PrusaSlicer-NonPlainar/src/libslic3r/GCode/CoolingBuffer.cpp
bubnikv 98e49772ed Custom G-code references are now being assigned to ToolOrdering::LayerTools()
and the superfluous M600 (color change) events are filtered out there.

Fixed a handful of compiler warnings.
2020-01-14 11:54:09 +01:00

817 lines
40 KiB
C++

#include "../GCode.hpp"
#include "CoolingBuffer.hpp"
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/log/trivial.hpp>
#include <iostream>
#include <float.h>
#if 0
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif
#include <assert.h>
namespace Slic3r {
CoolingBuffer::CoolingBuffer(GCode &gcodegen) : m_gcodegen(gcodegen), m_current_extruder(0)
{
this->reset();
}
void CoolingBuffer::reset()
{
m_current_pos.assign(5, 0.f);
Vec3d pos = m_gcodegen.writer().get_position();
m_current_pos[0] = float(pos(0));
m_current_pos[1] = float(pos(1));
m_current_pos[2] = float(pos(2));
m_current_pos[4] = float(m_gcodegen.config().travel_speed.value);
}
struct CoolingLine
{
enum Type {
TYPE_SET_TOOL = 1 << 0,
TYPE_EXTRUDE_END = 1 << 1,
TYPE_BRIDGE_FAN_START = 1 << 2,
TYPE_BRIDGE_FAN_END = 1 << 3,
TYPE_G0 = 1 << 4,
TYPE_G1 = 1 << 5,
TYPE_ADJUSTABLE = 1 << 6,
TYPE_EXTERNAL_PERIMETER = 1 << 7,
// The line sets a feedrate.
TYPE_HAS_F = 1 << 8,
TYPE_WIPE = 1 << 9,
TYPE_G4 = 1 << 10,
TYPE_G92 = 1 << 11,
};
CoolingLine(unsigned int type, size_t line_start, size_t line_end) :
type(type), line_start(line_start), line_end(line_end),
length(0.f), feedrate(0.f), time(0.f), time_max(0.f), slowdown(false) {}
bool adjustable(bool slowdown_external_perimeters) const {
return (this->type & TYPE_ADJUSTABLE) &&
(! (this->type & TYPE_EXTERNAL_PERIMETER) || slowdown_external_perimeters) &&
this->time < this->time_max;
}
bool adjustable() const {
return (this->type & TYPE_ADJUSTABLE) && this->time < this->time_max;
}
size_t type;
// Start of this line at the G-code snippet.
size_t line_start;
// End of this line at the G-code snippet.
size_t line_end;
// XY Euclidian length of this segment.
float length;
// Current feedrate, possibly adjusted.
float feedrate;
// Current duration of this segment.
float time;
// Maximum duration of this segment.
float time_max;
// If marked with the "slowdown" flag, the line has been slowed down.
bool slowdown;
};
// Calculate the required per extruder time stretches.
struct PerExtruderAdjustments
{
// Calculate the total elapsed time per this extruder, adjusted for the slowdown.
float elapsed_time_total() const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
time_total += line.time;
return time_total;
}
// Calculate the total elapsed time when slowing down
// to the minimum extrusion feed rate defined for the current material.
float maximum_time_after_slowdown(bool slowdown_external_perimeters) const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
if (line.adjustable(slowdown_external_perimeters)) {
if (line.time_max == FLT_MAX)
return FLT_MAX;
else
time_total += line.time_max;
} else
time_total += line.time;
return time_total;
}
// Calculate the adjustable part of the total time.
float adjustable_time(bool slowdown_external_perimeters) const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
if (line.adjustable(slowdown_external_perimeters))
time_total += line.time;
return time_total;
}
// Calculate the non-adjustable part of the total time.
float non_adjustable_time(bool slowdown_external_perimeters) const {
float time_total = 0.f;
for (const CoolingLine &line : lines)
if (! line.adjustable(slowdown_external_perimeters))
time_total += line.time;
return time_total;
}
// Slow down the adjustable extrusions to the minimum feedrate allowed for the current extruder material.
