PrusaSlicer-NonPlainar/src/libslic3r/PrintExport.hpp

327 lines
11 KiB
C++

#ifndef PRINTEXPORT_HPP
#define PRINTEXPORT_HPP
// For png export of the sliced model
#include <fstream>
#include <sstream>
#include <vector>
#include <boost/log/trivial.hpp>
#include <boost/filesystem/path.hpp>
#include "Rasterizer/Rasterizer.hpp"
//#include <tbb/parallel_for.h>
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
namespace Slic3r {
// Used for addressing parameters of FilePrinter::set_statistics()
enum ePrintStatistics
{
psUsedMaterial = 0,
psNumFade,
psNumSlow,
psNumFast,
psCnt
};
enum class FilePrinterFormat {
SLA_PNGZIP,
SVG
};
/*
* Interface for a file printer of the slices. Implementation can be an SVG
* or PNG printer or any other format.
*
* The format argument specifies the output format of the printer and it enables
* different implementations of this class template for each supported format.
*
*/
template<FilePrinterFormat format>
class FilePrinter {
public:
// Draw a polygon which is a polygon inside a slice on the specified layer.
void draw_polygon(const ExPolygon& p, unsigned lyr);
void draw_polygon(const ClipperLib::Polygon& p, unsigned lyr);
// Tell the printer how many layers should it consider.
void layers(unsigned layernum);
// Get the number of layers in the print.
unsigned layers() const;
/* Switch to a particular layer. If there where less layers then the
* specified layer number than an appropriate number of layers will be
* allocated in the printer.
*/
void begin_layer(unsigned layer);
// Allocate a new layer on top of the last and switch to it.
void begin_layer();
/*
* Finish the selected layer. It means that no drawing is allowed on that
* layer anymore. This fact can be used to prepare the file system output
* data like png comprimation and so on.
*/
void finish_layer(unsigned layer);
// Finish the top layer.
void finish_layer();
// Save all the layers into the file (or dir) specified in the path argument
// An optional project name can be added to be used for the layer file names
void save(const std::string& path, const std::string& projectname = "");
// Save only the selected layer to the file specified in path argument.
void save_layer(unsigned lyr, const std::string& path);
};
// Provokes static_assert in the right way.
template<class T = void> struct VeryFalse { static const bool value = false; };
// This can be explicitly implemented in the gui layer or the default Zipper
// API in libslic3r with minz.
template<class Fmt> class LayerWriter {
public:
LayerWriter(const std::string& /*zipfile_path*/)
{
static_assert(VeryFalse<Fmt>::value,
"No layer writer implementation provided!");
}
// Should create a new file within the zip with the given filename. It
// should also finish any previous entry.
void next_entry(const std::string& /*fname*/) {}
// Should create a new file within the archive and write the provided data.
void binary_entry(const std::string& /*fname*/,
const std::uint8_t* buf, size_t len);
// Test whether the object can still be used for writing.
bool is_ok() { return false; }
// Write some data (text) into the current file (entry) within the archive.
template<class T> LayerWriter& operator<<(T&& /*arg*/) {
return *this;
}
// Flush the current entry into the archive.
void finalize() {}
};
// Implementation for PNG raster output
// Be aware that if a large number of layers are allocated, it can very well
// exhaust the available memory especially on 32 bit platform.
template<> class FilePrinter<FilePrinterFormat::SLA_PNGZIP>
{
struct Layer {
Raster raster;
RawBytes rawbytes;
Layer() {}
Layer(const Layer&) = delete;
Layer(Layer&& m):
raster(std::move(m.raster)) {}
};
// We will save the compressed PNG data into stringstreams which can be done
// in parallel. Later we can write every layer to the disk sequentially.
std::vector<Layer> m_layers_rst;
Raster::Resolution m_res;
Raster::PixelDim m_pxdim;
double m_exp_time_s = .0, m_exp_time_first_s = .0;
double m_layer_height = .0;
Raster::Origin m_o = Raster::Origin::TOP_LEFT;
double m_gamma;
double m_used_material = 0.0;
int m_cnt_fade_layers = 0;
int m_cnt_slow_layers = 0;
int m_cnt_fast_layers = 0;
std::string createIniContent(const std::string& projectname) {
using std::string;
using std::to_string;
auto expt_str = to_string(m_exp_time_s);
auto expt_first_str = to_string(m_exp_time_first_s);
auto layerh_str = to_string(m_layer_height);
const std::string cnt_fade_layers = to_string(m_cnt_fade_layers);
const std::string cnt_slow_layers = to_string(m_cnt_slow_layers);
const std::string cnt_fast_layers = to_string(m_cnt_fast_layers);
const std::string used_material = to_string(m_used_material);
return string(
"action = print\n"
"jobDir = ") + projectname + "\n" +
"expTime = " + expt_str + "\n"
"expTimeFirst = " + expt_first_str + "\n"
"numFade = " + cnt_fade_layers + "\n"
"layerHeight = " + layerh_str + "\n"
"usedMaterial = " + used_material + "\n"
"numSlow = " + cnt_slow_layers + "\n"
"numFast = " + cnt_fast_layers + "\n";
}
public:
enum RasterOrientation {
RO_LANDSCAPE,
RO_PORTRAIT
};
// We will play with the raster's coordinate origin parameter. When the
// printer should print in landscape mode it should have the Y axis flipped
// because the layers should be displayed upside down. PNG has its
// coordinate origin in the top-left corner so normally the Raster objects
// should be instantiated with the TOP_LEFT flag. However, in landscape mode
// we do want the pictures to be upside down so we will make BOTTOM_LEFT
// type rasters and the PNG format will do the flipping automatically.
