PrusaSlicer-NonPlainar/src/libslic3r/Int128.hpp
tamasmeszaros d4fe7b5a96 Adding rotating calipers algorithm for minimum are bounding box rotation.
Cleanup, fix build on windows and add test for rotcalipers.

Try to fix compilation on windows

With updates from libnest2d
Another build fix.


Clean up and add comments.


adding rotcalipers test  and some cleanup


Trying to fix on OSX


Fix rotcalipers array indexing


Get rid of boost convex hull.


Adding helper function 'remove_collinear_points'


Importing new libnest2d upgrades.


Disable using __int128 in NFP on OSX
2019-06-06 14:27:07 +02:00

302 lines
12 KiB
C++

// This is an excerpt of from the Clipper library by Angus Johnson, see the license below,
// implementing a 64 x 64 -> 128bit multiply, and 128bit addition, subtraction and compare
// operations, to be used with exact geometric predicates.
// The code has been extended by Vojtech Bubnik to use 128 bit intrinsic types
// and/or 64x64->128 intrinsic functions where possible.
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.2.9 *
* Date : 16 February 2015 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2015 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef SLIC3R_INT128_HPP
#define SLIC3R_INT128_HPP
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#define DEBUG
#define _DEBUG
#undef assert
#endif
#include <cassert>
#include <cstdint>
#include <cmath>
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
#define HAS_INTRINSIC_128_TYPE
#endif
#if defined(_MSC_VER) && defined(_WIN64)
#include <intrin.h>
#pragma intrinsic(_mul128)
#endif
//------------------------------------------------------------------------------
// Int128 class (enables safe math on signed 64bit integers)
// eg Int128 val1((int64_t)9223372036854775807); //ie 2^63 -1
// Int128 val2((int64_t)9223372036854775807);
// Int128 val3 = val1 * val2;
//------------------------------------------------------------------------------
class Int128
{
#ifdef HAS_INTRINSIC_128_TYPE
/******************************************** Using the intrinsic 128bit x 128bit multiply ************************************************/
public:
__int128 value;
Int128(int64_t lo = 0) : value(lo) {}
Int128(const Int128 &v) : value(v.value) {}
Int128& operator=(const int64_t &rhs) { value = rhs; return *this; }
uint64_t lo() const { return uint64_t(value); }
int64_t hi() const { return int64_t(value >> 64); }
int sign() const { return (value > 0) - (value < 0); }
bool operator==(const Int128 &rhs) const { return value == rhs.value; }
bool operator!=(const Int128 &rhs) const { return value != rhs.value; }
bool operator> (const Int128 &rhs) const { return value > rhs.value; }
bool operator< (const Int128 &rhs) const { return value < rhs.value; }
bool operator>=(const Int128 &rhs) const { return value >= rhs.value; }
bool operator<=(const Int128 &rhs) const { return value <= rhs.value; }
Int128& operator+=(const Int128 &rhs) { value += rhs.value; return *this; }
Int128 operator+ (const Int128 &rhs) const { return Int128(value + rhs.value); }
Int128& operator-=(const Int128 &rhs) { value -= rhs.value; return *this; }
Int128 operator -(const Int128 &rhs) const { return Int128(value - rhs.value); }
Int128 operator -() const { return Int128(- value); }
operator double() const { return double(value); }
static inline Int128 multiply(int64_t lhs, int64_t rhs) { return Int128(__int128(lhs) * __int128(rhs)); }
// Evaluate signum of a 2x2 determinant.
static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
{
__int128 det = __int128(a11) * __int128(a22) - __int128(a12) * __int128(a21);
return (det > 0) - (det < 0);
}
// Compare two rational numbers.
static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
{
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
