PrusaSlicer-NonPlainar/xs/include/boost/polygon/polygon_90_set_data.hpp

990 lines
44 KiB
C++

/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_SET_DATA_HPP
#define BOOST_POLYGON_POLYGON_90_SET_DATA_HPP
#include "isotropy.hpp"
#include "point_concept.hpp"
#include "transform.hpp"
#include "interval_concept.hpp"
#include "rectangle_concept.hpp"
#include "segment_concept.hpp"
#include "detail/iterator_points_to_compact.hpp"
#include "detail/iterator_compact_to_points.hpp"
#include "polygon_traits.hpp"
//manhattan boolean algorithms
#include "detail/boolean_op.hpp"
#include "detail/polygon_formation.hpp"
#include "detail/rectangle_formation.hpp"
#include "detail/max_cover.hpp"
#include "detail/property_merge.hpp"
#include "detail/polygon_90_touch.hpp"
#include "detail/iterator_geometry_to_set.hpp"
namespace boost { namespace polygon{
template <typename ltype, typename rtype, typename op_type>
class polygon_90_set_view;
template <typename T>
class polygon_90_set_data {
public:
typedef T coordinate_type;
typedef std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > > value_type;
typedef typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::const_iterator iterator_type;
typedef polygon_90_set_data operator_arg_type;
// default constructor
inline polygon_90_set_data() : orient_(HORIZONTAL), data_(), dirty_(false), unsorted_(false) {}
// constructor
inline polygon_90_set_data(orientation_2d orient) : orient_(orient), data_(), dirty_(false), unsorted_(false) {}
// constructor from an iterator pair over vertex data
template <typename iT>
inline polygon_90_set_data(orientation_2d orient, iT input_begin, iT input_end) :
orient_(HORIZONTAL), data_(), dirty_(false), unsorted_(false) {
dirty_ = true;
unsorted_ = true;
for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
}
// copy constructor
inline polygon_90_set_data(const polygon_90_set_data& that) :
orient_(that.orient_), data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_) {}
template <typename ltype, typename rtype, typename op_type>
inline polygon_90_set_data(const polygon_90_set_view<ltype, rtype, op_type>& that);
// copy with orientation change constructor
inline polygon_90_set_data(orientation_2d orient, const polygon_90_set_data& that) :
orient_(orient), data_(), dirty_(false), unsorted_(false) {
insert(that, false, that.orient_);
}
// destructor
inline ~polygon_90_set_data() {}
// assignement operator
inline polygon_90_set_data& operator=(const polygon_90_set_data& that) {
if(this == &that) return *this;
orient_ = that.orient_;
data_ = that.data_;
dirty_ = that.dirty_;
unsorted_ = that.unsorted_;
return *this;
}
template <typename ltype, typename rtype, typename op_type>
inline polygon_90_set_data& operator=(const polygon_90_set_view<ltype, rtype, op_type>& that);
template <typename geometry_object>
inline polygon_90_set_data& operator=(const geometry_object& geometry) {
data_.clear();
insert(geometry);
return *this;
}
// insert iterator range
inline void insert(iterator_type input_begin, iterator_type input_end, orientation_2d orient = HORIZONTAL) {
if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
dirty_ = true;
unsorted_ = true;
if(orient == orient_)
data_.insert(data_.end(), input_begin, input_end);
else {
for( ; input_begin != input_end; ++input_begin) {
insert(*input_begin, false, orient);
}
}
}
// insert iterator range
template <typename iT>
inline void insert(iT input_begin, iT input_end, orientation_2d orient = HORIZONTAL) {
if(input_begin == input_end) return;
dirty_ = true;
unsorted_ = true;
for( ; input_begin != input_end; ++input_begin) {
insert(*input_begin, false, orient);
}
}
inline void insert(const polygon_90_set_data& polygon_set) {
insert(polygon_set.begin(), polygon_set.end(), polygon_set.orient());
}
inline void insert(const std::pair<std::pair<point_data<coordinate_type>, point_data<coordinate_type> >, int>& edge, bool is_hole = false,
orientation_2d orient = HORIZONTAL) {
std::pair<coordinate_type, std::pair<coordinate_type, int> > vertex;
vertex.first = edge.first.first.x();
vertex.second.first = edge.first.first.y();
vertex.second.second = edge.second * (is_hole ? -1 : 1);
insert(vertex, false, VERTICAL);
vertex.first = edge.first.second.x();
vertex.second.first = edge.first.second.y();
vertex.second.second *= -1;
insert(vertex, false, VERTICAL);
}
template <typename geometry_type>
inline void insert(const geometry_type& geometry_object, bool is_hole = false, orientation_2d = HORIZONTAL) {
