74c02e7aed
Conflicts: lib/Slic3r/Print.pm
878 lines
36 KiB
Perl
878 lines
36 KiB
Perl
package Slic3r::Print;
|
|
use Moo;
|
|
|
|
use Config;
|
|
use Math::ConvexHull 1.0.4 qw(convex_hull);
|
|
use Slic3r::Geometry qw(X Y Z PI MIN MAX scale unscale move_points);
|
|
use Slic3r::Geometry::Clipper qw(explode_expolygons safety_offset diff_ex intersection_ex
|
|
union_ex offset JT_ROUND JT_MITER);
|
|
use XXX;
|
|
|
|
has 'x_length' => (is => 'ro', required => 1);
|
|
has 'y_length' => (is => 'ro', required => 1);
|
|
has 'total_x_length' => (is => 'rw'); # including duplicates
|
|
has 'total_y_length' => (is => 'rw'); # including duplicates
|
|
has 'copies' => (is => 'rw', default => sub {[]});
|
|
|
|
has 'layers' => (
|
|
traits => ['Array'],
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::Layer]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
has 'total_extrusion_length' => (is => 'rw');
|
|
|
|
sub new_from_mesh {
|
|
my $class = shift;
|
|
my ($mesh) = @_;
|
|
|
|
$mesh->rotate($Slic3r::rotate);
|
|
$mesh->scale($Slic3r::scale / $Slic3r::resolution);
|
|
$mesh->align_to_origin;
|
|
|
|
# initialize print job
|
|
my @size = $mesh->size;
|
|
my $print = $class->new(
|
|
x_length => $size[X],
|
|
y_length => $size[Y],
|
|
);
|
|
|
|
# process facets
|
|
{
|
|
my $apply_lines = sub {
|
|
my $lines = shift;
|
|
foreach my $layer_id (keys %$lines) {
|
|
my $layer = $print->layer($layer_id);
|
|
$layer->add_line($_) for @{ $lines->{$layer_id} };
|
|
}
|
|
};
|
|
Slic3r::parallelize(
|
|
disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets
|
|
items => [ 0..$#{$mesh->facets} ],
|
|
thread_cb => sub {
|
|
my $q = shift;
|
|
my $result_lines = {};
|
|
while (defined (my $facet_id = $q->dequeue)) {
|
|
my $lines = $mesh->slice_facet($print, $facet_id);
|
|
foreach my $layer_id (keys %$lines) {
|
|
$result_lines->{$layer_id} ||= [];
|
|
push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} };
|
|
}
|
|
}
|
|
return $result_lines;
|
|
},
|
|
collect_cb => sub {
|
|
$apply_lines->($_[0]);
|
|
},
|
|
no_threads_cb => sub {
|
|
for (0..$#{$mesh->facets}) {
|
|
my $lines = $mesh->slice_facet($print, $_);
|
|
$apply_lines->($lines);
|
|
}
|
|
},
|
|
);
|
|
}
|
|
die "Invalid input file\n" if !@{$print->layers};
|
|
|
|
# remove last layer if empty
|
|
# (we might have created it because of the $max_layer = ... + 1 code below)
|
|
pop @{$print->layers} if !@{$print->layers->[-1]->surfaces} && !@{$print->layers->[-1]->lines};
|
|
|
|
foreach my $layer (@{ $print->layers }) {
|
|
Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n",
|
|
$layer->id, unscale $layer->slice_z if $Slic3r::debug;
|
|
|
|
# layer currently has many lines representing intersections of
|
|
# model facets with the layer plane. there may also be lines
|
|
# that we need to ignore (for example, when two non-horizontal
|
|
# facets share a common edge on our plane, we get a single line;
|
|
# however that line has no meaning for our layer as it's enclosed
|
|
# inside a closed polyline)
|
|
|
|
# build surfaces from sparse lines
|
|
$layer->make_surfaces($mesh->make_loops($layer));
|
|
|
|
# free memory
|
|
$layer->lines(undef);
|
|
}
|
|
|
|
# detect slicing errors
|
|
my $warning_thrown = 0;
|
|
for (my $i = 0; $i <= $#{$print->layers}; $i++) {
|
|
my $layer = $print->layers->[$i];
|
|
next unless $layer->slicing_errors;
|
|
if (!$warning_thrown) {
|
|
warn "The model has overlapping or self-intersecting facets. I tried to repair it, "
|
|
. "however you might want to check the results or repair the input file and retry.\n";
|
|
$warning_thrown = 1;
|
|
}
|
|
|
|
# try to repair the layer surfaces by merging all contours and all holes from
|
|
# neighbor layers
|
|
Slic3r::debugf "Attempting to repair layer %d\n", $i;
|
|
|
|
my (@upper_surfaces, @lower_surfaces);
|
|
