PrusaSlicer-NonPlainar/tests/fff_print/test_printgcode.cpp

279 lines
14 KiB
C++

#include <catch2/catch.hpp>
#include "libslic3r/libslic3r.h"
#include "libslic3r/GCodeReader.hpp"
#include "test_data.hpp"
#include <algorithm>
#include <regex>
using namespace Slic3r;
using namespace Slic3r::Test;
std::regex perimeters_regex("G1 X[-0-9.]* Y[-0-9.]* E[-0-9.]* ; perimeter");
std::regex infill_regex("G1 X[-0-9.]* Y[-0-9.]* E[-0-9.]* ; infill");
std::regex skirt_regex("G1 X[-0-9.]* Y[-0-9.]* E[-0-9.]* ; skirt");
SCENARIO( "PrintGCode basic functionality", "[PrintGCode]") {
GIVEN("A default configuration and a print test object") {
Slic3r::DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
WHEN("the output is executed with no support material") {
config.set_deserialize("layer_height", "0.2");
config.set_deserialize("first_layer_height", "0.2");
config.set_deserialize("first_layer_extrusion_width", "0");
config.set_deserialize("gcode_comments", "1");
config.set_deserialize("start_gcode", "");
Slic3r::Model model;
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("Some text output is generated.") {
REQUIRE(gcode.size() > 0);
}
THEN("Exported text contains slic3r version") {
REQUIRE(gcode.find(SLIC3R_VERSION) != std::string::npos);
}
//THEN("Exported text contains git commit id") {
// REQUIRE(gcode.find("; Git Commit") != std::string::npos);
// REQUIRE(gcode.find(SLIC3R_BUILD_ID) != std::string::npos);
//}
THEN("Exported text contains extrusion statistics.") {
REQUIRE(gcode.find("; external perimeters extrusion width") != std::string::npos);
REQUIRE(gcode.find("; perimeters extrusion width") != std::string::npos);
REQUIRE(gcode.find("; infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; solid infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; top infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; support material extrusion width") == std::string::npos);
REQUIRE(gcode.find("; first layer extrusion width") == std::string::npos);
}
THEN("Exported text does not contain cooling markers (they were consumed)") {
REQUIRE(gcode.find(";_EXTRUDE_SET_SPEED") == std::string::npos);
}
THEN("GCode preamble is emitted.") {
REQUIRE(gcode.find("G21 ; set units to millimeters") != std::string::npos);
}
THEN("Config options emitted for print config, default region config, default object config") {
REQUIRE(gcode.find("; first_layer_temperature") != std::string::npos);
REQUIRE(gcode.find("; layer_height") != std::string::npos);
REQUIRE(gcode.find("; fill_density") != std::string::npos);
}
THEN("Infill is emitted.") {
std::smatch has_match;
REQUIRE(std::regex_search(gcode, has_match, infill_regex));
}
THEN("Perimeters are emitted.") {
std::smatch has_match;
REQUIRE(std::regex_search(gcode, has_match, perimeters_regex));
}
THEN("Skirt is emitted.") {
std::smatch has_match;
REQUIRE(std::regex_search(gcode, has_match, skirt_regex));
}
THEN("final Z height is 20mm") {
double final_z {0.0};
auto reader {GCodeReader()};
reader.apply_config(print->config());
reader.parse_buffer(gcode, [&final_z] (GCodeReader& self, const GCodeReader::GCodeLine& line)
{
final_z = std::max<double>(final_z, static_cast<double>(self.z())); // record the highest Z point we reach
});
REQUIRE(final_z == Approx(20.));
}
}
WHEN("output is executed with complete objects and two differently-sized meshes") {
Slic3r::Model model;
config.set_deserialize("first_layer_extrusion_width", "0");
config.set_deserialize("first_layer_height", "0.3");
config.set_deserialize("layer_height", "0.2");
config.set_deserialize("support_material", "0");
config.set_deserialize("raft_layers", "0");
config.set_deserialize("complete_objects", "1");
config.set_deserialize("gcode_comments", "1");
config.set_deserialize("between_objects_gcode", "; between-object-gcode");
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20,TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("Some text output is generated.") {
REQUIRE(gcode.size() > 0);
}
THEN("Infill is emitted.") {
std::smatch has_match;
REQUIRE(std::regex_search(gcode, has_match, infill_regex));
}
THEN("Perimeters are emitted.") {
std::smatch has_match;
REQUIRE(std::regex_search(gcode, has_match, perimeters_regex));
}
THEN("Skirt is emitted.") {
std::smatch has_match;
REQUIRE(std::regex_search(gcode, has_match, skirt_regex));
}
THEN("Between-object-gcode is emitted.") {
REQUIRE(gcode.find("; between-object-gcode") != std::string::npos);
}
THEN("final Z height is 20.1mm") {
double final_z {0.0};
auto reader {GCodeReader()};
reader.apply_config(print->config());
reader.parse_buffer(gcode, [&final_z] (GCodeReader& self, const GCodeReader::GCodeLine& line)
{
final_z = std::max(final_z, static_cast<double>(self.z())); // record the highest Z point we reach
});
REQUIRE(final_z == Approx(20.1));
}
THEN("Z height resets on object change") {
double final_z {0.0};
bool reset {false};
auto reader {GCodeReader()};
reader.apply_config(print->config());
reader.parse_buffer(gcode, [&final_z, &reset] (GCodeReader& self, const GCodeReader::GCodeLine& line)
{
if (final_z > 0 && std::abs(self.z() - 0.3) < 0.01 ) { // saw higher Z before this, now it's lower
reset = true;
} else {
final_z = std::max(final_z, static_cast<double>(self.z())); // record the highest Z point we reach
