PrusaSlicer-NonPlainar/src/libslic3r/PrintObjectSlice.cpp
2021-05-25 19:27:20 +02:00

769 lines
42 KiB
C++

#include "ElephantFootCompensation.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
//! macro used to mark string used at localization, return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
LayerPtrs new_layers(
PrintObject *print_object,
// Object layers (pairs of bottom/top Z coordinate), without the raft.
const std::vector<coordf_t> &object_layers)
{
LayerPtrs out;
out.reserve(object_layers.size());
auto id = int(print_object->slicing_parameters().raft_layers());
coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
out.emplace_back(layer);
if (prev != nullptr) {
prev->upper_layer = layer;
layer->lower_layer = prev;
}
prev = layer;
}
return out;
}
template<typename LayerContainer>
static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
{
std::vector<float> zs;
zs.reserve(layers.size());
for (const Layer *l : layers)
zs.emplace_back((float)l->slice_z);
return zs;
}
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
// This function will go away once we get rid of admesh from ModelVolume.
static indexed_triangle_set get_mesh_its_fix_mesh_connectivity(TriangleMesh mesh)
{
assert(mesh.repaired && mesh.has_shared_vertices());
if (mesh.stl.stats.number_of_facets > 0) {
assert(mesh.repaired && mesh.has_shared_vertices());
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
} else
mesh.its.clear();
return std::move(mesh.its);
}
// Slice single triangle mesh.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &zs,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> layers;
if (! zs.empty()) {
indexed_triangle_set its = get_mesh_its_fix_mesh_connectivity(volume.mesh());
if (its.indices.size() > 0) {
MeshSlicingParamsEx params2 { params };
params2.trafo = params2.trafo * volume.get_matrix();
if (params2.trafo.rotation().determinant() < 0.)
its_flip_triangles(its);
layers = slice_mesh_ex(its, zs, params2, throw_on_cancel_callback);
throw_on_cancel_callback();
}
}
return layers;
}
// Slice single triangle mesh.
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &z,
const std::vector<t_layer_height_range> &ranges,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
// All layers fit into a single range.
out = slice_volume(volume, z, params, throw_on_cancel_callback);
} else {
std::vector<float> z_filtered;
std::vector<std::pair<size_t, size_t>> n_filtered;
z_filtered.reserve(z.size());
n_filtered.reserve(2 * ranges.size());
size_t i = 0;
for (const t_layer_height_range &range : ranges) {
for (; i < z.size() && z[i] < range.first; ++ i) ;
size_t first = i;
for (; i < z.size() && z[i] < range.second; ++ i)
z_filtered.emplace_back(z[i]);
if (i > first)
n_filtered.emplace_back(std::make_pair(first, i));
}
if (! n_filtered.empty()) {
std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
out.assign(z.size(), ExPolygons());
i = 0;
for (const std::pair<size_t, size_t> &span : n_filtered)
for (size_t j = span.first; j < span.second; ++ j)
out[j] = std::move(layers[i ++]);
}
}
}
return out;
}
struct VolumeSlices
{
ObjectID volume_id;
std::vector<ExPolygons> slices;
};
static inline bool model_volume_needs_slicing(const ModelVolume &mv)
{
ModelVolumeType type = mv.type();
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
}
// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
// Apply closing radius.
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
// Apply contour simplification.
static std::vector<VolumeSlices> slice_volumes_inner(
const PrintConfig &print_config,
const PrintObjectConfig &print_object_config,
const Transform3d &object_trafo,
ModelVolumePtrs model_volumes,
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
const std::vector<float> &zs,
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
std::vector<VolumeSlices> out;
out.reserve(model_volumes.size());
std::vector<t_layer_height_range> slicing_ranges;
if (layer_ranges.size() > 1)
slicing_ranges.reserve(layer_ranges.size());
MeshSlicingParamsEx params_base;
params_base.closing_radius = print_object_config.slice_closing_radius.value;
params_base.extra_offset = 0;
params_base.trafo = object_trafo;
params_base.resolution = print_config.resolution.value;
const auto extra_offset = std::max(0.f, float(print_object_config.xy_size_compensation.value));
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_slicing(*model_volume)) {
MeshSlicingParamsEx params { params_base };
if (! model_volume->is_negative_volume())
params.extra_offset = extra_offset;
if (layer_ranges.size() == 1) {
if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
if (model_volume->is_model_part() && print_config.spiral_vase) {
auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
// Slice the bottom layers with SlicingMode::Regular.