for (my $j = $i+1; $j <= $#{$print->layers}; $j++) {
|
|
if (!$print->layers->[$j]->slicing_errors) {
|
|
@upper_surfaces = @{$print->layers->[$j]->slices};
|
|
last;
|
|
}
|
|
}
|
|
for (my $j = $i-1; $j >= 0; $j--) {
|
|
if (!$print->layers->[$j]->slicing_errors) {
|
|
@lower_surfaces = @{$print->layers->[$j]->slices};
|
|
last;
|
|
}
|
|
}
|
|
|
|
my $union = union_ex([
|
|
map $_->expolygon->contour, @upper_surfaces, @lower_surfaces,
|
|
]);
|
|
my $diff = diff_ex(
|
|
[ map @$_, @$union ],
|
|
[ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ],
|
|
);
|
|
|
|
@{$layer->slices} = map Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal'),
|
|
@$diff;
|
|
}
|
|
|
|
# remove empty layers from bottom
|
|
while (@{$print->layers} && !@{$print->layers->[0]->slices} && !@{$print->layers->[0]->thin_walls}) {
|
|
shift @{$print->layers};
|
|
for (my $i = 0; $i <= $#{$print->layers}; $i++) {
|
|
$print->layers->[$i]->id($i);
|
|
}
|
|
}
|
|
|
|
warn "No layers were detected. You might want to repair your STL file and retry.\n"
|
|
if !@{$print->layers};
|
|
|
|
return $print;
|
|
}
|
|
|
|
sub BUILD {
|
|
my $self = shift;
|
|
|
|
my $dist = scale $Slic3r::duplicate_distance;
|
|
|
|
if ($Slic3r::duplicate_grid->[X] > 1 || $Slic3r::duplicate_grid->[Y] > 1) {
|
|
$self->total_x_length($self->x_length * $Slic3r::duplicate_grid->[X] + $dist * ($Slic3r::duplicate_grid->[X] - 1));
|
|
$self->total_y_length($self->y_length * $Slic3r::duplicate_grid->[Y] + $dist * ($Slic3r::duplicate_grid->[Y] - 1));
|
|
|
|
# generate offsets for copies
|
|
for my $x_copy (1..$Slic3r::duplicate_grid->[X]) {
|
|
for my $y_copy (1..$Slic3r::duplicate_grid->[Y]) {
|
|
push @{$self->copies}, [
|
|
($self->x_length + $dist) * ($x_copy-1),
|
|
($self->y_length + $dist) * ($y_copy-1),
|
|
];
|
|
}
|
|
}
|
|
} elsif ($Slic3r::duplicate > 1) {
|
|
my $linint = sub {
|
|
my ($value, $oldmin, $oldmax, $newmin, $newmax) = @_;
|
|
return ($value - $oldmin) * ($newmax - $newmin) / ($oldmax - $oldmin) + $newmin;
|
|
};
|
|
|
|
# use actual part size plus separation distance (half on each side) in spacing algorithm
|
|
my $partx = unscale($self->x_length) + $Slic3r::duplicate_distance;
|
|
my $party = unscale($self->y_length) + $Slic3r::duplicate_distance;
|
|
|
|
# margin needed for the skirt
|
|
my $skirt_margin;
|
|
if ($Slic3r::skirts > 0) {
|
|
$skirt_margin = ($Slic3r::flow_spacing * $Slic3r::skirts + $Slic3r::skirt_distance) * 2;
|
|
} else {
|
|
$skirt_margin = 0;
|
|
}
|
|
|
|
# this is how many cells we have available into which to put parts
|
|
my $cellw = int(($Slic3r::bed_size->[X] - $skirt_margin + $Slic3r::duplicate_distance) / $partx);
|
|
my $cellh = int(($Slic3r::bed_size->[Y] - $skirt_margin + $Slic3r::duplicate_distance) / $party);
|
|
|
|
die "$Slic3r::duplicate parts won't fit in your print area!\n" if $Slic3r::duplicate > ($cellw * $cellh);
|
|
|
|
# width and height of space used by cells
|
|
my $w = $cellw * $partx;
|
|
my $h = $cellh * $party;
|
|
|
|
# left and right border positions of space used by cells
|
|
my $l = ($Slic3r::bed_size->[X] - $w) / 2;
|
|
my $r = $l + $w;
|
|
|
|
# top and bottom border positions
|
|
my $t = ($Slic3r::bed_size->[Y] - $h) / 2;
|
|
my $b = $t + $h;
|
|
|
|
# list of cells, sorted by distance from center
|
|
my @cellsorder;
|
|
|
|
# work out distance for all cells, sort into list
|
|
for my $i (0..$cellw-1) {
|
|
for my $j (0..$cellh-1) {
|
|
my $cx = $linint->($i + 0.5, 0, $cellw, $l, $r);
|
|
my $cy = $linint->($j + 0.5, 0, $cellh, $t, $b);
|
|
|
|
my $xd = abs(($Slic3r::bed_size->[X] / 2) - $cx);
|
|
my $yd = abs(($Slic3r::bed_size->[Y] / 2) - $cy);
|
|
|
|
my $c = {
|
|
location => [$cx, $cy],
|
|
index => [$i, $j],
|
|
distance => $xd * $xd + $yd * $yd - abs(($cellw / 2) - ($i + 0.5)),
|
|
};
|
|
|
|
BINARYINSERTIONSORT: {
|