}
});
REQUIRE(reset == true);
}
THEN("Shorter object is printed before taller object.") {
double final_z {0.0};
bool reset {false};
auto reader {GCodeReader()};
reader.apply_config(print->config());
reader.parse_buffer(gcode, [&final_z, &reset] (GCodeReader& self, const GCodeReader::GCodeLine& line)
{
if (final_z > 0 && std::abs(self.z() - 0.3) < 0.01 ) {
reset = (final_z > 20.0);
} else {
final_z = std::max(final_z, static_cast<double>(self.z())); // record the highest Z point we reach
}
});
REQUIRE(reset == true);
}
}
WHEN("the output is executed with support material") {
Slic3r::Model model;
config.set_deserialize("first_layer_extrusion_width", "0");
config.set_deserialize("support_material", "1");
config.set_deserialize("raft_layers", "3");
config.set_deserialize("gcode_comments", "1");
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("Some text output is generated.") {
REQUIRE(gcode.size() > 0);
}
THEN("Exported text contains extrusion statistics.") {
REQUIRE(gcode.find("; external perimeters extrusion width") != std::string::npos);
REQUIRE(gcode.find("; perimeters extrusion width") != std::string::npos);
REQUIRE(gcode.find("; infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; solid infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; top infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; support material extrusion width") != std::string::npos);
REQUIRE(gcode.find("; first layer extrusion width") == std::string::npos);
}
THEN("Raft is emitted.") {
REQUIRE(gcode.find("; raft") != std::string::npos);
}
}
WHEN("the output is executed with a separate first layer extrusion width") {
Slic3r::Model model;
config.set_deserialize("first_layer_extrusion_width", "0.5");
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("Some text output is generated.") {
REQUIRE(gcode.size() > 0);
}
THEN("Exported text contains extrusion statistics.") {
REQUIRE(gcode.find("; external perimeters extrusion width") != std::string::npos);
REQUIRE(gcode.find("; perimeters extrusion width") != std::string::npos);
REQUIRE(gcode.find("; infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; solid infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; top infill extrusion width") != std::string::npos);
REQUIRE(gcode.find("; support material extrusion width") == std::string::npos);
REQUIRE(gcode.find("; first layer extrusion width") != std::string::npos);
}
}
WHEN("Cooling is enabled and the fan is disabled.") {
config.set_deserialize("cooling", "1");
config.set_deserialize("disable_fan_first_layers", "5");
Slic3r::Model model;
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("GCode to disable fan is emitted."){
REQUIRE(gcode.find("M107") != std::string::npos);
}
}
WHEN("end_gcode exists with layer_num and layer_z") {
config.set_deserialize("end_gcode", "; Layer_num [layer_num]\n; Layer_z [layer_z]");
config.set_deserialize("layer_height", "0.1");
config.set_deserialize("first_layer_height", "0.1");
Slic3r::Model model;
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("layer_num and layer_z are processed in the end gcode") {
REQUIRE(gcode.find("; Layer_num 199") != std::string::npos);
REQUIRE(gcode.find("; Layer_z 20") != std::string::npos);
}
}
WHEN("current_extruder exists in start_gcode") {
config.set_deserialize("start_gcode", "; Extruder [current_extruder]");
{
Slic3r::Model model;
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("current_extruder is processed in the start gcode and set for first extruder") {
REQUIRE(gcode.find("; Extruder 0") != std::string::npos);
}
}
config.set_num_extruders(4);
config.set_deserialize("infill_extruder", "2");
config.set_deserialize("solid_infill_extruder", "2");
config.set_deserialize("perimeter_extruder", "2");
config.set_deserialize("support_material_extruder", "2");
config.set_deserialize("support_material_interface_extruder", "2");
{
Slic3r::Model model;
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
THEN("current_extruder is processed in the start gcode and set for second extruder") {
REQUIRE(gcode.find("; Extruder 1") != std::string::npos);
}
}
}
WHEN("layer_num represents the layer's index from z=0") {
config.set_deserialize("complete_objects", "1");
config.set_deserialize("gcode_comments", "1");
config.set_deserialize("layer_gcode", ";Layer:[layer_num] ([layer_z] mm)");
config.set_deserialize("layer_height", "1.0");
config.set_deserialize("first_layer_height", "1.0");
Slic3r::Model model;
std::shared_ptr<Slic3r::Print> print = Slic3r::Test::init_print({TestMesh::cube_20x20x20,TestMesh::cube_20x20x20}, model, config);
std::string gcode = Slic3r::Test::gcode(print);
// End of the 1st object.
size_t pos = gcode.find(";Layer:19 ");
THEN("First and second object last layer is emitted") {
// First object
REQUIRE(pos != std::string::npos);
pos += 10;
REQUIRE(pos < gcode.size());
double z = 0;
REQUIRE((sscanf(gcode.data() + pos, "(%lf mm)", &z) == 1));
REQUIRE(z == Approx(20.));
// Second object
pos = gcode.find(";Layer:39 ", pos);
REQUIRE(pos != std::string::npos);
pos += 10;
REQUIRE(pos < gcode.size());
REQUIRE((sscanf(gcode.data() + pos, "(%lf mm)", &z) == 1));
REQUIRE(z == Approx(20.));
}
}
}
}