PrusaSlicer-NonPlainar/tests/libslic3r/test_aabbindirect.cpp
Filip Sykala - NTB T15p 20a94c015c fix warn:
../src/libslic3r/CutSurface.cpp:1798:12: warning: variable 'is_same' set but not used [-Wunused-but-set-variable]
../src/libslic3r/CutSurface.cpp:1837:12: warning: unused variable 'distance_sq' [-Wunused-variable]
../src/libslic3r/CutSurface.cpp:2795:22: warning: unused variable 'def_value' [-Wunused-variable]
../tests/libslic3r/test_aabbindirect.cpp:122:12: warning: variable 'distance_sq' set but not used [-Wunused-but-set-variable]
../src/slic3r/GUI/Gizmos/GLGizmoEmboss.cpp:1336:17: warning: unused variable 'was_opened' [-Wunused-variable]
../src/slic3r/GUI/Gizmos/GLGizmoEmboss.cpp:1336:17: warning: 'was_opened' defined but not used [-Wunused-variable]
../src/slic3r/GUI/Jobs/EmbossJob.cpp:398:12: warning: unused variable 'biggest_index' [-Wunused-variable]
../src/slic3r/GUI/Jobs/EmbossJob.cpp:352:43: warning: 'const Slic3r::GUI::UseSurfaceData::ModelSource* get_biggest(const ModelSources&)' defined but not used [-Wunused-function]
2022-07-25 10:31:29 +02:00

390 lines
16 KiB
C++

#include <catch2/catch.hpp>
#include <test_utils.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/AABBTreeIndirect.hpp>
#include <libslic3r/AABBTreeLines.hpp>
using namespace Slic3r;
TEST_CASE("Building a tree over a box, ray caster and closest query", "[AABBIndirect]")
{
TriangleMesh tmesh = make_cube(1., 1., 1.);
auto tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(tmesh.its.vertices, tmesh.its.indices);
REQUIRE(! tree.empty());
igl::Hit hit;
bool intersected = AABBTreeIndirect::intersect_ray_first_hit(
tmesh.its.vertices, tmesh.its.indices,
tree,
Vec3d(0.5, 0.5, -5.),
Vec3d(0., 0., 1.),
hit);
REQUIRE(intersected);
REQUIRE(hit.t == Approx(5.));
std::vector<igl::Hit> hits;
bool intersected2 = AABBTreeIndirect::intersect_ray_all_hits(
tmesh.its.vertices, tmesh.its.indices,
tree,
Vec3d(0.3, 0.5, -5.),
Vec3d(0., 0., 1.),
hits);
REQUIRE(intersected2);
REQUIRE(hits.size() == 2);
REQUIRE(hits.front().t == Approx(5.));
REQUIRE(hits.back().t == Approx(6.));
size_t hit_idx;
Vec3d closest_point;
double squared_distance = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
tmesh.its.vertices, tmesh.its.indices,
tree,
Vec3d(0.3, 0.5, -5.),
hit_idx, closest_point);
REQUIRE(squared_distance == Approx(5. * 5.));
REQUIRE(closest_point.x() == Approx(0.3));
REQUIRE(closest_point.y() == Approx(0.5));
REQUIRE(closest_point.z() == Approx(0.));
squared_distance = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
tmesh.its.vertices, tmesh.its.indices,
tree,
Vec3d(0.3, 0.5, 5.),
hit_idx, closest_point);
REQUIRE(squared_distance == Approx(4. * 4.));
REQUIRE(closest_point.x() == Approx(0.3));
REQUIRE(closest_point.y() == Approx(0.5));
REQUIRE(closest_point.z() == Approx(1.));
}
TEST_CASE("Creating a several 2d lines, testing closest point query", "[AABBIndirect]")
{
std::vector<Linef> lines { };
lines.push_back(Linef(Vec2d(0.0, 0.0), Vec2d(1.0, 0.0)));
lines.push_back(Linef(Vec2d(1.0, 0.0), Vec2d(1.0, 1.0)));
lines.push_back(Linef(Vec2d(1.0, 1.0), Vec2d(0.0, 1.0)));
lines.push_back(Linef(Vec2d(0.0, 1.0), Vec2d(0.0, 0.0)));
auto tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(lines);
size_t hit_idx_out;
Vec2d hit_point_out;