|
my $index = $c->{distance};
|
|
my $low = 0;
|
|
my $high = @cellsorder;
|
|
while ($low < $high) {
|
|
my $mid = ($low + (($high - $low) / 2)) | 0;
|
|
my $midval = $cellsorder[$mid]->[0];
|
|
|
|
if ($midval < $index) {
|
|
$low = $mid + 1;
|
|
} elsif ($midval > $index) {
|
|
$high = $mid;
|
|
} else {
|
|
splice @cellsorder, $mid, 0, [$index, $c];
|
|
last BINARYINSERTIONSORT;
|
|
}
|
|
}
|
|
splice @cellsorder, $low, 0, [$index, $c];
|
|
}
|
|
}
|
|
}
|
|
|
|
# the extents of cells actually used by objects
|
|
my ($lx, $ty, $rx, $by) = (0, 0, 0, 0);
|
|
|
|
# now find cells actually used by objects, map out the extents so we can position correctly
|
|
for my $i (1..$Slic3r::duplicate) {
|
|
my $c = $cellsorder[$i - 1];
|
|
my $cx = $c->[1]->{index}->[0];
|
|
my $cy = $c->[1]->{index}->[1];
|
|
if ($i == 1) {
|
|
$lx = $rx = $cx;
|
|
$ty = $by = $cy;
|
|
} else {
|
|
$rx = $cx if $cx > $rx;
|
|
$lx = $cx if $cx < $lx;
|
|
$by = $cy if $cy > $by;
|
|
$ty = $cy if $cy < $ty;
|
|
}
|
|
}
|
|
# now we actually place objects into cells, positioned such that the left and bottom borders are at 0
|
|
for my $i (1..$Slic3r::duplicate) {
|
|
my $c = shift @cellsorder;
|
|
my $cx = $c->[1]->{index}->[0] - $lx;
|
|
my $cy = $c->[1]->{index}->[1] - $ty;
|
|
|
|
push @{$self->copies}, [scale($cx * $partx), scale($cy * $party)];
|
|
}
|
|
|
|
# save size of area used
|
|
$self->total_x_length(scale(($rx - $lx + 1) * $partx - $Slic3r::duplicate_distance));
|
|
$self->total_y_length(scale(($by - $ty + 1) * $party - $Slic3r::duplicate_distance));
|
|
} else {
|
|
$self->total_x_length($self->x_length);
|
|
$self->total_y_length($self->y_length);
|
|
push @{$self->copies}, [0, 0];
|
|
}
|
|
}
|
|
|
|
sub layer_count {
|
|
my $self = shift;
|
|
return scalar @{ $self->layers };
|
|
}
|
|
|
|
sub max_length {
|
|
my $self = shift;
|
|
return ($self->x_length > $self->y_length) ? $self->x_length : $self->y_length;
|
|
}
|
|
|
|
sub layer {
|
|
my $self = shift;
|
|
my ($layer_id) = @_;
|
|
|
|
# extend our print by creating all necessary layers
|
|
|
|
if ($self->layer_count < $layer_id + 1) {
|
|
for (my $i = $self->layer_count; $i <= $layer_id; $i++) {
|
|
push @{ $self->layers }, Slic3r::Layer->new(id => $i);
|
|
}
|
|
}
|
|
|
|
return $self->layers->[$layer_id];
|
|
}
|
|
|
|
sub detect_surfaces_type {
|
|
my $self = shift;
|
|
Slic3r::debugf "Detecting solid surfaces...\n";
|
|
|
|
# prepare a reusable subroutine to make surface differences
|
|
my $surface_difference = sub {
|
|
my ($subject_surfaces, $clip_surfaces, $result_type) = @_;
|
|
my $expolygons = diff_ex(
|
|
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$subject_surfaces ],
|
|
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$clip_surfaces ],
|
|
1,
|
|
);
|
|
return grep $_->contour->is_printable,
|
|
map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
|
|
@$expolygons;
|
|
};
|
|
|
|
for (my $i = 0; $i < $self->layer_count; $i++) {
|
|
my $layer = $self->layers->[$i];
|
|
my $upper_layer = $self->layers->[$i+1];
|
|
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
|
|
|
|
my (@bottom, @top, @internal) = ();
|
|
|
|
# find top surfaces (difference between current surfaces
|
|
# of current layer and upper one)
|
|
if ($upper_layer) {
|
|
@top = $surface_difference->($layer->slices, $upper_layer->slices, 'top');
|
|
} else {
|
|
# if no upper layer, all surfaces of this one are solid
|
|
@top = @{$layer->slices};
|
|
$_->surface_type('top') for @top;
|
|
}
|
|
|
|
# find bottom surfaces (difference between current surfaces
|
|
# of current layer and lower one)
|
|
if ($lower_layer) {
|
|
@bottom = $surface_difference->($layer->slices, $lower_layer->slices, 'bottom');
|
|
} else {
|
|
# if no lower layer, all surfaces of this one are solid
|
|
@bottom = @{$layer->slices};
|
|