iterator_geometry_to_set<typename geometry_concept<geometry_type>::type, geometry_type>
begin_input(geometry_object, LOW, orient_, is_hole), end_input(geometry_object, HIGH, orient_, is_hole);
insert(begin_input, end_input, orient_);
}
inline void insert(const std::pair<coordinate_type, std::pair<coordinate_type, int> >& vertex, bool is_hole = false,
orientation_2d orient = HORIZONTAL) {
data_.push_back(vertex);
if(orient != orient_) std::swap(data_.back().first, data_.back().second.first);
if(is_hole) data_.back().second.second *= -1;
dirty_ = true;
unsorted_ = true;
}
inline void insert(coordinate_type major_coordinate, const std::pair<interval_data<coordinate_type>, int>& edge) {
std::pair<coordinate_type, std::pair<coordinate_type, int> > vertex;
vertex.first = major_coordinate;
vertex.second.first = edge.first.get(LOW);
vertex.second.second = edge.second;
insert(vertex, false, orient_);
vertex.second.first = edge.first.get(HIGH);
vertex.second.second *= -1;
insert(vertex, false, orient_);
}
template <typename output_container>
inline void get(output_container& output) const {
get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
}
template <typename output_container>
inline void get(output_container& output, size_t vthreshold) const {
get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type(), vthreshold);
}
template <typename output_container>
inline void get_polygons(output_container& output) const {
get_dispatch(output, polygon_90_concept());
}
template <typename output_container>
inline void get_rectangles(output_container& output) const {
clean();
form_rectangles(output, data_.begin(), data_.end(), orient_, rectangle_concept());
}
template <typename output_container>
inline void get_rectangles(output_container& output, orientation_2d slicing_orientation) const {
if(slicing_orientation == orient_) {
get_rectangles(output);
} else {
polygon_90_set_data<coordinate_type> ps(*this);
ps.transform(axis_transformation(axis_transformation::SWAP_XY));
output_container result;
ps.get_rectangles(result);
for(typename output_container::iterator itr = result.begin(); itr != result.end(); ++itr) {
::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
}
output.insert(output.end(), result.begin(), result.end());
}
}
// equivalence operator
inline bool operator==(const polygon_90_set_data& p) const {
if(orient_ == p.orient()) {
clean();
p.clean();
return data_ == p.data_;
} else {
return false;
}
}
// inequivalence operator
inline bool operator!=(const polygon_90_set_data& p) const {
return !((*this) == p);
}
// get iterator to begin vertex data
inline iterator_type begin() const {
return data_.begin();
}
// get iterator to end vertex data
inline iterator_type end() const {
return data_.end();
}
const value_type& value() const {
return data_;
}
// clear the contents of the polygon_90_set_data
inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
// find out if Polygon set is empty
inline bool empty() const { clean(); return data_.empty(); }
// get the Polygon set size in vertices
inline std::size_t size() const { clean(); return data_.size(); }
// get the current Polygon set capacity in vertices
inline std::size_t capacity() const { return data_.capacity(); }
// reserve size of polygon set in vertices
inline void reserve(std::size_t size) { return data_.reserve(size); }
// find out if Polygon set is sorted
inline bool sorted() const { return !unsorted_; }
// find out if Polygon set is clean
inline bool dirty() const { return dirty_; }
// get the scanline orientation of the polygon set
inline orientation_2d orient() const { return orient_; }
// Start BM
// The problem: If we have two polygon sets with two different scanline orientations:
// I tried changing the orientation of one to coincide with other (If not, resulting boolean operation
// produces spurious results).
// First I tried copying polygon data from one of the sets into another set with corrected orientation
// using one of the copy constructor that takes in orientation (see somewhere above in this file) --> copy constructor throws error
// Then I tried another approach:(see below). This approach also fails to produce the desired results when test case is run.
// Here is the part that beats me: If I comment out the whole section, I can do all the operations (^=, -=, &= )these commented out
// operations perform. So then why do we need them?. Hence, I commented out this whole section.
