PrusaSlicer-NonPlainar/xs/src/slic3r/GUI/RammingChart.cpp
2018-03-28 20:31:36 +02:00

264 lines
9.6 KiB
C++

#include <algorithm>
#include "RammingChart.hpp"
wxDEFINE_EVENT(EVT_WIPE_TOWER_CHART_CHANGED, wxCommandEvent);
void Chart::draw(wxDC& dc) {
dc.SetPen(*wxBLACK_PEN);
dc.SetBrush(*wxWHITE_BRUSH);
dc.DrawRectangle(m_rect);
if (visible_area.m_width < 0.499) {
dc.DrawText("NO RAMMING AT ALL",wxPoint(m_rect.GetLeft()+m_rect.GetWidth()/2-50,m_rect.GetBottom()-m_rect.GetHeight()/2));
return;
}
if (!m_line_to_draw.empty()) {
for (unsigned int i=0;i<m_line_to_draw.size()-2;++i) {
int color = 510*((m_rect.GetBottom()-(m_line_to_draw)[i])/double(m_rect.GetHeight()));
dc.SetPen( wxPen( wxColor(std::min(255,color),255-std::max(color-255,0),0), 1 ) );
dc.DrawLine(m_rect.GetLeft()+1+i,(m_line_to_draw)[i],m_rect.GetLeft()+1+i,m_rect.GetBottom());
}
dc.SetPen( wxPen( wxColor(0,0,0), 1 ) );
for (unsigned int i=0;i<m_line_to_draw.size()-2;++i) {
if (splines)
dc.DrawLine(m_rect.GetLeft()+i,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i+1]);
else {
dc.DrawLine(m_rect.GetLeft()+i,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i]);
dc.DrawLine(m_rect.GetLeft()+i+1,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i+1]);
}
}
}
// draw draggable buttons
dc.SetBrush(*wxBLUE_BRUSH);
dc.SetPen( wxPen( wxColor(0,0,0), 1 ) );
for (auto& button : m_buttons)
//dc.DrawRectangle(math_to_screen(button.get_pos())-wxPoint(side/2.,side/2.), wxSize(side,side));
dc.DrawCircle(math_to_screen(button.get_pos()),side/2.);
//dc.DrawRectangle(math_to_screen(button.get_pos()-wxPoint2DDouble(0.125,0))-wxPoint(0,5),wxSize(50,10));
// draw x-axis:
float last_mark = -10000;
for (float math_x=int(visible_area.m_x*10)/10 ; math_x <= (visible_area.m_x+visible_area.m_width) ; math_x+=0.1) {
int x = math_to_screen(wxPoint2DDouble(math_x,visible_area.m_y)).x;
int y = m_rect.GetBottom();
if (x-last_mark < 50) continue;
dc.DrawLine(x,y+3,x,y-3);
dc.DrawText(wxString().Format(wxT("%.1f"), math_x),wxPoint(x-10,y+7));
last_mark = x;
}
// draw y-axis:
last_mark=10000;
for (int math_y=visible_area.m_y ; math_y <= (visible_area.m_y+visible_area.m_height) ; math_y+=1) {
int y = math_to_screen(wxPoint2DDouble(visible_area.m_x,math_y)).y;
int x = m_rect.GetLeft();
if (last_mark-y < 50) continue;
dc.DrawLine(x-3,y,x+3,y);
dc.DrawText(wxString()<<math_y,wxPoint(x-25,y-2/*7*/));
last_mark = y;
}
}
void Chart::mouse_right_button_clicked(wxMouseEvent& event) {
if (!manual_points_manipulation)
return;
wxPoint point = event.GetPosition();
int button_index = which_button_is_clicked(point);
if (button_index != -1 && m_buttons.size()>2) {
m_buttons.erase(m_buttons.begin()+button_index);
recalculate_line();
}
}
void Chart::mouse_clicked(wxMouseEvent& event) {
wxPoint point = event.GetPosition();
int button_index = which_button_is_clicked(point);
if ( button_index != -1) {
m_dragged = &m_buttons[button_index];
m_previous_mouse = point;
}
}
void Chart::mouse_moved(wxMouseEvent& event) {
if (!event.Dragging() || !m_dragged) return;
wxPoint pos = event.GetPosition();
wxRect rect = m_rect;
rect.Deflate(side/2.);
if (!(rect.Contains(pos))) { // the mouse left chart area
mouse_left_window(event);
return;
}
int delta_x = pos.x - m_previous_mouse.x;
int delta_y = pos.y - m_previous_mouse.y;
m_dragged->move(fixed_x?0:double(delta_x)/m_rect.GetWidth() * visible_area.m_width,-double(delta_y)/m_rect.GetHeight() * visible_area.m_height);
m_previous_mouse = pos;
recalculate_line();
}
void Chart::mouse_double_clicked(wxMouseEvent& event) {
if (!manual_points_manipulation)
return;
wxPoint point = event.GetPosition();
if (!m_rect.Contains(point)) // the click is outside the chart
return;
m_buttons.push_back(screen_to_math(point));
std::sort(m_buttons.begin(),m_buttons.end());
recalculate_line();
return;
}
void Chart::recalculate_line() {
std::vector<wxPoint> points;
for (auto& but : m_buttons) {
points.push_back(wxPoint(math_to_screen(but.get_pos())));