$_->surface_type('bottom') for @bottom;
|
|
}
|
|
|
|
# now, if the object contained a thin membrane, we could have overlapping bottom
|
|
# and top surfaces; let's do an intersection to discover them and consider them
|
|
# as bottom surfaces (to allow for bridge detection)
|
|
if (@top && @bottom) {
|
|
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
|
|
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layer->id, scalar(@$overlapping);
|
|
@top = $surface_difference->([@top], $overlapping, 'top');
|
|
}
|
|
|
|
# find internal surfaces (difference between top/bottom surfaces and others)
|
|
@internal = $surface_difference->($layer->slices, [@top, @bottom], 'internal');
|
|
|
|
# save surfaces to layer
|
|
@{$layer->slices} = (@bottom, @top, @internal);
|
|
|
|
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
|
|
$layer->id, scalar(@bottom), scalar(@top), scalar(@internal);
|
|
}
|
|
|
|
# clip surfaces to the fill boundaries
|
|
foreach my $layer (@{$self->layers}) {
|
|
@{$layer->surfaces} = ();
|
|
foreach my $surface (@{$layer->slices}) {
|
|
my $intersection = intersection_ex(
|
|
[ $surface->p ],
|
|
[ map @$_, @{$layer->fill_boundaries} ],
|
|
);
|
|
push @{$layer->surfaces}, map Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => $surface->surface_type),
|
|
@$intersection;
|
|
}
|
|
|
|
# free memory
|
|
@{$layer->fill_boundaries} = ();
|
|
}
|
|
|
|
}
|
|
|
|
sub discover_horizontal_shells {
|
|
my $self = shift;
|
|
|
|
Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n";
|
|
|
|
for (my $i = 0; $i < $self->layer_count; $i++) {
|
|
my $layer = $self->layers->[$i];
|
|
foreach my $type (qw(top bottom)) {
|
|
# find surfaces of current type for current layer
|
|
# and offset them to take perimeters into account
|
|
my @surfaces = map $_->offset($Slic3r::perimeters * scale $Slic3r::flow_width),
|
|
grep $_->surface_type eq $type, @{$layer->fill_surfaces} or next;
|
|
my $surfaces_p = [ map $_->p, @surfaces ];
|
|
Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n",
|
|
$i, scalar(@surfaces), $type;
|
|
|
|
for (my $n = $type eq 'top' ? $i-1 : $i+1;
|
|
abs($n - $i) <= $Slic3r::solid_layers-1;
|
|
$type eq 'top' ? $n-- : $n++) {
|
|
|
|
next if $n < 0 || $n >= $self->layer_count;
|
|
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
|
|
|
|
my @neighbor_surfaces = @{$self->layers->[$n]->surfaces};
|
|
my @neighbor_fill_surfaces = @{$self->layers->[$n]->fill_surfaces};
|
|
|
|
# find intersection between neighbor and current layer's surfaces
|
|
# intersections have contours and holes
|
|
my $new_internal_solid = intersection_ex(
|
|
$surfaces_p,
|
|
[ map $_->p, grep $_->surface_type =~ /internal/, @neighbor_surfaces ],
|
|
undef, 1,
|
|
);
|
|
next if !@$new_internal_solid;
|
|
|
|
# internal-solid are the union of the existing internal-solid surfaces
|
|
# and new ones
|
|
my $internal_solid = union_ex([
|
|
( map $_->p, grep $_->surface_type eq 'internal-solid', @neighbor_fill_surfaces ),
|
|
( map @$_, @$new_internal_solid ),
|
|
]);
|
|
|
|
# subtract intersections from layer surfaces to get resulting inner surfaces
|
|
my $internal = diff_ex(
|
|
[ map $_->p, grep $_->surface_type eq 'internal', @neighbor_fill_surfaces ],
|
|
[ map @$_, @$internal_solid ],
|
|
);
|
|
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
|
|
scalar(@$internal_solid), scalar(@$internal);
|
|
|
|
# Note: due to floating point math we're going to get some very small
|
|
# polygons as $internal; they will be removed by removed_small_features()
|
|
|
|
# assign resulting inner surfaces to layer
|
|
my $neighbor_fill_surfaces = $self->layers->[$n]->fill_surfaces;
|
|
@$neighbor_fill_surfaces = ();
|
|
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal')
|
|
for @$internal;
|
|
|
|
# assign new internal-solid surfaces to layer
|
|