// End BM
// polygon_90_set_data<coordinate_type>& operator-=(const polygon_90_set_data& that) {
// sort();
// that.sort();
// value_type data;
// std::swap(data, data_);
// applyBooleanBinaryOp(data.begin(), data.end(),
// that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryNot>());
// return *this;
// }
// polygon_90_set_data<coordinate_type>& operator^=(const polygon_90_set_data& that) {
// sort();
// that.sort();
// value_type data;
// std::swap(data, data_);
// applyBooleanBinaryOp(data.begin(), data.end(),
// that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryXor>());
// return *this;
// }
// polygon_90_set_data<coordinate_type>& operator&=(const polygon_90_set_data& that) {
// sort();
// that.sort();
// value_type data;
// std::swap(data, data_);
// applyBooleanBinaryOp(data.begin(), data.end(),
// that.begin(), that.end(), boolean_op::BinaryCount<boolean_op::BinaryAnd>());
// return *this;
// }
// polygon_90_set_data<coordinate_type>& operator|=(const polygon_90_set_data& that) {
// insert(that);
// return *this;
// }
void clean() const {
sort();
if(dirty_) {
boolean_op::default_arg_workaround<int>::applyBooleanOr(data_);
dirty_ = false;
}
}
void sort() const{
if(unsorted_) {
polygon_sort(data_.begin(), data_.end());
unsorted_ = false;
}
}
template <typename input_iterator_type>
void set(input_iterator_type input_begin, input_iterator_type input_end, orientation_2d orient) {
data_.clear();
reserve(std::distance(input_begin, input_end));
data_.insert(data_.end(), input_begin, input_end);
orient_ = orient;
dirty_ = true;
unsorted_ = true;
}
void set(const value_type& value, orientation_2d orient) {
data_ = value;
orient_ = orient;
dirty_ = true;
unsorted_ = true;
}
//extents
template <typename rectangle_type>
bool
extents(rectangle_type& extents_rectangle) const {
clean();
if(data_.empty()) return false;
if(orient_ == HORIZONTAL)
set_points(extents_rectangle, point_data<coordinate_type>(data_[0].second.first, data_[0].first),
point_data<coordinate_type>(data_[data_.size() - 1].second.first, data_[data_.size() - 1].first));
else
set_points(extents_rectangle, point_data<coordinate_type>(data_[0].first, data_[0].second.first),
point_data<coordinate_type>(data_[data_.size() - 1].first, data_[data_.size() - 1].second.first));
for(std::size_t i = 1; i < data_.size() - 1; ++i) {
if(orient_ == HORIZONTAL)
encompass(extents_rectangle, point_data<coordinate_type>(data_[i].second.first, data_[i].first));
else
encompass(extents_rectangle, point_data<coordinate_type>(data_[i].first, data_[i].second.first));
}
return true;
}
polygon_90_set_data&
bloat2(typename coordinate_traits<coordinate_type>::unsigned_area_type west_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type east_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type south_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type north_bloating) {
std::vector<rectangle_data<coordinate_type> > rects;
clean();
rects.reserve(data_.size() / 2);
get(rects);
rectangle_data<coordinate_type> convolutionRectangle(interval_data<coordinate_type>(-((coordinate_type)west_bloating),
(coordinate_type)east_bloating),
interval_data<coordinate_type>(-((coordinate_type)south_bloating),
(coordinate_type)north_bloating));
for(typename std::vector<rectangle_data<coordinate_type> >::iterator itr = rects.begin();
itr != rects.end(); ++itr) {
convolve(*itr, convolutionRectangle);
}
clear();
insert(rects.begin(), rects.end());
return *this;
}
static void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>& prev_pt,
const point_data<coordinate_type>& current_pt, const point_data<coordinate_type>& next_pt,
coordinate_type west_bloating,
coordinate_type east_bloating,
coordinate_type south_bloating,
coordinate_type north_bloating) {
bool pxl = prev_pt.x() < current_pt.x();
bool pyl = prev_pt.y() < current_pt.y();
bool nxl = next_pt.x() < current_pt.x();
bool nyl = next_pt.y() < current_pt.y();
bool pxg = prev_pt.x() > current_pt.x();
bool pyg = prev_pt.y() > current_pt.y();
bool nxg = next_pt.x() > current_pt.x();
bool nyg = next_pt.y() > current_pt.y();
//two of the four if statements will execute
if(pxl)
pt.y(current_pt.y() - south_bloating);
if(pxg)
pt.y(current_pt.y() + north_bloating);
if(nxl)
pt.y(current_pt.y() + north_bloating);
if(nxg)
pt.y(current_pt.y() - south_bloating);
if(pyl)
pt.x(current_pt.x() + east_bloating);