auto sqr_dist = AABBTreeLines::squared_distance_to_indexed_lines(lines, tree, Vec2d(0.0, 0.0), hit_idx_out,
hit_point_out);
REQUIRE(sqr_dist == Approx(0.0));
REQUIRE((hit_idx_out == 0 || hit_idx_out == 3));
REQUIRE(hit_point_out.x() == Approx(0.0));
REQUIRE(hit_point_out.y() == Approx(0.0));
sqr_dist = AABBTreeLines::squared_distance_to_indexed_lines(lines, tree, Vec2d(1.5, 0.5), hit_idx_out,
hit_point_out);
REQUIRE(sqr_dist == Approx(0.25));
REQUIRE(hit_idx_out == 1);
REQUIRE(hit_point_out.x() == Approx(1.0));
REQUIRE(hit_point_out.y() == Approx(0.5));
}
TEST_CASE("Find the closest point from ExPolys", "[ClosestPoint]") {
//////////////////////////////
// 0 - 3
// |Ex0| 0 - 3
// | |p |Ex1|
// 1 - 2 | |
// 1 - 2
//[0,0]
///////////////////
ExPolygons ex_polys{
/*Ex0*/ {{0, 4}, {0, 1}, {2, 1}, {2, 4}},
/*Ex1*/ {{4, 3}, {4, 0}, {6, 0}, {6, 3}}
};
Vec2d p{2.5, 3.5};
std::vector<Linef> lines;
auto add_lines = [&lines](const Polygon& poly) {
for (const auto &line : poly.lines())
lines.emplace_back(
line.a.cast<double>(),
line.b.cast<double>());
};
for (const ExPolygon &ex_poly : ex_polys) {
add_lines(ex_poly.contour);
for (const Polygon &hole : ex_poly.holes)
add_lines(hole);
}
AABBTreeIndirect::Tree<2, double> tree =
AABBTreeLines::build_aabb_tree_over_indexed_lines(lines);
size_t hit_idx_out = std::numeric_limits<size_t>::max();
Vec2d hit_point_out;
[[maybe_unused]] double distance_sq =
AABBTreeLines::squared_distance_to_indexed_lines(
lines, tree, p, hit_idx_out, hit_point_out, 0.24/* < (0.5*0.5) */);
CHECK(hit_idx_out == std::numeric_limits<size_t>::max());
distance_sq = AABBTreeLines::squared_distance_to_indexed_lines(
lines, tree, p, hit_idx_out, hit_point_out, 0.26);
CHECK(hit_idx_out != std::numeric_limits<size_t>::max());
//double distance = sqrt(distance_sq);
//const Linef &line = lines[hit_idx_out];
}
#if 0
#include "libslic3r/EdgeGrid.hpp"
#include <iostream>
#include <ctime>
#include <ratio>
#include <chrono>
TEST_CASE("AABBTreeLines vs SignedDistanceGrid time Benchmark", "[AABBIndirect]")
{
std::vector<Points> lines { Points { } };
std::vector<Linef> linesf { };
Vec2d prevf { };
// NOTE: max coord value of the lines is approx 83 mm
for (int r = 1; r < 1000; ++r) {
lines[0].push_back(Point::new_scale(Vec2d(exp(0.005f * r) * cos(r), exp(0.005f * r) * cos(r))));
linesf.emplace_back(prevf, Vec2d(exp(0.005f * r) * cos(r), exp(0.005f * r) * cos(r)));
prevf = linesf.back().b;
}
int build_num = 10000;
using namespace std::chrono;
{
std::cout << "building the tree " << build_num << " times..." << std::endl;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
for (int i = 0; i < build_num; ++i) {
volatile auto tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(linesf);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << "It took " << time_span.count() << " seconds." << std::endl << std::endl;
}
{
std::cout << "building the grid res 1mm ONLY " << build_num/100 << " !!! times..." << std::endl;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
for (int i = 0; i < build_num/100; ++i) {
EdgeGrid::Grid grid { };
grid.create(lines, scaled(1.0), true);
grid.calculate_sdf();
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << "It took " << time_span.count() << " seconds." << std::endl << std::endl;
}
{
std::cout << "building the grid res 10mm " << build_num << " times..." << std::endl;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