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal-solid')
|
|
for @$internal_solid;
|
|
|
|
# assign top and bottom surfaces to layer
|
|
foreach my $s (Slic3r::Surface->group(grep $_->surface_type =~ /top|bottom/, @neighbor_fill_surfaces)) {
|
|
my $solid_surfaces = diff_ex(
|
|
[ map $_->p, @$s ],
|
|
[ map @$_, @$internal_solid, @$internal ],
|
|
);
|
|
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle)
|
|
for @$solid_surfaces;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sub extrude_skirt {
|
|
my $self = shift;
|
|
return unless $Slic3r::skirts > 0;
|
|
|
|
# collect points from all layers contained in skirt height
|
|
my $skirt_height = $Slic3r::skirt_height;
|
|
$skirt_height = $self->layer_count if $skirt_height > $self->layer_count;
|
|
my @layers = map $self->layer($_), 0..($skirt_height-1);
|
|
my @points = (
|
|
(map @$_, map @{$_->expolygon}, map @{$_->slices}, @layers),
|
|
(map @$_, map @{$_->thin_walls}, @layers),
|
|
(map @{$_->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers),
|
|
);
|
|
return if @points < 3; # at least three points required for a convex hull
|
|
|
|
# duplicate points to take copies into account
|
|
my @all_points = map move_points($_, @points), @{$self->copies};
|
|
|
|
# find out convex hull
|
|
my $convex_hull = convex_hull(\@all_points);
|
|
|
|
# draw outlines from outside to inside
|
|
my @skirts = ();
|
|
for (my $i = $Slic3r::skirts - 1; $i >= 0; $i--) {
|
|
my $distance = scale ($Slic3r::skirt_distance + ($Slic3r::flow_spacing * $i));
|
|
my $outline = offset([$convex_hull], $distance, $Slic3r::resolution * 100, JT_ROUND);
|
|
push @skirts, Slic3r::ExtrusionLoop->new(
|
|
polygon => Slic3r::Polygon->new(@{$outline->[0]}),
|
|
role => 'skirt',
|
|
);
|
|
}
|
|
|
|
# apply skirts to all layers
|
|
push @{$_->skirts}, @skirts for @layers;
|
|
}
|
|
|
|
# combine fill surfaces across layers
|
|
sub infill_every_layers {
|
|
my $self = shift;
|
|
return unless $Slic3r::infill_every_layers > 1 && $Slic3r::fill_density > 0;
|
|
|
|
# start from bottom, skip first layer
|
|
for (my $i = 1; $i < $self->layer_count; $i++) {
|
|
my $layer = $self->layer($i);
|
|
|
|
# skip layer if no internal fill surfaces
|
|
next if !grep $_->surface_type eq 'internal', @{$layer->fill_surfaces};
|
|
|
|
# for each possible depth, look for intersections with the lower layer
|
|
# we do this from the greater depth to the smaller
|
|
for (my $d = $Slic3r::infill_every_layers - 1; $d >= 1; $d--) {
|
|
next if ($i - $d) < 0;
|
|
my $lower_layer = $self->layer($i - 1);
|
|
|
|
# select surfaces of the lower layer having the depth we're looking for
|
|
my @lower_surfaces = grep $_->depth_layers == $d && $_->surface_type eq 'internal',
|
|
@{$lower_layer->fill_surfaces};
|
|
next if !@lower_surfaces;
|
|
|
|
# calculate intersection between our surfaces and theirs
|
|
my $intersection = intersection_ex(
|
|
[ map $_->p, grep $_->depth_layers <= $d, @lower_surfaces ],
|
|
[ map $_->p, grep $_->surface_type eq 'internal', @{$layer->fill_surfaces} ],
|
|
);
|
|
next if !@$intersection;
|
|
|
|
# new fill surfaces of the current layer are:
|
|
# - any non-internal surface
|
|
# - intersections found (with a $d + 1 depth)
|
|
# - any internal surface not belonging to the intersection (with its original depth)
|
|
{
|
|
my @new_surfaces = ();
|
|
push @new_surfaces, grep $_->surface_type ne 'internal', @{$layer->fill_surfaces};
|
|
push @new_surfaces, map Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal', depth_layers => $d + 1), @$intersection;
|
|
|
|
foreach my $depth (reverse $d..$Slic3r::infill_every_layers) {
|
|
push @new_surfaces, map Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal', depth_layers => $depth),
|
|
|
|
# difference between our internal layers with depth == $depth
|
|