if(pyg)
pt.x(current_pt.x() - west_bloating);
if(nyl)
pt.x(current_pt.x() - west_bloating);
if(nyg)
pt.x(current_pt.x() + east_bloating);
}
static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly,
coordinate_type west_bloating,
coordinate_type east_bloating,
coordinate_type south_bloating,
coordinate_type north_bloating) {
point_data<coordinate_type> first_pt = poly[0];
point_data<coordinate_type> second_pt = poly[1];
point_data<coordinate_type> prev_pt = poly[0];
point_data<coordinate_type> current_pt = poly[1];
for(std::size_t i = 2; i < poly.size(); ++i) {
point_data<coordinate_type> next_pt = poly[i];
modify_pt(poly[i-1], prev_pt, current_pt, next_pt, west_bloating, east_bloating, south_bloating, north_bloating);
prev_pt = current_pt;
current_pt = next_pt;
}
point_data<coordinate_type> next_pt = first_pt;
modify_pt(poly.back(), prev_pt, current_pt, next_pt, west_bloating, east_bloating, south_bloating, north_bloating);
prev_pt = current_pt;
current_pt = next_pt;
next_pt = second_pt;
modify_pt(poly[0], prev_pt, current_pt, next_pt, west_bloating, east_bloating, south_bloating, north_bloating);
remove_colinear_pts(poly);
}
static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly,
coordinate_type west_shrinking,
coordinate_type east_shrinking,
coordinate_type south_shrinking,
coordinate_type north_shrinking) {
rectangle_data<coordinate_type> extents_rectangle;
set_points(extents_rectangle, poly[0], poly[0]);
point_data<coordinate_type> first_pt = poly[0];
point_data<coordinate_type> second_pt = poly[1];
point_data<coordinate_type> prev_pt = poly[0];
point_data<coordinate_type> current_pt = poly[1];
encompass(extents_rectangle, current_pt);
for(std::size_t i = 2; i < poly.size(); ++i) {
point_data<coordinate_type> next_pt = poly[i];
encompass(extents_rectangle, next_pt);
modify_pt(poly[i-1], prev_pt, current_pt, next_pt, west_shrinking, east_shrinking, south_shrinking, north_shrinking);
prev_pt = current_pt;
current_pt = next_pt;
}
if(delta(extents_rectangle, HORIZONTAL) < std::abs(west_shrinking + east_shrinking))
return false;
if(delta(extents_rectangle, VERTICAL) < std::abs(north_shrinking + south_shrinking))
return false;
point_data<coordinate_type> next_pt = first_pt;
modify_pt(poly.back(), prev_pt, current_pt, next_pt, west_shrinking, east_shrinking, south_shrinking, north_shrinking);
prev_pt = current_pt;
current_pt = next_pt;
next_pt = second_pt;
modify_pt(poly[0], prev_pt, current_pt, next_pt, west_shrinking, east_shrinking, south_shrinking, north_shrinking);
return remove_colinear_pts(poly);
}
static bool remove_colinear_pts(std::vector<point_data<coordinate_type> >& poly) {
bool found_colinear = true;
while(found_colinear && poly.size() >= 4) {
found_colinear = false;
typename std::vector<point_data<coordinate_type> >::iterator itr = poly.begin();
itr += poly.size() - 1; //get last element position
typename std::vector<point_data<coordinate_type> >::iterator itr2 = poly.begin();
typename std::vector<point_data<coordinate_type> >::iterator itr3 = itr2;
++itr3;
std::size_t count = 0;
for( ; itr3 < poly.end(); ++itr3) {
if(((*itr).x() == (*itr2).x() && (*itr).x() == (*itr3).x()) ||
((*itr).y() == (*itr2).y() && (*itr).y() == (*itr3).y()) ) {
++count;
found_colinear = true;
} else {
itr = itr2;
++itr2;
}
*itr2 = *itr3;
}
itr3 = poly.begin();
if(((*itr).x() == (*itr2).x() && (*itr).x() == (*itr3).x()) ||
((*itr).y() == (*itr2).y() && (*itr).y() == (*itr3).y()) ) {
++count;
found_colinear = true;
}
poly.erase(poly.end() - count, poly.end());
}
return poly.size() >= 4;
}
polygon_90_set_data&
bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type west_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type east_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type south_bloating,
typename coordinate_traits<coordinate_type>::unsigned_area_type north_bloating) {
std::list<polygon_45_with_holes_data<coordinate_type> > polys;
get(polys);
clear();
for(typename std::list<polygon_45_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
//polygon_90_set_data<coordinate_type> psref;
//psref.insert(view_as<polygon_90_concept>((*itr).self_));
//rectangle_data<coordinate_type> prerect;
//psref.extents(prerect);
resize_poly_up((*itr).self_.coords_, (coordinate_type)west_bloating, (coordinate_type)east_bloating,
(coordinate_type)south_bloating, (coordinate_type)north_bloating);
iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
begin_input(view_as<polygon_90_concept>((*itr).self_), LOW, orient_, false, true, COUNTERCLOCKWISE),
end_input(view_as<polygon_90_concept>((*itr).self_), HIGH, orient_, false, true, COUNTERCLOCKWISE);
insert(begin_input, end_input, orient_);
//polygon_90_set_data<coordinate_type> pstest;
//pstest.insert(view_as<polygon_90_concept>((*itr).self_));
//psref.bloat2(west_bloating, east_bloating, south_bloating, north_bloating);
//if(!equivalence(psref, pstest)) {
// std::cout << "test failed\n";
//}
for(typename std::list<polygon_45_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
itrh != (*itr).holes_.end(); ++itrh) {
//rectangle_data<coordinate_type> rect;
//psref.extents(rect);
//polygon_90_set_data<coordinate_type> psrefhole;
//psrefhole.insert(prerect);
//psrefhole.insert(view_as<polygon_90_concept>(*itrh), true);
//polygon_45_data<coordinate_type> testpoly(*itrh);
if(resize_poly_down((*itrh).coords_,(coordinate_type)west_bloating, (coordinate_type)east_bloating,
(coordinate_type)south_bloating, (coordinate_type)north_bloating)) {
iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
end_input2(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
insert(begin_input2, end_input2, orient_);
//polygon_90_set_data<coordinate_type> pstesthole;
//pstesthole.insert(rect);
//iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
// begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true);
//pstesthole.insert(begin_input2, end_input, orient_);
//psrefhole.bloat2(west_bloating, east_bloating, south_bloating, north_bloating);
//if(!equivalence(psrefhole, pstesthole)) {
// std::cout << (winding(testpoly) == CLOCKWISE) << std::endl;
// std::cout << (winding(*itrh) == CLOCKWISE) << std::endl;
// polygon_90_set_data<coordinate_type> c(psrefhole);
// c.clean();
// polygon_90_set_data<coordinate_type> a(pstesthole);
// polygon_90_set_data<coordinate_type> b(pstesthole);
// a.sort();
// b.clean();
// std::cout << "test hole failed\n";
// //std::cout << testpoly << std::endl;
//}
}
}
}
return *this;
}
polygon_90_set_data&
shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type west_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type east_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type south_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type north_shrinking) {
std::list<polygon_45_with_holes_data<coordinate_type> > polys;
get(polys);
clear();
for(typename std::list<polygon_45_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
itr != polys.end(); ++itr) {
//polygon_90_set_data<coordinate_type> psref;
//psref.insert(view_as<polygon_90_concept>((*itr).self_));
//rectangle_data<coordinate_type> prerect;
//psref.extents(prerect);
//polygon_45_data<coordinate_type> testpoly((*itr).self_);
if(resize_poly_down((*itr).self_.coords_, -(coordinate_type)west_shrinking, -(coordinate_type)east_shrinking,
-(coordinate_type)south_shrinking, -(coordinate_type)north_shrinking)) {
iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
begin_input(view_as<polygon_90_concept>((*itr).self_), LOW, orient_, false, true, COUNTERCLOCKWISE),
end_input(view_as<polygon_90_concept>((*itr).self_), HIGH, orient_, false, true, COUNTERCLOCKWISE);
insert(begin_input, end_input, orient_);
//iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
// begin_input2(view_as<polygon_90_concept>((*itr).self_), LOW, orient_, false, true, COUNTERCLOCKWISE);
//polygon_90_set_data<coordinate_type> pstest;
//pstest.insert(begin_input2, end_input, orient_);
//psref.shrink2(west_shrinking, east_shrinking, south_shrinking, north_shrinking);
//if(!equivalence(psref, pstest)) {
// std::cout << "test failed\n";
//}
for(typename std::list<polygon_45_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
itrh != (*itr).holes_.end(); ++itrh) {
//rectangle_data<coordinate_type> rect;
//psref.extents(rect);
//polygon_90_set_data<coordinate_type> psrefhole;
//psrefhole.insert(prerect);
//psrefhole.insert(view_as<polygon_90_concept>(*itrh), true);
//polygon_45_data<coordinate_type> testpoly(*itrh);
resize_poly_up((*itrh).coords_, -(coordinate_type)west_shrinking, -(coordinate_type)east_shrinking,
-(coordinate_type)south_shrinking, -(coordinate_type)north_shrinking);
iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true),