// This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
params.mode_below = MeshSlicingParams::SlicingMode::Regular;
const PrintRegionConfig &region_config = it->region->config();
params.slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
++ params.slicing_mode_normal_below_layer);
}
out.push_back({
model_volume->id(),
slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
});
}
} else {
assert(! print_config.spiral_vase);
slicing_ranges.clear();
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
if (layer_range.has_volume(model_volume->id()))
slicing_ranges.emplace_back(layer_range.layer_height_range);
if (! slicing_ranges.empty())
out.push_back({
model_volume->id(),
slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
});
}
if (! out.empty() && out.back().slices.empty())
out.pop_back();
}
return out;
}
static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
{
auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
assert(it != volume_slices.end() && it->volume_id == id);
return *it;
}
static inline bool overlap_in_xy(const BoundingBoxf3 &l, const BoundingBoxf3 &r)
{
return ! (l.max.x() < r.min.x() || l.min.x() > r.max.x() ||
l.max.y() < r.min.y() || l.min.y() > r.max.y());
}
static std::vector<std::vector<ExPolygons>> slices_to_regions(
ModelVolumePtrs model_volumes,
const PrintObjectRegions &print_object_regions,
const std::vector<float> &zs,
std::vector<VolumeSlices> &&volume_slices,
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
// It is up to the model designer to handle these overlaps.
const bool clip_multipart_objects,
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));
// First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
std::vector<std::pair<size_t, float>> zs_complex;
{
size_t z_idx = 0;
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
if (layer_range.volume_regions.empty()) {
} else if (layer_range.volume_regions.size() == 1) {
const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
assert(model_volume != nullptr);
if (model_volume->is_model_part()) {
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
}
} else {
zs_complex.reserve(zs.size());
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
float z = zs[z_idx];
int idx_first_printable_region = -1;
bool complex = false;
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.bbox->min.z() <= z && region.bbox->max.z() >= z) {
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
idx_first_printable_region = idx_region;
else if (idx_first_printable_region != -1) {
// Test for overlap with some other region.
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
if (region2.bbox->min.z() <= z && region2.bbox->max.z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
complex = true;
break;
}
}
}
}
}
if (complex)
zs_complex.push_back({ z_idx, z });
else if (idx_first_printable_region >= 0) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_first_printable_region];
slices_by_region[region.region->print_object_region_id()][z_idx] = std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]);
}
}
}
throw_on_cancel_callback();
}
}
// Second perform region clipping and assignment in parallel.
if (! zs_complex.empty()) {
std::vector<std::vector<VolumeSlices*>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions)
layer_range_regions_to_slices.push_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()));
}
tbb::parallel_for(
tbb::blocked_range<size_t>(0, zs_complex.size()),
[&slices_by_region, &model_volumes, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
(const tbb::blocked_range<size_t> &range) {
const auto &z_idx_and_z = zs_complex[range.begin()];
size_t z_idx = z_idx_and_z.first;
float z = z_idx_and_z.second;
auto it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(),
[z](const PrintObjectRegions::LayerRangeRegions &lr){ return lr.layer_height_range.second < z; });
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z <= it_layer_range->layer_height_range.second);
if (z == it_layer_range->layer_height_range.second)
if (auto it_next = it_layer_range; ++ it_next != print_object_regions.layer_ranges.end() && it_next->layer_height_range.first == z)
it_layer_range = it_next;
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
// Per volume_regions slices at this Z height.
struct RegionSlice {
ExPolygons expolygons;
// Identifier of this region in PrintObjectRegions::all_regions
int region_id;
ObjectID volume_id;
bool empty() const { return region_id < 0 || expolygons.empty(); }
bool operator<(const RegionSlice &rhs) {
bool this_empty = this->empty();
bool rhs_empty = rhs.empty();
// Sort the empty items to the end of the list.
// Sort by region_id & volume_id lexicographically.
return ! this_empty && (rhs_empty || (this->region_id < rhs.region_id || (this->region_id == rhs.region_id && volume_id < volume_id)));
}
};
std::vector<RegionSlice> temp_slices;
for (size_t zs_complex_idx = range.begin(); zs_complex_idx < range.end(); ++ zs_complex_idx) {
auto [z_idx, z] = zs_complex[zs_complex_idx];
for (; it_layer_range->layer_height_range.second <= z; ++ it_layer_range)
assert(it_layer_range != print_object_regions.layer_ranges.end());
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
{
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
// Per volume_regions slices at thiz Z height.
temp_slices.clear();
temp_slices.reserve(layer_range.volume_regions.size());
for (VolumeSlices* &slices : layer_range_regions_to_slices) {
const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
temp_slices.push_back({ std::move(slices->slices[z_idx]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
}
}
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
if (! temp_slices[idx_region].empty()) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.model_volume->is_modifier()) {
assert(region.parent > -1);
bool next_region_same_modifier = idx_region + 1 < temp_slices.size() && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
if (next_region_same_modifier)
temp_slices[idx_region + 1] = std::move(temp_slices[idx_region]);
RegionSlice &parent_slice = temp_slices[region.parent];
RegionSlice &this_slice = temp_slices[idx_region];
if (parent_slice.empty())
this_slice.expolygons.clear();
else {
RegionSlice &source_slice = temp_slices[idx_region + int(next_region_same_modifier)];
this_slice .expolygons = intersection_ex(parent_slice.expolygons, source_slice.expolygons);
parent_slice.expolygons = diff_ex (parent_slice.expolygons, source_slice.expolygons);
}
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
// Clip every non-zero region preceding it.