// Used by both proportional and non-proportional slow down.
float slowdown_to_minimum_feedrate(bool slowdown_external_perimeters) {
float time_total = 0.f;
for (CoolingLine &line : lines) {
if (line.adjustable(slowdown_external_perimeters)) {
assert(line.time_max >= 0.f && line.time_max < FLT_MAX);
line.slowdown = true;
line.time = line.time_max;
line.feedrate = line.length / line.time;
}
time_total += line.time;
}
return time_total;
}
// Slow down each adjustable G-code line proportionally by a factor.
// Used by the proportional slow down.
float slow_down_proportional(float factor, bool slowdown_external_perimeters) {
assert(factor >= 1.f);
float time_total = 0.f;
for (CoolingLine &line : lines) {
if (line.adjustable(slowdown_external_perimeters)) {
line.slowdown = true;
line.time = std::min(line.time_max, line.time * factor);
line.feedrate = line.length / line.time;
}
time_total += line.time;
}
return time_total;
}
// Sort the lines, adjustable first, higher feedrate first.
// Used by non-proportional slow down.
void sort_lines_by_decreasing_feedrate() {
std::sort(lines.begin(), lines.end(), [](const CoolingLine &l1, const CoolingLine &l2) {
bool adj1 = l1.adjustable();
bool adj2 = l2.adjustable();
return (adj1 == adj2) ? l1.feedrate > l2.feedrate : adj1;
});
for (n_lines_adjustable = 0;
n_lines_adjustable < lines.size() && this->lines[n_lines_adjustable].adjustable();
++ n_lines_adjustable);
time_non_adjustable = 0.f;
for (size_t i = n_lines_adjustable; i < lines.size(); ++ i)
time_non_adjustable += lines[i].time;
}
// Calculate the maximum time stretch when slowing down to min_feedrate.
// Slowdown to min_feedrate shall be allowed for this extruder's material.
// Used by non-proportional slow down.
float time_stretch_when_slowing_down_to_feedrate(float min_feedrate) const {
float time_stretch = 0.f;
assert(this->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < n_lines_adjustable; ++ i) {
const CoolingLine &line = lines[i];
if (line.feedrate > min_feedrate)
time_stretch += line.time * (line.feedrate / min_feedrate - 1.f);
}
return time_stretch;
}
// Slow down all adjustable lines down to min_feedrate.
// Slowdown to min_feedrate shall be allowed for this extruder's material.
// Used by non-proportional slow down.
void slow_down_to_feedrate(float min_feedrate) {
assert(this->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < n_lines_adjustable; ++ i) {
CoolingLine &line = lines[i];
if (line.feedrate > min_feedrate) {
line.time *= std::max(1.f, line.feedrate / min_feedrate);
line.feedrate = min_feedrate;
line.slowdown = true;
}
}
}
// Extruder, for which the G-code will be adjusted.
unsigned int extruder_id = 0;
// Is the cooling slow down logic enabled for this extruder's material?
bool cooling_slow_down_enabled = false;
// Slow down the print down to min_print_speed if the total layer time is below slowdown_below_layer_time.
float slowdown_below_layer_time = 0.f;
// Minimum print speed allowed for this extruder.
float min_print_speed = 0.f;
// Parsed lines.
std::vector<CoolingLine> lines;
// The following two values are set by sort_lines_by_decreasing_feedrate():
// Number of adjustable lines, at the start of lines.
size_t n_lines_adjustable = 0;
// Non-adjustable time of lines starting with n_lines_adjustable.
float time_non_adjustable = 0;
// Current total time for this extruder.
float time_total = 0;
// Maximum time for this extruder, when the maximum slow down is applied.
float time_maximum = 0;
// Temporaries for processing the slow down. Both thresholds go from 0 to n_lines_adjustable.
size_t idx_line_begin = 0;
size_t idx_line_end = 0;
};
// Calculate a new feedrate when slowing down by time_stretch for segments faster than min_feedrate.