// In case of portrait images, we have to rotate the image by a 90 degrees
// and flip the y axis. To get the correct upside-down orientation of the
// slice images, we can flip the x and y coordinates of the input polygons
// and do the Y flipping of the image. This will generate the correct
// orientation in portrait mode.
inline FilePrinter(double width_mm, double height_mm,
unsigned width_px, unsigned height_px,
double layer_height,
double exp_time, double exp_time_first,
RasterOrientation ro = RO_PORTRAIT,
double gamma = 1.0):
m_res(width_px, height_px),
m_pxdim(width_mm/width_px, height_mm/height_px),
m_exp_time_s(exp_time),
m_exp_time_first_s(exp_time_first),
m_layer_height(layer_height),
// Here is the trick with the orientation.
m_o(ro == RO_LANDSCAPE? Raster::Origin::BOTTOM_LEFT :
Raster::Origin::TOP_LEFT ),
m_gamma(gamma)
{
}
FilePrinter(const FilePrinter& ) = delete;
FilePrinter(FilePrinter&& m):
m_layers_rst(std::move(m.m_layers_rst)),
m_res(m.m_res),
m_pxdim(m.m_pxdim) {}
inline void layers(unsigned cnt) { if(cnt > 0) m_layers_rst.resize(cnt); }
inline unsigned layers() const { return unsigned(m_layers_rst.size()); }
inline void draw_polygon(const ExPolygon& p, unsigned lyr) {
assert(lyr < m_layers_rst.size());
m_layers_rst[lyr].raster.draw(p);
}
inline void draw_polygon(const ClipperLib::Polygon& p, unsigned lyr) {
assert(lyr < m_layers_rst.size());
m_layers_rst[lyr].raster.draw(p);
}
inline void begin_layer(unsigned lyr) {
if(m_layers_rst.size() <= lyr) m_layers_rst.resize(lyr+1);
m_layers_rst[lyr].raster.reset(m_res, m_pxdim, m_o, m_gamma);
}
inline void begin_layer() {
m_layers_rst.emplace_back();
m_layers_rst.front().raster.reset(m_res, m_pxdim, m_o, m_gamma);
}
inline void finish_layer(unsigned lyr_id) {
assert(lyr_id < m_layers_rst.size());
m_layers_rst[lyr_id].rawbytes =
m_layers_rst[lyr_id].raster.save(Raster::Compression::PNG);
m_layers_rst[lyr_id].raster.reset();
}
inline void finish_layer() {
if(!m_layers_rst.empty()) {
m_layers_rst.back().rawbytes =
m_layers_rst.back().raster.save(Raster::Compression::PNG);
m_layers_rst.back().raster.reset();
}
}
template<class LyrFmt>
inline void save(const std::string& fpath, const std::string& prjname = "")
{
try {
LayerWriter<LyrFmt> writer(fpath);
if(!writer.is_ok()) return;
std::string project = prjname.empty()?
boost::filesystem::path(fpath).stem().string() : prjname;
writer.next_entry("config.ini");
if(!writer.is_ok()) return;
writer << createIniContent(project);
for(unsigned i = 0; i < m_layers_rst.size() && writer.is_ok(); i++)
{
if(m_layers_rst[i].rawbytes.size() > 0) {
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", i);
auto zfilename = project + lyrnum + ".png";
if(!writer.is_ok()) break;
writer.binary_entry(zfilename,
m_layers_rst[i].rawbytes.data(),
m_layers_rst[i].rawbytes.size());
}
}
writer.finalize();
} catch(std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
// Rethrow the exception
throw;
}
}
void save_layer(unsigned lyr, const std::string& path) {
unsigned i = lyr;
assert(i < m_layers_rst.size());
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", lyr);
std::string loc = path + "layer" + lyrnum + ".png";
std::fstream out(loc, std::fstream::out | std::fstream::binary);
if(out.good()) {
m_layers_rst[i].raster.save(out, Raster::Compression::PNG);
} else {
BOOST_LOG_TRIVIAL(error) << "Can't create file for layer";
}
out.close();
m_layers_rst[i].raster.reset();
}
void set_statistics(const std::vector<double> statistics)
{
if (statistics.size() != psCnt)
return;
m_used_material = statistics[psUsedMaterial];
m_cnt_fade_layers = int(statistics[psNumFade]);
m_cnt_slow_layers = int(statistics[psNumSlow]);
m_cnt_fast_layers = int(statistics[psNumFast]);
}
};
}
#endif // PRINTEXPORT_HPP