# and the intersection found
|
|
@{diff_ex(
|
|
[
|
|
map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth,
|
|
@{$layer->fill_surfaces},
|
|
],
|
|
[ map @$_, @$intersection ],
|
|
1,
|
|
)};
|
|
}
|
|
@{$layer->fill_surfaces} = @new_surfaces;
|
|
}
|
|
|
|
# now we remove the intersections from lower layer
|
|
{
|
|
my @new_surfaces = ();
|
|
push @new_surfaces, grep $_->surface_type ne 'internal', @{$lower_layer->fill_surfaces};
|
|
foreach my $depth (1..$Slic3r::infill_every_layers) {
|
|
push @new_surfaces, map Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal', depth_layers => $depth),
|
|
|
|
# difference between internal layers with depth == $depth
|
|
# and the intersection found
|
|
@{diff_ex(
|
|
[
|
|
map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth,
|
|
@{$lower_layer->fill_surfaces},
|
|
],
|
|
[ map @$_, @$intersection ],
|
|
1,
|
|
)};
|
|
}
|
|
@{$lower_layer->fill_surfaces} = @new_surfaces;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sub generate_support_material {
|
|
my $self = shift;
|
|
|
|
# determine unsupported surfaces
|
|
my %layers = ();
|
|
my @unsupported_expolygons = ();
|
|
{
|
|
my (@a, @b) = ();
|
|
for my $i (reverse 0 .. $#{$self->layers}) {
|
|
my $layer = $self->layers->[$i];
|
|
my @c = ();
|
|
if (@b) {
|
|
@c = @{diff_ex(
|
|
[ map @$_, @b ],
|
|
[ map @$_, map $_->expolygon->offset_ex(scale $Slic3r::flow_width), @{$layer->slices} ],
|
|
)};
|
|
$layers{$i} = [@c];
|
|
}
|
|
@b = @{union_ex([ map @$_, @c, @a ])};
|
|
|
|
# get unsupported surfaces for current layer
|
|
@a = map $_->expolygon->offset_ex(scale $Slic3r::flow_spacing * $Slic3r::perimeters),
|
|
grep $_->surface_type eq 'bottom' && !defined $_->bridge_angle,
|
|
@{$layer->fill_surfaces};
|
|
|
|
$_->simplify(scale $Slic3r::flow_spacing * 3) for @a;
|
|
push @unsupported_expolygons, @a;
|
|
}
|
|
}
|
|
return if !@unsupported_expolygons;
|
|
|
|
# generate paths for the pattern that we're going to use
|
|
my $support_patterns = [];
|
|
{
|
|
my @support_material_areas = map $_->offset_ex(scale 5),
|
|
@{union_ex([ map @$_, @unsupported_expolygons ])};
|
|
|
|
my $fill = Slic3r::Fill->new(print => $self);
|
|
foreach my $angle (0, 90) {
|
|
my @patterns = ();
|
|
foreach my $expolygon (@support_material_areas) {
|
|
my @paths = $fill->fillers->{rectilinear}->fill_surface(
|
|
Slic3r::Surface->new(
|
|
expolygon => $expolygon,
|
|
bridge_angle => $Slic3r::fill_angle + 45 + $angle,
|
|
),
|
|
density => 0.20,
|
|
flow_spacing => $Slic3r::flow_spacing,
|
|
);
|
|
my $params = shift @paths;
|
|
|
|
push @patterns,
|
|
map Slic3r::ExtrusionPath->new(
|
|
polyline => Slic3r::Polyline->new(@$_),
|
|
role => 'support-material',
|
|
depth_layers => 1,
|
|
flow_spacing => $params->{flow_spacing},
|
|
), @paths;
|
|
}
|
|
push @$support_patterns, [@patterns];
|
|
}
|
|
}
|
|
|
|
if (0) {
|
|
require "Slic3r/SVG.pm";
|
|
Slic3r::SVG::output(undef, "support.svg",
|
|
polylines => [ map $_->polyline, map @$_, @$support_patterns ],
|
|
);
|
|
}
|
|
|
|
# apply the pattern to layers
|
|
{
|
|
my $clip_pattern = sub {
|
|
my ($layer_id, $expolygons) = @_;
|
|
my @paths = ();
|
|
foreach my $expolygon (@$expolygons) {
|
|
push @paths, map $_->clip_with_expolygon($expolygon),
|
|
map $_->clip_with_polygon($expolygon->bounding_box_polygon),
|
|
@{$support_patterns->[ $layer_id % 2 ]};
|
|
};
|
|
return @paths;
|
|
};
|
|
my %layer_paths = ();
|
|
Slic3r::parallelize(
|
|
items => [ keys %layers ],
|
|
thread_cb => sub {
|
|
my $q = shift;
|
|
my $paths = {};
|
|
while (defined (my $layer_id = $q->dequeue)) {
|
|
$paths->{$layer_id} = [ $clip_pattern->($layer_id, $layers{$layer_id}) ];
|
|
}
|
|
return $paths;
|
|
},
|
|
collect_cb => sub {
|
|
my $paths = shift;
|
|
$layer_paths{$_} = $paths->{$_} for keys %$paths;
|
|
},
|
|
no_threads_cb => sub {
|
|