// Used by non-proportional slow down.
float new_feedrate_to_reach_time_stretch(
std::vector<PerExtruderAdjustments*>::const_iterator it_begin, std::vector<PerExtruderAdjustments*>::const_iterator it_end,
float min_feedrate, float time_stretch, size_t max_iter = 20)
{
float new_feedrate = min_feedrate;
for (size_t iter = 0; iter < max_iter; ++ iter) {
float nomin = 0;
float denom = time_stretch;
for (auto it = it_begin; it != it_end; ++ it) {
assert((*it)->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < (*it)->n_lines_adjustable; ++i) {
const CoolingLine &line = (*it)->lines[i];
if (line.feedrate > min_feedrate) {
nomin += line.time * line.feedrate;
denom += line.time;
}
}
}
assert(denom > 0);
if (denom < 0)
return min_feedrate;
new_feedrate = nomin / denom;
assert(new_feedrate > min_feedrate - EPSILON);
if (new_feedrate < min_feedrate + EPSILON)
goto finished;
for (auto it = it_begin; it != it_end; ++ it)
for (size_t i = 0; i < (*it)->n_lines_adjustable; ++i) {
const CoolingLine &line = (*it)->lines[i];
if (line.feedrate > min_feedrate && line.feedrate < new_feedrate)
// Some of the line segments taken into account in the calculation of nomin / denom are now slower than new_feedrate,
// which makes the new_feedrate lower than it should be.
// Re-run the calculation with a new min_feedrate limit, so that the segments with current feedrate lower than new_feedrate
// are not taken into account.
goto not_finished_yet;
}
goto finished;
not_finished_yet:
min_feedrate = new_feedrate;
}
// Failed to find the new feedrate for the time_stretch.
finished:
// Test whether the time_stretch was achieved.
#ifndef NDEBUG
{
float time_stretch_final = 0.f;
for (auto it = it_begin; it != it_end; ++ it)
time_stretch_final += (*it)->time_stretch_when_slowing_down_to_feedrate(new_feedrate);
assert(std::abs(time_stretch - time_stretch_final) < EPSILON);
}
#endif /* NDEBUG */
return new_feedrate;
}
std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_id)
{
std::vector<PerExtruderAdjustments> per_extruder_adjustments = this->parse_layer_gcode(gcode, m_current_pos);
float layer_time_stretched = this->calculate_layer_slowdown(per_extruder_adjustments);
return this->apply_layer_cooldown(gcode, layer_id, layer_time_stretched, per_extruder_adjustments);
}
// Parse the layer G-code for the moves, which could be adjusted.
// Return the list of parsed lines, bucketed by an extruder.
std::vector<PerExtruderAdjustments> CoolingBuffer::parse_layer_gcode(const std::string &gcode, std::vector<float> &current_pos) const
{
const FullPrintConfig &config = m_gcodegen.config();
const std::vector<Extruder> &extruders = m_gcodegen.writer().extruders();
unsigned int num_extruders = 0;
for (const Extruder &ex : extruders)
num_extruders = std::max(ex.id() + 1, num_extruders);
std::vector<PerExtruderAdjustments> per_extruder_adjustments(extruders.size());
std::vector<size_t> map_extruder_to_per_extruder_adjustment(num_extruders, 0);
for (size_t i = 0; i < extruders.size(); ++ i) {
PerExtruderAdjustments &adj = per_extruder_adjustments[i];
unsigned int extruder_id = extruders[i].id();
adj.extruder_id = extruder_id;
adj.cooling_slow_down_enabled = config.cooling.get_at(extruder_id);
adj.slowdown_below_layer_time = float(config.slowdown_below_layer_time.get_at(extruder_id));
adj.min_print_speed = float(config.min_print_speed.get_at(extruder_id));
map_extruder_to_per_extruder_adjustment[extruder_id] = i;
}
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
unsigned int current_extruder = m_current_extruder;
PerExtruderAdjustments *adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
const char *line_start = gcode.c_str();
const char *line_end = line_start;
const char extrusion_axis = config.get_extrusion_axis()[0];
// Index of an existing CoolingLine of the current adjustment, which holds the feedrate setting command
// for a sequence of extrusion moves.
size_t active_speed_modifier = size_t(-1);
for (; *line_start != 0; line_start = line_end)
{
while (*line_end != '\n' && *line_end != 0)
++ line_end;
// sline will not contain the trailing '\n'.
std::string sline(line_start, line_end);
// CoolingLine will contain the trailing '\n'.