for (int i = 0; i < build_num; ++i) {
EdgeGrid::Grid grid { };
grid.create(lines, scaled(10.0), true);
grid.calculate_sdf();
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << "It took " << time_span.count() << " seconds." << std::endl << std::endl;
}
EdgeGrid::Grid grid10 { };
grid10.create(lines, scaled(10.0), true);
coord_t query10_res = scaled(10.0);
grid10.calculate_sdf();
EdgeGrid::Grid grid1 { };
grid1.create(lines, scaled(1.0), true);
coord_t query1_res = scaled(1.0);
grid1.calculate_sdf();
auto tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(linesf);
int query_num = 10000;
Points query_points { };
std::vector<Vec2d> query_pointsf { };
for (int x = 0; x < query_num; ++x) {
Vec2d qp { rand() / (double(RAND_MAX) + 1.0f) * 200.0 - 100.0, rand() / (double(RAND_MAX) + 1.0f) * 200.0
- 100.0 };
query_pointsf.push_back(qp);
query_points.push_back(Point::new_scale(qp));
}
{
std::cout << "querying tree " << query_num << " times..." << std::endl;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
for (const Vec2d &qp : query_pointsf) {
size_t hit_idx_out;
Vec2d hit_point_out;
AABBTreeLines::squared_distance_to_indexed_lines(linesf, tree, qp, hit_idx_out, hit_point_out);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << "It took " << time_span.count() << " seconds." << std::endl << std::endl;
}
{
std::cout << "querying grid res 1mm " << query_num << " times..." << std::endl;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
for (const Point &qp : query_points) {
volatile auto dist = grid1.closest_point_signed_distance(qp, query1_res);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << "It took " << time_span.count() << " seconds." << std::endl << std::endl;
}
{
std::cout << "querying grid res 10mm " << query_num << " times..." << std::endl;
high_resolution_clock::time_point t1 = high_resolution_clock::now();
for (const Point &qp : query_points) {
volatile auto dist = grid10.closest_point_signed_distance(qp, query10_res);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << "It took " << time_span.count() << " seconds." << std::endl << std::endl;
}
std::cout << "Test build and queries together - same number of contour points and query points" << std::endl << std::endl;
std::vector<int> point_counts { 100, 300, 500, 1000, 3000 };
for (auto count : point_counts) {
std::vector<Points> lines { Points { } };
std::vector<Linef> linesf { };
Vec2d prevf { };
Points query_points { };
std::vector<Vec2d> query_pointsf { };
for (int x = 0; x < count; ++x) {
Vec2d cp { rand() / (double(RAND_MAX) + 1.0f) * 200.0 - 100.0, rand() / (double(RAND_MAX) + 1.0f) * 200.0
- 100.0 };
lines[0].push_back(Point::new_scale(cp));
linesf.emplace_back(prevf, cp);
prevf = linesf.back().b;
Vec2d qp { rand() / (double(RAND_MAX) + 1.0f) * 200.0 - 100.0, rand() / (double(RAND_MAX) + 1.0f) * 200.0
- 100.0 };
query_pointsf.push_back(qp);
query_points.push_back(Point::new_scale(qp));
}
std::cout << "Test for point count: " << count << std::endl;
{
high_resolution_clock::time_point t1 = high_resolution_clock::now();
auto tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(linesf);
for (const Vec2d &qp : query_pointsf) {
size_t hit_idx_out;
Vec2d hit_point_out;