if (points.size()>1 && points.back().x==points[points.size()-2].x) points.pop_back();
if (points.size()>1 && points.back().x > m_rect.GetRight()) {
points.pop_back();
break;
}
}
std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; });
m_line_to_draw.clear();
m_total_volume = 0.f;
// Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods
const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point
// false - second ---- || -------
const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points
std::vector<float> diag(N+1);
std::vector<float> mu(N+1);
std::vector<float> lambda(N+1);
std::vector<float> h(N+1);
std::vector<float> rhs(N+1);
// let's fill in inner equations
for (int i=1;i<=N;++i) h[i] = points[i].x-points[i-1].x;
std::fill(diag.begin(),diag.end(),2.f);
for (int i=1;i<=N-1;++i) {
mu[i] = h[i]/(h[i]+h[i+1]);
lambda[i] = 1.f - mu[i];
rhs[i] = 6 * ( float(points[i+1].y-points[i].y )/(h[i+1]*(points[i+1].x-points[i-1].x)) -
float(points[i].y -points[i-1].y)/(h[i] *(points[i+1].x-points[i-1].x)) );
}
// now fill in the first and last equations, according to boundary conditions:
if (boundary_first_derivative) {
const float endpoints_derivative = 0;
lambda[0] = 1;
mu[N] = 1;
rhs[0] = (6.f/h[1]) * (float(points[0].y-points[1].y)/(points[0].x-points[1].x) - endpoints_derivative);
rhs[N] = (6.f/h[N]) * (endpoints_derivative - float(points[N-1].y-points[N].y)/(points[N-1].x-points[N].x));
}
else {
lambda[0] = 0;
mu[N] = 0;
rhs[0] = 0;
rhs[N] = 0;
}
// the trilinear system is ready to be solved:
for (int i=1;i<=N;++i) {
float multiple = mu[i]/diag[i-1]; // let's subtract proper multiple of above equation
diag[i]-= multiple * lambda[i-1];
rhs[i] -= multiple * rhs[i-1];
}
// now the back substitution (vector mu contains invalid values from now on):
rhs[N] = rhs[N]/diag[N];
for (int i=N-1;i>=0;--i)
rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i];
unsigned int i=1;
float y=0.f;
for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) {
if (splines) {
if (i<points.size()-1 && points[i].x < x ) {
++i;
}
if (points[0].x > x)
y = points[0].y;
else
if (points[N].x < x)
y = points[N].y;
else
y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) +
(points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] +
(points[i].y -rhs[i] *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i];
m_line_to_draw.push_back(y);
}
else {
float x_math = screen_to_math(wxPoint(x,0)).m_x;
if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math)
++i;
m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y);
}
m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1);
m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1);
m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight());
}
wxPostEvent(this->GetParent(), wxCommandEvent(EVT_WIPE_TOWER_CHART_CHANGED));
Refresh();
}
std::vector<float> Chart::get_ramming_speed(float sampling) const {
std::vector<float> speeds_out;
const int number_of_samples = std::round( visible_area.m_width / sampling);
if (number_of_samples>0) {
const int dx = (m_line_to_draw.size()-1) / number_of_samples;
for (int j=0;j<number_of_samples;++j) {
float left = screen_to_math(wxPoint(0,m_line_to_draw[j*dx])).m_y;
float right = screen_to_math(wxPoint(0,m_line_to_draw[(j+1)*dx])).m_y;
speeds_out.push_back((left+right)/2.f);
}
}
return speeds_out;
}
std::vector<std::pair<float,float>> Chart::get_buttons() const {
std::vector<std::pair<float, float>> buttons_out;
for (const auto& button : m_buttons)
buttons_out.push_back(std::make_pair(button.get_pos().m_x,button.get_pos().m_y));
return buttons_out;
}
BEGIN_EVENT_TABLE(Chart, wxWindow)
EVT_MOTION(Chart::mouse_moved)
EVT_LEFT_DOWN(Chart::mouse_clicked)
EVT_LEFT_UP(Chart::mouse_released)
EVT_LEFT_DCLICK(Chart::mouse_double_clicked)
EVT_RIGHT_DOWN(Chart::mouse_right_button_clicked)
EVT_LEAVE_WINDOW(Chart::mouse_left_window)
EVT_PAINT(Chart::paint_event)
END_EVENT_TABLE()