if (*line_end == '\n')
++ line_end;
CoolingLine line(0, line_start - gcode.c_str(), line_end - gcode.c_str());
if (boost::starts_with(sline, "G0 "))
line.type = CoolingLine::TYPE_G0;
else if (boost::starts_with(sline, "G1 "))
line.type = CoolingLine::TYPE_G1;
else if (boost::starts_with(sline, "G92 "))
line.type = CoolingLine::TYPE_G92;
if (line.type) {
// G0, G1 or G92
// Parse the G-code line.
std::vector<float> new_pos(current_pos);
const char *c = sline.data() + 3;
for (;;) {
// Skip whitespaces.
for (; *c == ' ' || *c == '\t'; ++ c);
if (*c == 0 || *c == ';')
break;
// Parse the axis.
size_t axis = (*c >= 'X' && *c <= 'Z') ? (*c - 'X') :
(*c == extrusion_axis) ? 3 : (*c == 'F') ? 4 : size_t(-1);
if (axis != size_t(-1)) {
new_pos[axis] = float(atof(++c));
if (axis == 4) {
// Convert mm/min to mm/sec.
new_pos[4] /= 60.f;
if ((line.type & CoolingLine::TYPE_G92) == 0)
// This is G0 or G1 line and it sets the feedrate. This mark is used for reducing the duplicate F calls.
line.type |= CoolingLine::TYPE_HAS_F;
}
}
// Skip this word.
for (; *c != ' ' && *c != '\t' && *c != 0; ++ c);
}
bool external_perimeter = boost::contains(sline, ";_EXTERNAL_PERIMETER");
bool wipe = boost::contains(sline, ";_WIPE");
if (external_perimeter)
line.type |= CoolingLine::TYPE_EXTERNAL_PERIMETER;
if (wipe)
line.type |= CoolingLine::TYPE_WIPE;
if (boost::contains(sline, ";_EXTRUDE_SET_SPEED") && ! wipe) {
line.type |= CoolingLine::TYPE_ADJUSTABLE;
active_speed_modifier = adjustment->lines.size();
}
if ((line.type & CoolingLine::TYPE_G92) == 0) {
// G0 or G1. Calculate the duration.
if (config.use_relative_e_distances.value)
// Reset extruder accumulator.
current_pos[3] = 0.f;
float dif[4];
for (size_t i = 0; i < 4; ++ i)
dif[i] = new_pos[i] - current_pos[i];
float dxy2 = dif[0] * dif[0] + dif[1] * dif[1];
float dxyz2 = dxy2 + dif[2] * dif[2];
if (dxyz2 > 0.f) {
// Movement in xyz, calculate time from the xyz Euclidian distance.
line.length = sqrt(dxyz2);
} else if (std::abs(dif[3]) > 0.f) {
// Movement in the extruder axis.
line.length = std::abs(dif[3]);
}
line.feedrate = new_pos[4];
assert((line.type & CoolingLine::TYPE_ADJUSTABLE) == 0 || line.feedrate > 0.f);
if (line.length > 0)
line.time = line.length / line.feedrate;
line.time_max = line.time;
if ((line.type & CoolingLine::TYPE_ADJUSTABLE) || active_speed_modifier != size_t(-1))
line.time_max = (adjustment->min_print_speed == 0.f) ? FLT_MAX : std::max(line.time, line.length / adjustment->min_print_speed);
if (active_speed_modifier < adjustment->lines.size() && (line.type & CoolingLine::TYPE_G1)) {
// Inside the ";_EXTRUDE_SET_SPEED" blocks, there must not be a G1 Fxx entry.
assert((line.type & CoolingLine::TYPE_HAS_F) == 0);
CoolingLine &sm = adjustment->lines[active_speed_modifier];
assert(sm.feedrate > 0.f);
sm.length += line.length;
sm.time += line.time;
if (sm.time_max != FLT_MAX) {
if (line.time_max == FLT_MAX)
sm.time_max = FLT_MAX;
else
sm.time_max += line.time_max;
}
// Don't store this line.
line.type = 0;
}
}
current_pos = std::move(new_pos);
} else if (boost::starts_with(sline, ";_EXTRUDE_END")) {
line.type = CoolingLine::TYPE_EXTRUDE_END;
active_speed_modifier = size_t(-1);
} else if (boost::starts_with(sline, toolchange_prefix)) {
unsigned int new_extruder = (unsigned int)atoi(sline.c_str() + toolchange_prefix.size());
// Only change extruder in case the number is meaningful. User could provide an out-of-range index through custom gcodes - those shall be ignored.
