PrusaSlicer-NonPlainar/resources/shaders/travels.fs

46 lines
1.7 KiB
GLSL

#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec4 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color.rgb * intensity.x, uniform_color.a);
}