$layer_paths{$_} = [ $clip_pattern->($_, $layers{$_}) ] for keys %layers;
|
|
},
|
|
);
|
|
|
|
foreach my $layer_id (keys %layer_paths) {
|
|
my $layer = $self->layers->[$layer_id];
|
|
$layer->support_fills(Slic3r::ExtrusionPath::Collection->new);
|
|
push @{$layer->support_fills->paths}, @{$layer_paths{$layer_id}};
|
|
}
|
|
}
|
|
}
|
|
|
|
sub export_gcode {
|
|
my $self = shift;
|
|
my ($file) = @_;
|
|
|
|
# open output gcode file
|
|
open my $fh, ">", $file
|
|
or die "Failed to open $file for writing\n";
|
|
|
|
# write some information
|
|
my @lt = localtime;
|
|
printf $fh "; generated by Slic3r $Slic3r::VERSION on %02d-%02d-%02d at %02d:%02d:%02d\n\n",
|
|
$lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0];
|
|
|
|
print $fh "; $_\n" foreach split /\R/, $Slic3r::notes;
|
|
print $fh "\n" if $Slic3r::notes;
|
|
|
|
for (qw(layer_height perimeters solid_layers fill_density nozzle_diameter filament_diameter
|
|
extrusion_multiplier perimeter_speed infill_speed travel_speed extrusion_width_ratio scale)) {
|
|
printf $fh "; %s = %s\n", $_, Slic3r::Config->get($_);
|
|
}
|
|
printf $fh "; single wall width = %.2fmm\n", $Slic3r::flow_width;
|
|
print $fh "\n";
|
|
|
|
# write start commands to file
|
|
printf $fh "M%s %s%d ; set bed temperature\n",
|
|
($Slic3r::gcode_flavor eq 'makerbot' ? '109' : '190'),
|
|
($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::first_layer_bed_temperature
|
|
if $Slic3r::first_layer_bed_temperature && $Slic3r::start_gcode !~ /M190/i;
|
|
printf $fh "M104 %s%d ; set temperature\n",
|
|
($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::first_layer_temperature
|
|
if $Slic3r::first_layer_temperature;
|
|
printf $fh "%s\n", Slic3r::Config->replace_options($Slic3r::start_gcode);
|
|
printf $fh "M109 %s%d ; wait for temperature to be reached\n",
|
|
($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::first_layer_temperature
|
|
if $Slic3r::first_layer_temperature && $Slic3r::gcode_flavor ne 'makerbot'
|
|
&& $Slic3r::start_gcode !~ /M109/i;
|
|
print $fh "G90 ; use absolute coordinates\n";
|
|
print $fh "G21 ; set units to millimeters\n";
|
|
if ($Slic3r::gcode_flavor =~ /^(?:reprap|teacup)$/) {
|
|
printf $fh "G92 %s0 ; reset extrusion distance\n", $Slic3r::extrusion_axis;
|
|
if ($Slic3r::gcode_flavor =~ /^(?:reprap|makerbot)$/) {
|
|
if ($Slic3r::use_relative_e_distances) {
|
|
print $fh "M83 ; use relative distances for extrusion\n";
|
|
} else {
|
|
print $fh "M82 ; use absolute distances for extrusion\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
# calculate X,Y shift to center print around specified origin
|
|
my @shift = (
|
|
$Slic3r::print_center->[X] - (unscale $self->total_x_length / 2),
|
|
$Slic3r::print_center->[Y] - (unscale $self->total_y_length / 2),
|
|
);
|
|
|
|
# set up our extruder object
|
|
my $extruder = Slic3r::Extruder->new;
|
|
my $min_print_speed = 60 * $Slic3r::min_print_speed;
|
|
my $dec = $extruder->dec;
|
|
if ($Slic3r::support_material && $Slic3r::support_material_tool > 0) {
|
|
print $fh $extruder->set_tool(0);
|
|
}
|
|
print $fh $extruder->set_fan(0, 1) if $Slic3r::cooling && $Slic3r::disable_fan_first_layers;
|
|
|
|
# write gcode commands layer by layer
|
|
foreach my $layer (@{ $self->layers }) {
|
|
if ($layer->id == 1) {
|
|
printf $fh "M104 %s%d ; set temperature\n",
|
|
($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::temperature
|
|
if $Slic3r::temperature && $Slic3r::temperature != $Slic3r::first_layer_temperature;
|
|
printf $fh "M140 %s%d ; set bed temperature\n",
|
|
($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::bed_temperature
|
|
if $Slic3r::bed_temperature && $Slic3r::bed_temperature != $Slic3r::first_layer_bed_temperature;
|
|
}
|
|
|
|
# go to layer
|
|
my $layer_gcode = $extruder->change_layer($layer);
|
|