if (new_extruder < map_extruder_to_per_extruder_adjustment.size()) {
if (new_extruder != current_extruder) {
// Switch the tool.
line.type = CoolingLine::TYPE_SET_TOOL;
current_extruder = new_extruder;
adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
}
}
else {
// Only log the error in case of MM printer. Single extruder printers likely ignore any T anyway.
if (map_extruder_to_per_extruder_adjustment.size() > 1)
BOOST_LOG_TRIVIAL(error) << "CoolingBuffer encountered an invalid toolchange, maybe from a custom gcode: " << sline;
}
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_START")) {
line.type = CoolingLine::TYPE_BRIDGE_FAN_START;
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_END")) {
line.type = CoolingLine::TYPE_BRIDGE_FAN_END;
} else if (boost::starts_with(sline, "G4 ")) {
// Parse the wait time.
line.type = CoolingLine::TYPE_G4;
size_t pos_S = sline.find('S', 3);
size_t pos_P = sline.find('P', 3);
line.time = line.time_max = float(
(pos_S > 0) ? atof(sline.c_str() + pos_S + 1) :
(pos_P > 0) ? atof(sline.c_str() + pos_P + 1) * 0.001 : 0.);
}
if (line.type != 0)
adjustment->lines.emplace_back(std::move(line));
}
return per_extruder_adjustments;
}
// Slow down an extruder range proportionally down to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline float extruder_range_slow_down_proportional(
std::vector<PerExtruderAdjustments*>::iterator it_begin,
std::vector<PerExtruderAdjustments*>::iterator it_end,
// Elapsed time for the extruders already processed.
float elapsed_time_total0,
// Initial total elapsed time before slow down.
float elapsed_time_before_slowdown,
// Target time for the complete layer (all extruders applied).
float slowdown_below_layer_time)
{
// Total layer time after the slow down has been applied.
float total_after_slowdown = elapsed_time_before_slowdown;
// Now decide, whether the external perimeters shall be slowed down as well.
float max_time_nep = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
max_time_nep += (*it)->maximum_time_after_slowdown(false);
if (max_time_nep > slowdown_below_layer_time) {
// It is sufficient to slow down the non-external perimeter moves to reach the target layer time.
// Slow down the non-external perimeters proportionally.
float non_adjustable_time = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
non_adjustable_time += (*it)->non_adjustable_time(false);
// The following step is a linear programming task due to the minimum movement speeds of the print moves.
// Run maximum 5 iterations until a good enough approximation is reached.
for (size_t iter = 0; iter < 5; ++ iter) {
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
assert(factor > 1.f);
total_after_slowdown = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
total_after_slowdown += (*it)->slow_down_proportional(factor, false);
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
break;
}
} else {
// Slow down everything. First slow down the non-external perimeters to maximum.
for (auto it = it_begin; it != it_end; ++ it)
(*it)->slowdown_to_minimum_feedrate(false);
// Slow down the external perimeters proportionally.
float non_adjustable_time = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
non_adjustable_time += (*it)->non_adjustable_time(true);
for (size_t iter = 0; iter < 5; ++ iter) {
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
assert(factor > 1.f);
total_after_slowdown = elapsed_time_total0;
for (auto it = it_begin; it != it_end; ++ it)
total_after_slowdown += (*it)->slow_down_proportional(factor, true);
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
break;
}
}
return total_after_slowdown;
}
// Slow down an extruder range to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline void extruder_range_slow_down_non_proportional(
std::vector<PerExtruderAdjustments*>::iterator it_begin,
std::vector<PerExtruderAdjustments*>::iterator it_end,
float time_stretch)
{
// Slow down. Try to equalize the feedrates.
std::vector<PerExtruderAdjustments*> by_min_print_speed(it_begin, it_end);
// Find the next highest adjustable feedrate among the extruders.
float feedrate = 0;
for (PerExtruderAdjustments *adj : by_min_print_speed) {
adj->idx_line_begin = 0;
adj->idx_line_end = 0;
assert(adj->idx_line_begin < adj->n_lines_adjustable);
if (adj->lines[adj->idx_line_begin].feedrate > feedrate)
feedrate = adj->lines[adj->idx_line_begin].feedrate;
}
assert(feedrate > 0.f);
// Sort by min_print_speed, maximum speed first.