for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
if (! temp_slices[idx_region2].empty()) {
if (const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
}
}
}
// Sort by region_id, push empty slices to the end.
std::sort(temp_slices.begin(), temp_slices.end());
// Remove the empty slices.
temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.empty(); }), temp_slices.end());
// Merge slices and store them to the output.
for (int i = 0; i < temp_slices.size();) {
// Find a range of temp_slices with the same region_id.
int j = i;
bool merged = false;
ExPolygons &expolygons = temp_slices[i].expolygons;
for (++ j;
j < temp_slices.size() &&
temp_slices[i].region_id == temp_slices[j].region_id &&
(clip_multipart_objects || temp_slices[i].volume_id == temp_slices[j].volume_id);
++ j)
if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty())
if (expolygons.empty())
expolygons = std::move(expolygons2);
else {
append(expolygons, std::move(expolygons2));
merged = true;
}
if (merged)
expolygons = offset2_ex(expolygons, float(scale_(EPSILON)), -float(scale_(EPSILON)));
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
i = j;
}
}
});
}
return slices_by_region;
}
std::string fix_slicing_errors(LayerPtrs &layers, const std::function<void()> &throw_if_canceled)
{
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(layers.size());
for (size_t idx_layer = 0; idx_layer < layers.size(); ++ idx_layer)
if (layers[idx_layer]->slicing_errors)
buggy_layers.push_back(idx_layer);
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[&layers, &throw_if_canceled, &buggy_layers](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
Layer *layer = layers[idx_layer];
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
LayerRegion *layerm = layer->get_region(region_id);
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
for (size_t j = idx_layer + 1; j < layers.size(); ++ j)
if (! layers[j]->slicing_errors) {
upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
for (int j = int(idx_layer) - 1; j >= 0; -- j)
if (! layers[j]->slicing_errors) {
lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
// Collect outer contours and holes from the valid layers above & below.
Polygons outer;
outer.reserve(
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
size_t num_holes = 0;
if (upper_surfaces)
for (const auto &surface : *upper_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
if (lower_surfaces)
for (const auto &surface : *lower_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
Polygons holes;
holes.reserve(num_holes);
if (upper_surfaces)
for (const auto &surface : *upper_surfaces)
polygons_append(holes, surface.expolygon.holes);
if (lower_surfaces)
for (const auto &surface : *lower_surfaces)
polygons_append(holes, surface.expolygon.holes);
layerm->slices.set(diff_ex(union_(outer), holes), stInternal);
}
// Update layer slices after repairing the single regions.
layer->make_slices();
}
});
throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
delete layers.front();
layers.erase(layers.begin());
layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < layers.size(); ++ i)
layers[i]->set_id(layers[i]->id() - 1);
}
return buggy_layers.empty() ? "" :
"The model has overlapping or self-intersecting facets. I tried to repair it, "
"however you might want to check the results or repair the input file and retry.\n";
}
// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
void PrintObject::slice()
{
if (! this->set_started(posSlice))
return;
m_print->set_status(10, L("Processing triangulated mesh"));
std::vector<coordf_t> layer_height_profile;
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
m_print->throw_if_canceled();
m_typed_slices = false;
this->clear_layers();
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile));
this->slice_volumes();
m_print->throw_if_canceled();
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
std::string warning = fix_slicing_errors(m_layers, [this](){ m_print->throw_if_canceled(); });
m_print->throw_if_canceled();
if (! warning.empty())
BOOST_LOG_TRIVIAL(info) << warning;
// Update bounding boxes, back up raw slices of complex models.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[layer_idx];
layer.lslices_bboxes.clear();
layer.lslices_bboxes.reserve(layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
layer.lslices_bboxes.emplace_back(get_extents(expoly));
layer.backup_untyped_slices();
}
});
if (m_layers.empty())
throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
this->set_done(posSlice);
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::slice_volumes()
{
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
const Print* print = this->print();
const bool spiral_vase = print->config().spiral_vase;
const auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
// Clear old LayerRegions, allocate for new PrintRegions.
for (Layer* layer : m_layers) {
layer->m_regions.clear();
layer->m_regions.reserve(m_shared_regions->all_regions.size());
for (const std::unique_ptr<PrintRegion> &pr : m_shared_regions->all_regions)
layer->m_regions.emplace_back(new LayerRegion(layer, pr.get()));
}
std::vector<float> slice_zs = zs_from_layers(m_layers);
Transform3d trafo = this->trafo();
trafo.pretranslate(Vec3d(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0));
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
slice_volumes_inner(
print->config(), this->config(), trafo,
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback),
m_config.clip_multipart_objects,
throw_on_cancel_callback);
for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
std::vector<ExPolygons> &by_layer = region_slices[region_id];
for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(by_layer[layer_id]), stInternal);
}
region_slices.clear();
#if 0
// Second clip the volumes in the order they are presented at the user interface.