$extruder->elapsed_time(0);
|
|
|
|
# extrude skirts
|
|
$extruder->shift_x($shift[X]);
|
|
$extruder->shift_y($shift[Y]);
|
|
$layer_gcode .= $extruder->set_acceleration($Slic3r::perimeter_acceleration);
|
|
$layer_gcode .= $extruder->extrude_loop($_, 'skirt') for @{ $layer->skirts };
|
|
|
|
for (my $i = 0; $i <= $#{$self->copies}; $i++) {
|
|
my $copy = $self->copies->[$i];
|
|
|
|
# retract explicitely because changing the shift_[xy] properties below
|
|
# won't always trigger the automatic retraction
|
|
$layer_gcode .= $extruder->retract;
|
|
|
|
$extruder->shift_x($shift[X] + unscale $copy->[X]);
|
|
$extruder->shift_y($shift[Y] + unscale $copy->[Y]);
|
|
|
|
# extrude perimeters
|
|
$layer_gcode .= $extruder->extrude($_, 'perimeter') for @{ $layer->perimeters };
|
|
|
|
# extrude fills
|
|
$layer_gcode .= $extruder->set_acceleration($Slic3r::infill_acceleration);
|
|
for my $fill (@{ $layer->fills }) {
|
|
$layer_gcode .= $extruder->extrude_path($_, 'fill')
|
|
for $fill->shortest_path($extruder->last_pos);
|
|
}
|
|
|
|
# extrude support material
|
|
if ($layer->support_fills) {
|
|
$layer_gcode .= $extruder->set_tool($Slic3r::support_material_tool)
|
|
if $Slic3r::support_material_tool > 0;
|
|
$layer_gcode .= $extruder->extrude_path($_, 'support material')
|
|
for $layer->support_fills->shortest_path($extruder->last_pos);
|
|
$layer_gcode .= $extruder->set_tool(0)
|
|
if $Slic3r::support_material_tool > 0;
|
|
}
|
|
}
|
|
last if !$layer_gcode;
|
|
|
|
my $fan_speed = $Slic3r::fan_always_on ? $Slic3r::min_fan_speed : 0;
|
|
my $speed_factor = 1;
|
|
if ($Slic3r::cooling) {
|
|
my $layer_time = $extruder->elapsed_time;
|
|
Slic3r::debugf "Layer %d estimated printing time: %d seconds\n", $layer->id, $layer_time;
|
|
if ($layer_time < $Slic3r::slowdown_below_layer_time) {
|
|
$fan_speed = $Slic3r::max_fan_speed;
|
|
$speed_factor = $layer_time / $Slic3r::slowdown_below_layer_time;
|
|
} elsif ($layer_time < $Slic3r::fan_below_layer_time) {
|
|
$fan_speed = $Slic3r::max_fan_speed - ($Slic3r::max_fan_speed - $Slic3r::min_fan_speed)
|
|
* ($layer_time - $Slic3r::slowdown_below_layer_time)
|
|
/ ($Slic3r::fan_below_layer_time - $Slic3r::slowdown_below_layer_time); #/
|
|
}
|
|
Slic3r::debugf " fan = %d%%, speed = %d%%\n", $fan_speed, $speed_factor * 100;
|
|
|
|
if ($speed_factor < 1) {
|
|
$layer_gcode =~ s/^(?=.*? [XY])(?=.*? E)(G1 .*?F)(\d+(?:\.\d+)?)/
|
|
my $new_speed = $2 * $speed_factor;
|
|
$1 . sprintf("%.${dec}f", $new_speed < $min_print_speed ? $min_print_speed : $new_speed)
|
|
/gexm;
|
|
}
|
|
$fan_speed = 0 if $layer->id < $Slic3r::disable_fan_first_layers;
|
|
}
|
|
$layer_gcode = $extruder->set_fan($fan_speed) . $layer_gcode;
|
|
|
|
# bridge fan speed
|
|
if (!$Slic3r::cooling || $Slic3r::bridge_fan_speed == 0 || $layer->id < $Slic3r::disable_fan_first_layers) {
|
|
$layer_gcode =~ s/^;_BRIDGE_FAN_(?:START|END)\n//gm;
|
|
} else {
|
|
$layer_gcode =~ s/^;_BRIDGE_FAN_START\n/ $extruder->set_fan($Slic3r::bridge_fan_speed, 1) /gmex;
|
|
$layer_gcode =~ s/^;_BRIDGE_FAN_END\n/ $extruder->set_fan($fan_speed, 1) /gmex;
|
|
}
|
|
|
|
print $fh $layer_gcode;
|
|
}
|
|
|
|
# save statistic data
|
|
$self->total_extrusion_length($extruder->total_extrusion_length);
|
|
|
|
# write end commands to file
|
|
print $fh $extruder->retract;
|
|
print $fh $extruder->set_fan(0);
|
|
print $fh "M501 ; reset acceleration\n" if $Slic3r::acceleration;
|
|
printf $fh "%s\n", Slic3r::Config->replace_options($Slic3r::end_gcode);
|
|
|
|
printf $fh "; filament used = %.1fmm (%.1fcm3)\n",
|
|
$self->total_extrusion_length, $self->total_extrusion_volume;
|
|
|
|
# close our gcode file
|
|
close $fh;
|
|
}
|
|
|
|
sub total_extrusion_volume {
|
|
my $self = shift;
|
|
return $self->total_extrusion_length * ($Slic3r::filament_diameter**2) * PI/4 / 1000;
|
|
}
|
|
|
|
1;
|