std::sort(by_min_print_speed.begin(), by_min_print_speed.end(),
[](const PerExtruderAdjustments *p1, const PerExtruderAdjustments *p2){ return p1->min_print_speed > p2->min_print_speed; });
// Slow down, fast moves first.
for (;;) {
// For each extruder, find the span of lines with a feedrate close to feedrate.
for (PerExtruderAdjustments *adj : by_min_print_speed) {
for (adj->idx_line_end = adj->idx_line_begin;
adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate - EPSILON;
++ adj->idx_line_end) ;
}
// Find the next highest adjustable feedrate among the extruders.
float feedrate_next = 0.f;
for (PerExtruderAdjustments *adj : by_min_print_speed)
if (adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate_next)
feedrate_next = adj->lines[adj->idx_line_end].feedrate;
// Slow down, limited by max(feedrate_next, min_print_speed).
for (auto adj = by_min_print_speed.begin(); adj != by_min_print_speed.end();) {
// Slow down at most by time_stretch.
if ((*adj)->min_print_speed == 0.f) {
// All the adjustable speeds are now lowered to the same speed,
// and the minimum speed is set to zero.
float time_adjustable = 0.f;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
time_adjustable += (*it)->adjustable_time(true);
float rate = (time_adjustable + time_stretch) / time_adjustable;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_proportional(rate, true);
return;
} else {
float feedrate_limit = std::max(feedrate_next, (*adj)->min_print_speed);
bool done = false;
float time_stretch_max = 0.f;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
time_stretch_max += (*it)->time_stretch_when_slowing_down_to_feedrate(feedrate_limit);
if (time_stretch_max >= time_stretch) {
feedrate_limit = new_feedrate_to_reach_time_stretch(adj, by_min_print_speed.end(), feedrate_limit, time_stretch, 20);
done = true;
} else
time_stretch -= time_stretch_max;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_to_feedrate(feedrate_limit);
if (done)
return;
}
// Skip the other extruders with nearly the same min_print_speed, as they have been processed already.
auto next = adj;
for (++ next; next != by_min_print_speed.end() && (*next)->min_print_speed > (*adj)->min_print_speed - EPSILON; ++ next);
adj = next;
}
if (feedrate_next == 0.f)
// There are no other extrusions available for slow down.
break;
for (PerExtruderAdjustments *adj : by_min_print_speed) {
adj->idx_line_begin = adj->idx_line_end;
feedrate = feedrate_next;
}
}
}
// Calculate slow down for all the extruders.
float CoolingBuffer::calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
// Sort the extruders by an increasing slowdown_below_layer_time.
// The layers with a lower slowdown_below_layer_time are slowed down
// together with all the other layers with slowdown_below_layer_time above.
std::vector<PerExtruderAdjustments*> by_slowdown_time;
by_slowdown_time.reserve(per_extruder_adjustments.size());
// Only insert entries, which are adjustable (have cooling enabled and non-zero stretchable time).
// Collect total print time of non-adjustable extruders.
float elapsed_time_total0 = 0.f;
for (PerExtruderAdjustments &adj : per_extruder_adjustments) {
// Curren total time for this extruder.
adj.time_total = adj.elapsed_time_total();
// Maximum time for this extruder, when all extrusion moves are slowed down to min_extrusion_speed.
adj.time_maximum = adj.maximum_time_after_slowdown(true);
if (adj.cooling_slow_down_enabled && adj.lines.size() > 0) {
by_slowdown_time.emplace_back(&adj);
if (! m_cooling_logic_proportional)
// sorts the lines, also sets adj.time_non_adjustable
adj.sort_lines_by_decreasing_feedrate();
} else
elapsed_time_total0 += adj.elapsed_time_total();
}
std::sort(by_slowdown_time.begin(), by_slowdown_time.end(),
[](const PerExtruderAdjustments *adj1, const PerExtruderAdjustments *adj2)
{ return adj1->slowdown_below_layer_time < adj2->slowdown_below_layer_time; });
for (auto cur_begin = by_slowdown_time.begin(); cur_begin != by_slowdown_time.end(); ++ cur_begin) {
PerExtruderAdjustments &adj = *(*cur_begin);
// Calculate the current adjusted elapsed_time_total over the non-finalized extruders.
float total = elapsed_time_total0;
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
total += (*it)->time_total;
float slowdown_below_layer_time = adj.slowdown_below_layer_time * 1.001f;
if (total > slowdown_below_layer_time) {
// The current total time is above the minimum threshold of the rest of the extruders, don't adjust anything.
