PrusaSlicer-NonPlainar/src/libslic3r/Flow.cpp
2021-03-15 09:55:56 +01:00

262 lines
11 KiB
C++

#include "Flow.hpp"
#include "I18N.hpp"
#include "Print.hpp"
#include <cmath>
#include <assert.h>
#include <boost/algorithm/string/predicate.hpp>
// Mark string for localization and translate.
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
FlowErrorNegativeSpacing::FlowErrorNegativeSpacing() :
FlowError("Flow::spacing() produced negative spacing. Did you set some extrusion width too small?") {}
FlowErrorNegativeFlow::FlowErrorNegativeFlow() :
FlowError("Flow::mm3_per_mm() produced negative flow. Did you set some extrusion width too small?") {}
// This static method returns a sane extrusion width default.
float Flow::auto_extrusion_width(FlowRole role, float nozzle_diameter)
{
switch (role) {
case frSupportMaterial:
case frSupportMaterialInterface:
case frTopSolidInfill:
return nozzle_diameter;
default:
case frExternalPerimeter:
case frPerimeter:
case frSolidInfill:
case frInfill:
return 1.125f * nozzle_diameter;
}
}
// Used by the Flow::extrusion_width() funtion to provide hints to the user on default extrusion width values,
// and to provide reasonable values to the PlaceholderParser.
static inline FlowRole opt_key_to_flow_role(const std::string &opt_key)
{
if (opt_key == "perimeter_extrusion_width" ||
// or all the defaults:
opt_key == "extrusion_width" || opt_key == "first_layer_extrusion_width")
return frPerimeter;
else if (opt_key == "external_perimeter_extrusion_width")
return frExternalPerimeter;
else if (opt_key == "infill_extrusion_width")
return frInfill;
else if (opt_key == "solid_infill_extrusion_width")
return frSolidInfill;
else if (opt_key == "top_infill_extrusion_width")
return frTopSolidInfill;
else if (opt_key == "support_material_extrusion_width")
return frSupportMaterial;
else
throw Slic3r::RuntimeError("opt_key_to_flow_role: invalid argument");
};
static inline void throw_on_missing_variable(const std::string &opt_key, const char *dependent_opt_key)
{
throw FlowErrorMissingVariable((boost::format(L("Cannot calculate extrusion width for %1%: Variable \"%2%\" not accessible.")) % opt_key % dependent_opt_key).str());
}
// Used to provide hints to the user on default extrusion width values, and to provide reasonable values to the PlaceholderParser.
double Flow::extrusion_width(const std::string& opt_key, const ConfigOptionFloatOrPercent* opt, const ConfigOptionResolver& config, const unsigned int first_printing_extruder)
{
assert(opt != nullptr);
bool first_layer = boost::starts_with(opt_key, "first_layer_");
#if 0
// This is the logic used for skit / brim, but not for the rest of the 1st layer.
if (opt->value == 0. && first_layer) {
// The "first_layer_extrusion_width" was set to zero, try a substitute.
opt = config.option<ConfigOptionFloatOrPercent>("perimeter_extrusion_width");
if (opt == nullptr)
throw_on_missing_variable(opt_key, "perimeter_extrusion_width");
}
#endif
if (opt->value == 0.) {
// The role specific extrusion width value was set to zero, try the role non-specific extrusion width.
opt = config.option<ConfigOptionFloatOrPercent>("extrusion_width");
if (opt == nullptr)
throw_on_missing_variable(opt_key, "extrusion_width");
// Use the "layer_height" instead of "first_layer_height".
first_layer = false;
}
if (opt->percent) {
auto opt_key_layer_height = first_layer ? "first_layer_height" : "layer_height";
auto opt_layer_height = config.option(opt_key_layer_height);
if (opt_layer_height == nullptr)
throw_on_missing_variable(opt_key, opt_key_layer_height);
double layer_height = opt_layer_height->getFloat();
if (first_layer && static_cast<const ConfigOptionFloatOrPercent*>(opt_layer_height)->percent) {
// first_layer_height depends on layer_height.
opt_layer_height = config.option("layer_height");
if (opt_layer_height == nullptr)
throw_on_missing_variable(opt_key, "layer_height");
layer_height *= 0.01 * opt_layer_height->getFloat();
}
return opt->get_abs_value(layer_height);
}
if (opt->value == 0.) {
// If user left option to 0, calculate a sane default width.
auto opt_nozzle_diameters = config.option<ConfigOptionFloats>("nozzle_diameter");
if (opt_nozzle_diameters == nullptr)
throw_on_missing_variable(opt_key, "nozzle_diameter");
return auto_extrusion_width(opt_key_to_flow_role(opt_key), float(opt_nozzle_diameters->get_at(first_printing_extruder)));
}
return opt->value;
}
// Used to provide hints to the user on default extrusion width values, and to provide reasonable values to the PlaceholderParser.
double Flow::extrusion_width(const std::string& opt_key, const ConfigOptionResolver &config, const unsigned int first_printing_extruder)
{
return extrusion_width(opt_key, config.option<ConfigOptionFloatOrPercent>(opt_key), config, first_printing_extruder);
}
// This constructor builds a Flow object from an extrusion width config setting
// and other context properties.
Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height)
{
if (height <= 0)
throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_config_width()");
float w;
if (! width.percent && width.value == 0.) {
// If user left option to 0, calculate a sane default width.
w = auto_extrusion_width(role, nozzle_diameter);
} else {
// If user set a manual value, use it.
w = float(width.get_abs_value(height));
}
return Flow(w, height, rounded_rectangle_extrusion_spacing(w, height), nozzle_diameter, false);
}
// Adjust extrusion flow for new extrusion line spacing, maintaining the old spacing between extrusions.
Flow Flow::with_spacing(float new_spacing) const
{
Flow out = *this;
if (m_bridge) {
// Diameter of the rounded extrusion.
assert(m_width == m_height);
float gap = m_spacing - m_width;
auto new_diameter = new_spacing - gap;
out.m_width = out.m_height = new_diameter;
} else {
assert(m_width >= m_height);
out.m_width += new_spacing - m_spacing;
if (out.m_width < out.m_height)
throw Slic3r::InvalidArgument("Invalid spacing supplied to Flow::with_spacing()");
}
out.m_spacing = new_spacing;
return out;
}
// Adjust the width / height of a rounded extrusion model to reach the prescribed cross section area while maintaining extrusion spacing.
Flow Flow::with_cross_section(float area_new) const
{
assert(! m_bridge);
assert(m_width >= m_height);
// Adjust for bridge_flow_ratio, maintain the extrusion spacing.
float area = this->mm3_per_mm();
if (area_new > area + EPSILON) {
// Increasing the flow rate.
float new_full_spacing = area_new / m_height;
if (new_full_spacing > m_spacing) {
// Filling up the spacing without an air gap. Grow the extrusion in height.
float height = area_new / m_spacing;
return Flow(rounded_rectangle_extrusion_width_from_spacing(m_spacing, height), height, m_spacing, m_nozzle_diameter, false);
} else {
return this->with_width(rounded_rectangle_extrusion_width_from_spacing(area / m_height, m_height));
}
} else if (area_new < area - EPSILON) {
// Decreasing the flow rate.
float width_new = m_width - (area - area_new) / m_height;
assert(width_new > 0);
if (width_new > m_height) {
// Shrink the extrusion width.
return this->with_width(width_new);
} else {
// Create a rounded extrusion.
auto dmr = float(sqrt(area_new / M_PI));
return Flow(dmr, dmr, m_spacing, m_nozzle_diameter, false);
}
} else
return *this;
}
float Flow::rounded_rectangle_extrusion_spacing(float width, float height)
{
auto out = width - height * float(1. - 0.25 * PI);
if (out <= 0.f)
throw FlowErrorNegativeSpacing();
return out;
}
float Flow::rounded_rectangle_extrusion_width_from_spacing(float spacing, float height)
{
return float(spacing + height * (1. - 0.25 * PI));
}
float Flow::bridge_extrusion_spacing(float dmr)
{
return dmr + BRIDGE_EXTRA_SPACING;
}
// This method returns extrusion volume per head move unit.
double Flow::mm3_per_mm() const
{
float res = m_bridge ?
// Area of a circle with dmr of this->width.
float((m_width * m_width) * 0.25 * PI) :
// Rectangle with semicircles at the ends. ~ h (w - 0.215 h)
float(m_height * (m_width - m_height * (1. - 0.25 * PI)));
//assert(res > 0.);
if (res <= 0.)
throw FlowErrorNegativeFlow();
return res;
}
Flow support_material_flow(const PrintObject *object, float layer_height)
{
return Flow::new_from_config_width(
frSupportMaterial,
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
(object->config().support_material_extrusion_width.value > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width,
// if object->config().support_material_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component.
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)),
(layer_height > 0.f) ? layer_height : float(object->config().layer_height.value));
}
Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height)
{
const auto &width = (object->print()->config().first_layer_extrusion_width.value > 0) ? object->print()->config().first_layer_extrusion_width : object->config().support_material_extrusion_width;
return Flow::new_from_config_width(
frSupportMaterial,
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
(width.value > 0) ? width : object->config().extrusion_width,
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)),
(layer_height > 0.f) ? layer_height : float(object->config().first_layer_height.get_abs_value(object->config().layer_height.value)));
}
Flow support_material_interface_flow(const PrintObject *object, float layer_height)
{
return Flow::new_from_config_width(
frSupportMaterialInterface,
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
(object->config().support_material_extrusion_width > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width,
// if object->config().support_material_interface_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component.
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_interface_extruder-1)),
(layer_height > 0.f) ? layer_height : float(object->config().layer_height.value));
}
}