end_input2(view_as<polygon_90_concept>(*itrh), HIGH, orient_, true, true);
insert(begin_input2, end_input2, orient_);
//polygon_90_set_data<coordinate_type> pstesthole;
//pstesthole.insert(rect);
//iterator_geometry_to_set<polygon_90_concept, view_of<polygon_90_concept, polygon_45_data<coordinate_type> > >
// begin_input2(view_as<polygon_90_concept>(*itrh), LOW, orient_, true, true);
//pstesthole.insert(begin_input2, end_input, orient_);
//psrefhole.shrink2(west_shrinking, east_shrinking, south_shrinking, north_shrinking);
//if(!equivalence(psrefhole, pstesthole)) {
// std::cout << (winding(testpoly) == CLOCKWISE) << std::endl;
// std::cout << (winding(*itrh) == CLOCKWISE) << std::endl;
// polygon_90_set_data<coordinate_type> c(psrefhole);
// c.clean();
// polygon_90_set_data<coordinate_type> a(pstesthole);
// polygon_90_set_data<coordinate_type> b(pstesthole);
// a.sort();
// b.clean();
// std::cout << "test hole failed\n";
// //std::cout << testpoly << std::endl;
//}
}
}
}
return *this;
}
polygon_90_set_data&
shrink2(typename coordinate_traits<coordinate_type>::unsigned_area_type west_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type east_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type south_shrinking,
typename coordinate_traits<coordinate_type>::unsigned_area_type north_shrinking) {
rectangle_data<coordinate_type> externalBoundary;
if(!extents(externalBoundary)) return *this;
::boost::polygon::bloat(externalBoundary, 10); //bloat by diferential ammount
//insert a hole that encompasses the data
insert(externalBoundary, true); //note that the set is in a dirty state now
sort(); //does not apply implicit OR operation
std::vector<rectangle_data<coordinate_type> > rects;
rects.reserve(data_.size() / 2);
//begin does not apply implicit or operation, this is a dirty range
form_rectangles(rects, data_.begin(), data_.end(), orient_, rectangle_concept());
clear();
rectangle_data<coordinate_type> convolutionRectangle(interval_data<coordinate_type>(-((coordinate_type)east_shrinking),
(coordinate_type)west_shrinking),
interval_data<coordinate_type>(-((coordinate_type)north_shrinking),
(coordinate_type)south_shrinking));
for(typename std::vector<rectangle_data<coordinate_type> >::iterator itr = rects.begin();
itr != rects.end(); ++itr) {
rectangle_data<coordinate_type>& rect = *itr;
convolve(rect, convolutionRectangle);
//insert rectangle as a hole
insert(rect, true);
}
convolve(externalBoundary, convolutionRectangle);
//insert duplicate of external boundary as solid to cancel out the external hole boundaries
insert(externalBoundary);
clean(); //we have negative values in the set, so we need to apply an OR operation to make it valid input to a boolean
return *this;
}
polygon_90_set_data&
shrink(direction_2d dir, typename coordinate_traits<coordinate_type>::unsigned_area_type shrinking) {
if(dir == WEST)
return shrink(shrinking, 0, 0, 0);
if(dir == EAST)
return shrink(0, shrinking, 0, 0);
if(dir == SOUTH)
return shrink(0, 0, shrinking, 0);
return shrink(0, 0, 0, shrinking);
}
polygon_90_set_data&
bloat(direction_2d dir, typename coordinate_traits<coordinate_type>::unsigned_area_type shrinking) {
if(dir == WEST)
return bloat(shrinking, 0, 0, 0);
if(dir == EAST)
return bloat(0, shrinking, 0, 0);
if(dir == SOUTH)
return bloat(0, 0, shrinking, 0);
return bloat(0, 0, 0, shrinking);
}
polygon_90_set_data&
resize(coordinate_type west, coordinate_type east, coordinate_type south, coordinate_type north);
polygon_90_set_data& move(coordinate_type x_delta, coordinate_type y_delta) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
(*itr).first += x_delta;
(*itr).second.first += y_delta;
} else {
(*itr).second.first += x_delta;
(*itr).first += y_delta;
}
}
return *this;
}
// transform set
template <typename transformation_type>
polygon_90_set_data& transform(const transformation_type& transformation) {
direction_2d dir1, dir2;
transformation.get_directions(dir1, dir2);
int sign = dir1.get_sign() * dir2.get_sign();
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
transformation.transform((*itr).first, (*itr).second.first);
} else {
transformation.transform((*itr).second.first, (*itr).first);
}
(*itr).second.second *= sign;
}
if(dir1 != EAST || dir2 != NORTH)
unsorted_ = true; //some mirroring or rotation must have happened
return *this;
}
// scale set