} else {
// Adjust this and all the following (higher config.slowdown_below_layer_time) extruders.
// Sum maximum slow down time as if everything was slowed down including the external perimeters.
float max_time = elapsed_time_total0;
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
max_time += (*it)->time_maximum;
if (max_time > slowdown_below_layer_time) {
if (m_cooling_logic_proportional)
extruder_range_slow_down_proportional(cur_begin, by_slowdown_time.end(), elapsed_time_total0, total, slowdown_below_layer_time);
else
extruder_range_slow_down_non_proportional(cur_begin, by_slowdown_time.end(), slowdown_below_layer_time - total);
} else {
// Slow down to maximum possible.
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
(*it)->slowdown_to_minimum_feedrate(true);
}
}
elapsed_time_total0 += adj.elapsed_time_total();
}
return elapsed_time_total0;
}
// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
// Returns the adjusted G-code.
std::string CoolingBuffer::apply_layer_cooldown(
// Source G-code for the current layer.
const std::string &gcode,
// ID of the current layer, used to disable fan for the first n layers.
size_t layer_id,
// Total time of this layer after slow down, used to control the fan.
float layer_time,
// Per extruder list of G-code lines and their cool down attributes.
std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
// First sort the adjustment lines by of multiple extruders by their position in the source G-code.
std::vector<const CoolingLine*> lines;
{
size_t n_lines = 0;
for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
n_lines += adj.lines.size();
lines.reserve(n_lines);
for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
for (const CoolingLine &line : adj.lines)
lines.emplace_back(&line);
std::sort(lines.begin(), lines.end(), [](const CoolingLine *ln1, const CoolingLine *ln2) { return ln1->line_start < ln2->line_start; } );
}
// Second generate the adjusted G-code.
std::string new_gcode;
new_gcode.reserve(gcode.size() * 2);
int fan_speed = -1;
bool bridge_fan_control = false;
int bridge_fan_speed = 0;
auto change_extruder_set_fan = [ this, layer_id, layer_time, &new_gcode, &fan_speed, &bridge_fan_control, &bridge_fan_speed ]() {
const FullPrintConfig &config = m_gcodegen.config();
#define EXTRUDER_CONFIG(OPT) config.OPT.get_at(m_current_extruder)
int min_fan_speed = EXTRUDER_CONFIG(min_fan_speed);
int fan_speed_new = EXTRUDER_CONFIG(fan_always_on) ? min_fan_speed : 0;
if (layer_id >= (size_t)EXTRUDER_CONFIG(disable_fan_first_layers)) {
int max_fan_speed = EXTRUDER_CONFIG(max_fan_speed);
float slowdown_below_layer_time = float(EXTRUDER_CONFIG(slowdown_below_layer_time));
float fan_below_layer_time = float(EXTRUDER_CONFIG(fan_below_layer_time));
if (EXTRUDER_CONFIG(cooling)) {
if (layer_time < slowdown_below_layer_time) {
// Layer time very short. Enable the fan to a full throttle.
fan_speed_new = max_fan_speed;
} else if (layer_time < fan_below_layer_time) {
// Layer time quite short. Enable the fan proportionally according to the current layer time.