AABBTreeLines::squared_distance_to_indexed_lines(linesf, tree, qp, hit_idx_out, hit_point_out);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << " Tree took " << time_span.count() << " seconds." << std::endl;
}
{
high_resolution_clock::time_point t1 = high_resolution_clock::now();
EdgeGrid::Grid grid1 { };
grid1.create(lines, scaled(1.0), true);
coord_t query1_res = scaled(1.0);
grid1.calculate_sdf();
for (const Point &qp : query_points) {
volatile auto dist = grid1.closest_point_signed_distance(qp, query1_res);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << " Grid 1mm took " << time_span.count() << " seconds." << std::endl;
}
{
high_resolution_clock::time_point t1 = high_resolution_clock::now();
EdgeGrid::Grid grid10 { };
grid10.create(lines, scaled(10.0), true);
coord_t query10_res = scaled(10.0);
grid10.calculate_sdf();
for (const Point &qp : query_points) {
volatile auto dist = grid10.closest_point_signed_distance(qp, query10_res);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << " Grid 10mm took " << time_span.count() << " seconds." << std::endl;
}
}
std::cout << "Test build and queries together - same number of contour points and query points" << std::endl <<
"And with limited contour edge length to 4mm " << std::endl;
for (auto count : point_counts) {
std::vector<Points> lines { Points { } };
std::vector<Linef> linesf { };
Vec2d prevf { };
Points query_points { };
std::vector<Vec2d> query_pointsf { };
for (int x = 0; x < count; ++x) {
Vec2d cp { rand() / (double(RAND_MAX) + 1.0f) * 200.0 - 100.0, rand() / (double(RAND_MAX) + 1.0f) * 200.0
- 100.0 };
Vec2d contour = prevf + cp.normalized()*4.0; // limits the cnotour edge len to 4mm
lines[0].push_back(Point::new_scale(contour));
linesf.emplace_back(prevf, contour);
prevf = linesf.back().b;
Vec2d qp { rand() / (double(RAND_MAX) + 1.0f) * 200.0 - 100.0, rand() / (double(RAND_MAX) + 1.0f) * 200.0
- 100.0 };
query_pointsf.push_back(qp);
query_points.push_back(Point::new_scale(qp));
}
std::cout << "Test for point count: " << count << std::endl;
{
high_resolution_clock::time_point t1 = high_resolution_clock::now();
auto tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(linesf);
for (const Vec2d &qp : query_pointsf) {
size_t hit_idx_out;
Vec2d hit_point_out;
AABBTreeLines::squared_distance_to_indexed_lines(linesf, tree, qp, hit_idx_out, hit_point_out);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << " Tree took " << time_span.count() << " seconds." << std::endl;
}
{
high_resolution_clock::time_point t1 = high_resolution_clock::now();
EdgeGrid::Grid grid1 { };
grid1.create(lines, scaled(1.0), true);
coord_t query1_res = scaled(1.0);
grid1.calculate_sdf();
for (const Point &qp : query_points) {
volatile auto dist = grid1.closest_point_signed_distance(qp, query1_res);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << " Grid 1mm took " << time_span.count() << " seconds." << std::endl;
}
{
high_resolution_clock::time_point t1 = high_resolution_clock::now();
EdgeGrid::Grid grid10 { };
grid10.create(lines, scaled(10.0), true);
coord_t query10_res = scaled(10.0);
grid10.calculate_sdf();
for (const Point &qp : query_points) {
volatile auto dist = grid10.closest_point_signed_distance(qp, query10_res);
}
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
std::cout << " Grid 10mm took " << time_span.count() << " seconds." << std::endl;
}
}
}
#endif