polygon_90_set_data& scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
(*itr).first *= (coordinate_type)factor;
(*itr).second.first *= (coordinate_type)factor;
}
return *this;
}
polygon_90_set_data& scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
typedef typename coordinate_traits<coordinate_type>::coordinate_distance dt;
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
(*itr).first = scaling_policy<coordinate_type>::round((dt)((*itr).first) / (dt)factor);
(*itr).second.first = scaling_policy<coordinate_type>::round((dt)((*itr).second.first) / (dt)factor);
}
unsorted_ = true; //scaling down can make coordinates equal that were not previously equal
return *this;
}
template <typename scaling_type>
polygon_90_set_data& scale(const anisotropic_scale_factor<scaling_type>& scaling) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
scaling.scale((*itr).first, (*itr).second.first);
} else {
scaling.scale((*itr).second.first, (*itr).first);
}
}
unsorted_ = true;
return *this;
}
template <typename scaling_type>
polygon_90_set_data& scale_with(const scaling_type& scaling) {
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
if(orient_ == orientation_2d(VERTICAL)) {
scaling.scale((*itr).first, (*itr).second.first);
} else {
scaling.scale((*itr).second.first, (*itr).first);
}
}
unsorted_ = true;
return *this;
}
polygon_90_set_data& scale(double factor) {
typedef typename coordinate_traits<coordinate_type>::coordinate_distance dt;
for(typename std::vector<std::pair<coordinate_type, std::pair<coordinate_type, int> > >::iterator
itr = data_.begin(); itr != data_.end(); ++itr) {
(*itr).first = scaling_policy<coordinate_type>::round((dt)((*itr).first) * (dt)factor);
(*itr).second.first = scaling_policy<coordinate_type>::round((dt)((*itr).second.first) * (dt)factor);
}
unsorted_ = true; //scaling make coordinates equal that were not previously equal
return *this;
}
polygon_90_set_data& self_xor() {
sort();
if(dirty_) { //if it is clean it is a no-op
boolean_op::default_arg_workaround<boolean_op::UnaryCount>::applyBooleanOr(data_);
dirty_ = false;
}
return *this;
}
polygon_90_set_data& self_intersect() {
sort();
if(dirty_) { //if it is clean it is a no-op
interval_data<coordinate_type> ivl((std::numeric_limits<coordinate_type>::min)(), (std::numeric_limits<coordinate_type>::max)());
rectangle_data<coordinate_type> rect(ivl, ivl);
insert(rect, true);
clean();
}
return *this;
}
inline polygon_90_set_data& interact(const polygon_90_set_data& that) {
typedef coordinate_type Unit;
if(that.dirty_) that.clean();
typename touch_90_operation<Unit>::TouchSetData tsd;
touch_90_operation<Unit>::populateTouchSetData(tsd, that.data_, 0);
std::vector<polygon_90_data<Unit> > polys;
get(polys);
std::vector<std::set<int> > graph(polys.size()+1, std::set<int>());
for(std::size_t i = 0; i < polys.size(); ++i){
polygon_90_set_data<Unit> psTmp(that.orient_);
psTmp.insert(polys[i]);
psTmp.clean();
touch_90_operation<Unit>::populateTouchSetData(tsd, psTmp.data_, i+1);
}
touch_90_operation<Unit>::performTouch(graph, tsd);
clear();
for(std::set<int>::iterator itr = graph[0].begin(); itr != graph[0].end(); ++itr){
insert(polys[(*itr)-1]);
}
dirty_ = false;
return *this;
}
template <class T2, typename iterator_type_1, typename iterator_type_2>
void applyBooleanBinaryOp(iterator_type_1 itr1, iterator_type_1 itr1_end,
iterator_type_2 itr2, iterator_type_2 itr2_end,
T2 defaultCount) {
data_.clear();
boolean_op::applyBooleanBinaryOp(data_, itr1, itr1_end, itr2, itr2_end, defaultCount);
}
private:
orientation_2d orient_;
mutable value_type data_;
mutable bool dirty_;
mutable bool unsorted_;
private:
//functions
template <typename output_container>
void get_dispatch(output_container& output, rectangle_concept ) const {
clean();
form_rectangles(output, data_.begin(), data_.end(), orient_, rectangle_concept());
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_90_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_90_concept tag,
size_t vthreshold) const {
get_fracture(output, true, tag, vthreshold);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_90_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_90_with_holes_concept tag,
size_t vthreshold) const {
get_fracture(output, false, tag, vthreshold);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_45_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_45_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_concept tag) const {
