box.min(0), box.min(1), box.max(2));
vertices.emplace_back(box.max(0), box.min(1), box.max(2));
vertices.push_back(box.max);
vertices.emplace_back(box.min(0), box.max(1), box.max(2));
double min_x = DBL_MAX;
double min_y = DBL_MAX;
double max_x = -DBL_MAX;
double max_y = -DBL_MAX;
#if !ENABLE_THUMBNAIL_GENERATOR
// margin factor to give some empty space around the box
double margin_factor = 1.25;
#endif // !ENABLE_THUMBNAIL_GENERATOR
for (const Vec3d& v : vertices)
{
// project vertex on the plane perpendicular to camera forward axis
Vec3d pos = v - bb_center;
Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up);
min_x = std::min(min_x, x_on_plane);
min_y = std::min(min_y, y_on_plane);
max_x = std::max(max_x, x_on_plane);
max_y = std::max(max_y, y_on_plane);
}
double dx = max_x - min_x;
double dy = max_y - min_y;
if ((dx <= 0.0) || (dy <= 0.0))
return -1.0f;
double med_x = 0.5 * (max_x + min_x);
double med_y = 0.5 * (max_y + min_y);
dx *= margin_factor;
dy *= margin_factor;
return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy);
}
#if ENABLE_THUMBNAIL_GENERATOR
double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& center, double margin_factor) const
{
if (volumes.empty())
return -1.0;
// project the volumes vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes
Vec3d right = get_dir_right();
Vec3d up = get_dir_up();
Vec3d forward = get_dir_forward();
BoundingBoxf3 box;
for (const GLVolume* volume : volumes)
{
box.merge(volume->transformed_bounding_box());
}
center = box.center();
double min_x = DBL_MAX;
double min_y = DBL_MAX;
double max_x = -DBL_MAX;
double max_y = -DBL_MAX;
for (const GLVolume* volume : volumes)
{
const Transform3d& transform = volume->world_matrix();
const TriangleMesh* hull = volume->convex_hull();
if (hull == nullptr)
continue;
for (const Vec3f& vertex : hull->its.vertices)
{
Vec3d v = transform * vertex.cast<double>();
// project vertex on the plane perpendicular to camera forward axis
Vec3d pos = v - center;
Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up);
min_x = std::min(min_x, x_on_plane);
min_y = std::min(min_y, y_on_plane);
max_x = std::max(max_x, x_on_plane);
max_y = std::max(max_y, y_on_plane);
}
}
center += 0.5 * (max_x + min_x) * right + 0.5 * (max_y + min_y) * up;
double dx = margin_factor * (max_x - min_x);
double dy = margin_factor * (max_y - min_y);
if ((dx <= 0.0) || (dy <= 0.0))
return -1.0f;
return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy);
}
#endif // ENABLE_THUMBNAIL_GENERATOR
void Camera::set_distance(double distance) const
{
if (m_distance != distance)
{
m_view_matrix.translate((distance - m_distance) * get_dir_forward());
m_distance = distance;
}
}
void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up)
{
Vec3d unit_z = (position - target).normalized();
Vec3d unit_x = up.cross(unit_z).normalized();
Vec3d unit_y = unit_z.cross(unit_x).normalized();
m_target = target;
Vec3d new_position = m_target + m_distance * unit_z;
m_view_matrix(0, 0) = unit_x(0);
m_view_matrix(0, 1) = unit_x(1);
m_view_matrix(0, 2) = unit_x(2);
m_view_matrix(0, 3) = -unit_x.dot(new_position);
m_view_matrix(1, 0) = unit_y(0);
m_view_matrix(1, 1) = unit_y(1);
m_view_matrix(1, 2) = unit_y(2);
m_view_matrix(1, 3) = -unit_y.dot(new_position);
m_view_matrix(2, 0) = unit_z(0);
m_view_matrix(2, 1) = unit_z(1);
m_view_matrix(2, 2) = unit_z(2);
m_view_matrix(2, 3) = -unit_z.dot(new_position);
m_view_matrix(3, 0) = 0.0;
m_view_matrix(3, 1) = 0.0;
m_view_matrix(3, 2) = 0.0;
m_view_matrix(3, 3) = 1.0;
// Initialize the rotation quaternion from the rotation submatrix of of m_view_matrix.
m_view_rotation = Eigen::Quaterniond(m_view_matrix.matrix().template block<3, 3>(0, 0));
update_zenit();
}
void Camera::set_default_orientation()
{
m_zenit = 45.0f;
double theta_rad = Geometry::deg2rad(-(double)m_zenit);
double phi_rad = Geometry::deg2rad(45.0);
double sin_theta = ::sin(theta_rad);
Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));
m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ());
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- camera_pos), m_view_rotation, Vec3d(1., 1., 1.));
}
Vec3d Camera::validate_target(const Vec3d& target) const
{
BoundingBoxf3 test_box = m_scene_box;
test_box.translate(-m_scene_box.center());
// We may let this factor be customizable
static const double ScaleFactor = 1.5;
test_box.scale(ScaleFactor);
test_box.translate(m_scene_box.center());
return Vec3d(std::clamp(target(0), test_box.min(0), test_box.max(0)),
std::clamp(target(1), test_box.min(1), test_box.max(1)),
std::clamp(target(2), test_box.min(2), test_box.max(2)));
}
void Camera::update_zenit()
{
m_zenit = Geometry::rad2deg(0.5 * M_PI - std::acos(std::clamp(-get_dir_forward().dot(Vec3d::UnitZ()), -1.0, 1.0)));
}
} // GUI
} // Slic3r