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, slice_zs.size()),
[this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
float delta = float(scale_(m_config.xy_size_compensation.value));
// Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
// (upscaling may grow the object outside of the modifier mesh).
bool upscale = delta > 0 && num_modifiers == 0;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
// Trim volumes in a single layer, one by the other, possibly apply upscaling.
{
Polygons processed;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (! sliced_volume.expolygons_by_layer.empty()) {
ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
if (upscale)
slices = offset_ex(std::move(slices), delta);
if (! processed.empty())
// Trim by the slices of already processed regions.
slices = diff_ex(slices, processed);
if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
}
}
// Collect and union volumes of a single region.
for (int region_id = 0; region_id < int(m_region_volumes.size()); ++ region_id) {
ExPolygons expolygons;
size_t num_volumes = 0;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
++ num_volumes;
append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
}
if (num_volumes > 1)
// Merge the islands using a positive / negative offset.
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - end";
clipped = true;
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
}
#endif
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
if (! layer->empty())
break;
delete layer;
m_layers.pop_back();
}
if (! m_layers.empty())
m_layers.back()->upper_layer = nullptr;
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
{
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
const auto xy_compensation_scaled = scaled<float>(std::min(m_config.xy_size_compensation.value, 0.));
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
// Only enable Elephant foot compensation if printing directly on the print bed.
float(scale_(m_config.elefant_foot_compensation.value)) :
0.f;
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
ExPolygons lslices_1st_layer;
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
(const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
if (layer->m_regions.size() == 1) {
// Optimized version for a single region layer.
// Single region, growing or shrinking.
LayerRegion *layerm = layer->m_regions.front();
if (elfoot > 0) {
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
float delta = xy_compensation_scaled;
if (delta > elfoot) {
delta -= elfoot;
elfoot = 0.f;
} else if (delta > 0)
elfoot -= delta;
layerm->slices.set(
union_ex(
Slic3r::elephant_foot_compensation(
(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta),
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
stInternal);
if (xy_compensation_scaled < 0.f)
lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
} else if (xy_compensation_scaled < 0.f) {
// Apply the XY compensation.
layerm->slices.set(
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
stInternal);
}
} else {
if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
// Apply the negative XY compensation.
Polygons trimming;
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
if (elfoot > 0.f) {
lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
} else
trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->trim_surfaces(trimming);
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
layer->make_slices();
}
});
if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
// Store the uncompensated value there.
assert(m_layers.front()->id() == 0);
m_layers.front()->lslices = std::move(lslices_1st_layer);
}
}
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
}
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
{
auto it_volume = this->model_object()->volumes.begin();
auto it_volume_end = this->model_object()->volumes.end();
for (; it_volume != it_volume_end && (*it_volume)->type() != model_volume_type; ++ it_volume) ;
std::vector<ExPolygons> slices;
if (it_volume != it_volume_end) {
// Found at least a single support volume of model_volume_type.
std::vector<float> zs = zs_from_layers(this->layers());
std::vector<char> merge_layers;
bool merge = false;
const Print *print = this->print();
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
for (; it_volume != it_volume_end; ++ it_volume)
if ((*it_volume)->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, MeshSlicingParamsEx{}, throw_on_cancel_callback);
if (slices.empty())
slices = std::move(slices2);
else if (! slices2.empty()) {
if (merge_layers.empty())
merge_layers.assign(zs.size(), false);
for (size_t i = 0; i < zs.size(); ++ i) {
if (slices[i].empty())
slices[i] = std::move(slices2[i]);
else if (! slices2[i].empty()) {
append(slices[i], std::move(slices2[i]));
merge_layers[i] = true;
merge = true;
}
}
}
}
if (merge) {
std::vector<ExPolygons*> to_merge;
to_merge.reserve(zs.size());
for (size_t i = 0; i < zs.size(); ++ i)
if (merge_layers[i])
to_merge.emplace_back(&slices[i]);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, to_merge.size()),
[&to_merge](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++ i)
*to_merge[i] = union_ex(*to_merge[i]);
});
}
}
return slices;
}
} // namespace Slic3r