get_fracture(output, true, tag);
}
template <typename output_container>
void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
get_fracture(output, false, tag);
}
template <typename output_container, typename concept_type>
void get_fracture(output_container& container, bool fracture_holes, concept_type tag) const {
clean();
::boost::polygon::get_polygons(container, data_.begin(), data_.end(), orient_, fracture_holes, tag);
}
template <typename output_container, typename concept_type>
void get_fracture(output_container& container, bool fracture_holes, concept_type tag,
size_t vthreshold) const {
clean();
::boost::polygon::get_polygons(container, data_.begin(), data_.end(), orient_, fracture_holes, tag, vthreshold);
}
};
template <typename coordinate_type>
polygon_90_set_data<coordinate_type>&
polygon_90_set_data<coordinate_type>::resize(coordinate_type west,
coordinate_type east,
coordinate_type south,
coordinate_type north) {
move(-west, -south);
coordinate_type e_total = west + east;
coordinate_type n_total = south + north;
if((e_total < 0) ^ (n_total < 0)) {
//different signs
if(e_total < 0) {
shrink(0, -e_total, 0, 0);
if(n_total != 0)
return bloat(0, 0, 0, n_total);
else
return (*this);
} else {
shrink(0, 0, 0, -n_total); //shrink first
if(e_total != 0)
return bloat(0, e_total, 0, 0);
else
return (*this);
}
} else {
if(e_total < 0) {
return shrink(0, -e_total, 0, -n_total);
}
return bloat(0, e_total, 0, n_total);
}
}
template <typename coordinate_type, typename property_type>
class property_merge_90 {
private:
std::vector<std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > > pmd_;
public:
inline property_merge_90() : pmd_() {}
inline property_merge_90(const property_merge_90& that) : pmd_(that.pmd_) {}
inline property_merge_90& operator=(const property_merge_90& that) { pmd_ = that.pmd_; return *this; }
inline void insert(const polygon_90_set_data<coordinate_type>& ps, const property_type& property) {
merge_scanline<coordinate_type, property_type, polygon_90_set_data<coordinate_type> >::
populate_property_merge_data(pmd_, ps.begin(), ps.end(), property, ps.orient());
}
template <class GeoObjT>
inline void insert(const GeoObjT& geoObj, const property_type& property) {
polygon_90_set_data<coordinate_type> ps;
ps.insert(geoObj);
insert(ps, property);
}
//merge properties of input geometries and store the resulting geometries of regions
//with unique sets of merged properties to polygons sets in a map keyed by sets of properties
// T = std::map<std::set<property_type>, polygon_90_set_data<coordiante_type> > or
// T = std::map<std::vector<property_type>, polygon_90_set_data<coordiante_type> >
template <typename ResultType>
inline void merge(ResultType& result) {
merge_scanline<coordinate_type, property_type, polygon_90_set_data<coordinate_type>, typename ResultType::key_type> ms;
ms.perform_merge(result, pmd_);
}
};
//ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
//polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
template <typename coordinate_type>
class connectivity_extraction_90 {
private:
typedef typename touch_90_operation<coordinate_type>::TouchSetData tsd;
tsd tsd_;
unsigned int nodeCount_;
public:
inline connectivity_extraction_90() : tsd_(), nodeCount_(0) {}
inline connectivity_extraction_90(const connectivity_extraction_90& that) : tsd_(that.tsd_),
nodeCount_(that.nodeCount_) {}
inline connectivity_extraction_90& operator=(const connectivity_extraction_90& that) {
tsd_ = that.tsd_;
nodeCount_ = that.nodeCount_; {}
return *this;
}
//insert a polygon set graph node, the value returned is the id of the graph node
inline unsigned int insert(const polygon_90_set_data<coordinate_type>& ps) {
ps.clean();
touch_90_operation<coordinate_type>::populateTouchSetData(tsd_, ps.begin(), ps.end(), nodeCount_);
return nodeCount_++;
}
template <class GeoObjT>
inline unsigned int insert(const GeoObjT& geoObj) {
polygon_90_set_data<coordinate_type> ps;
ps.insert(geoObj);
return insert(ps);
}
//extract connectivity and store the edges in the graph
//graph must be indexable by graph node id and the indexed value must be a std::set of
//graph node id
template <class GraphT>
inline void extract(GraphT& graph) {
touch_90_operation<coordinate_type>::performTouch(graph, tsd_);
}
};
}
}
#endif