assert(layer_time >= slowdown_below_layer_time);
double t = (layer_time - slowdown_below_layer_time) / (fan_below_layer_time - slowdown_below_layer_time);
fan_speed_new = int(floor(t * min_fan_speed + (1. - t) * max_fan_speed) + 0.5);
}
}
bridge_fan_speed = EXTRUDER_CONFIG(bridge_fan_speed);
#undef EXTRUDER_CONFIG
bridge_fan_control = bridge_fan_speed > fan_speed_new;
} else {
bridge_fan_control = false;
bridge_fan_speed = 0;
fan_speed_new = 0;
}
if (fan_speed_new != fan_speed) {
fan_speed = fan_speed_new;
new_gcode += m_gcodegen.writer().set_fan(fan_speed);
}
};
const char *pos = gcode.c_str();
int current_feedrate = 0;
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
change_extruder_set_fan();
for (const CoolingLine *line : lines) {
const char *line_start = gcode.c_str() + line->line_start;
const char *line_end = gcode.c_str() + line->line_end;
if (line_start > pos)
new_gcode.append(pos, line_start - pos);
if (line->type & CoolingLine::TYPE_SET_TOOL) {
unsigned int new_extruder = (unsigned int)atoi(line_start + toolchange_prefix.size());
if (new_extruder != m_current_extruder) {
m_current_extruder = new_extruder;
change_extruder_set_fan();
}
new_gcode.append(line_start, line_end - line_start);
} else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_START) {
if (bridge_fan_control)
new_gcode += m_gcodegen.writer().set_fan(bridge_fan_speed, true);
} else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_END) {
if (bridge_fan_control)
new_gcode += m_gcodegen.writer().set_fan(fan_speed, true);
} else if (line->type & CoolingLine::TYPE_EXTRUDE_END) {
// Just remove this comment.
} else if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE | CoolingLine::TYPE_HAS_F)) {
// Find the start of a comment, or roll to the end of line.
const char *end = line_start;
for (; end < line_end && *end != ';'; ++ end);
// Find the 'F' word.
const char *fpos = strstr(line_start + 2, " F") + 2;
int new_feedrate = current_feedrate;
bool modify = false;
assert(fpos != nullptr);
if (line->slowdown) {
modify = true;
new_feedrate = int(floor(60. * line->feedrate + 0.5));
} else {
new_feedrate = atoi(fpos);
if (new_feedrate != current_feedrate) {
// Append the line without the comment.
new_gcode.append(line_start, end - line_start);
current_feedrate = new_feedrate;
} else if ((line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) || line->length == 0.) {
// Feedrate does not change and this line does not move the print head. Skip the complete G-code line including the G-code comment.
end = line_end;
} else {
// Remove the feedrate from the G0/G1 line.
modify = true;
}
}
if (modify) {
if (new_feedrate != current_feedrate) {
// Replace the feedrate.
new_gcode.append(line_start, fpos - line_start);
current_feedrate = new_feedrate;
char buf[64];
sprintf(buf, "%d", int(current_feedrate));
new_gcode += buf;
} else {
// Remove the feedrate word.
const char *f = fpos;
// Roll the pointer before the 'F' word.
for (f -= 2; f > line_start && (*f == ' ' || *f == '\t'); -- f);
// Append up to the F word, without the trailing whitespace.
new_gcode.append(line_start, f - line_start + 1);
}
// Skip the non-whitespaces of the F parameter up the comment or end of line.
for (; fpos != end && *fpos != ' ' && *fpos != ';' && *fpos != '\n'; ++fpos);
// Append the rest of the line without the comment.
if (fpos < end)
new_gcode.append(fpos, end - fpos);
// There should never be an empty G1 statement emited by the filter. Such lines should be removed completely.
assert(new_gcode.size() < 4 || new_gcode.substr(new_gcode.size() - 4) != "G1 \n");
}
// Process the rest of the line.
if (end < line_end) {
if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) {
// Process comments, remove ";_EXTRUDE_SET_SPEED", ";_EXTERNAL_PERIMETER", ";_WIPE"
std::string comment(end, line_end);
boost::replace_all(comment, ";_EXTRUDE_SET_SPEED", "");
if (line->type & CoolingLine::TYPE_EXTERNAL_PERIMETER)
boost::replace_all(comment, ";_EXTERNAL_PERIMETER", "");
if (line->type & CoolingLine::TYPE_WIPE)
boost::replace_all(comment, ";_WIPE", "");
new_gcode += comment;
} else {
// Just attach the rest of the source line.
new_gcode.append(end, line_end - end);
}
}
} else {
new_gcode.append(line_start, line_end - line_start);
}
pos = line_end;
}
const char *gcode_end = gcode.c_str() + gcode.size();
if (pos < gcode_end)
new_gcode.append(pos, gcode_end - pos);
return new_gcode;
}
} // namespace Slic3r