__int128 det = __int128(p1) * __int128(q2) - __int128(p2) * __int128(q1);
return ((det > 0) - (det < 0)) * invert;
}
#else /* HAS_INTRINSIC_128_TYPE */
/******************************************** Splitting the 128bit number into two 64bit words *********************************************/
Int128(int64_t lo = 0) : m_lo((uint64_t)lo), m_hi((lo < 0) ? -1 : 0) {}
Int128(const Int128 &val) : m_lo(val.m_lo), m_hi(val.m_hi) {}
Int128(const int64_t& hi, const uint64_t& lo) : m_lo(lo), m_hi(hi) {}
Int128& operator = (const int64_t &val)
{
m_lo = (uint64_t)val;
m_hi = (val < 0) ? -1 : 0;
return *this;
}
uint64_t lo() const { return m_lo; }
int64_t hi() const { return m_hi; }
int sign() const { return (m_hi == 0) ? (m_lo > 0) : (m_hi > 0) - (m_hi < 0); }
bool operator == (const Int128 &val) const { return m_hi == val.m_hi && m_lo == val.m_lo; }
bool operator != (const Int128 &val) const { return ! (*this == val); }
bool operator > (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo > val.m_lo : m_hi > val.m_hi; }
bool operator < (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo < val.m_lo : m_hi < val.m_hi; }
bool operator >= (const Int128 &val) const { return ! (*this < val); }
bool operator <= (const Int128 &val) const { return ! (*this > val); }
Int128& operator += (const Int128 &rhs)
{
m_hi += rhs.m_hi;
m_lo += rhs.m_lo;
if (m_lo < rhs.m_lo) m_hi++;
return *this;
}
Int128 operator + (const Int128 &rhs) const
{
Int128 result(*this);
result+= rhs;
return result;
}
Int128& operator -= (const Int128 &rhs)
{
*this += -rhs;
return *this;
}
Int128 operator - (const Int128 &rhs) const
{
Int128 result(*this);
result -= rhs;
return result;
}
Int128 operator-() const { return (m_lo == 0) ? Int128(-m_hi, 0) : Int128(~m_hi, ~m_lo + 1); }
operator double() const
{
const double shift64 = 18446744073709551616.0; //2^64
return (m_hi < 0) ?
((m_lo == 0) ?
(double)m_hi * shift64 :
-(double)(~m_lo + ~m_hi * shift64)) :
(double)(m_lo + m_hi * shift64);
}
static inline Int128 multiply(int64_t lhs, int64_t rhs)
{
#if defined(_MSC_VER) && defined(_WIN64)
// On Visual Studio 64bit, use the _mul128() intrinsic function.
Int128 result;
result.m_lo = (uint64_t)_mul128(lhs, rhs, &result.m_hi);
return result;
#else
// This branch should only be executed in case there is neither __int16 type nor _mul128 intrinsic
// function available. This is mostly on 32bit operating systems.
// Use a pure C implementation of _mul128().
int negate = (lhs < 0) != (rhs < 0);
if (lhs < 0)
lhs = -lhs;
uint64_t int1Hi = uint64_t(lhs) >> 32;
uint64_t int1Lo = uint64_t(lhs & 0xFFFFFFFF);
if (rhs < 0)
rhs = -rhs;
uint64_t int2Hi = uint64_t(rhs) >> 32;
uint64_t int2Lo = uint64_t(rhs & 0xFFFFFFFF);
//because the high (sign) bits in both int1Hi & int2Hi have been zeroed,
//there's no risk of 64 bit overflow in the following assignment
//(ie: $7FFFFFFF*$FFFFFFFF + $7FFFFFFF*$FFFFFFFF < 64bits)
uint64_t a = int1Hi * int2Hi;
uint64_t b = int1Lo * int2Lo;
//Result = A shl 64 + C shl 32 + B ...
uint64_t c = int1Hi * int2Lo + int1Lo * int2Hi;
Int128 tmp;
tmp.m_hi = int64_t(a + (c >> 32));
tmp.m_lo = int64_t(c << 32);
tmp.m_lo += int64_t(b);
if (tmp.m_lo < b)
++ tmp.m_hi;
if (negate)
tmp = - tmp;
return tmp;
#endif
}
// Evaluate signum of a 2x2 determinant.
static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
{
return (Int128::multiply(a11, a22) - Int128::multiply(a12, a21)).sign();
}
// Compare two rational numbers.
static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
{
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
Int128 det = Int128::multiply(p1, q2) - Int128::multiply(p2, q1);
return det.sign() * invert;
}
private:
uint64_t m_lo;
int64_t m_hi;
#endif /* HAS_INTRINSIC_128_TYPE */
/******************************************** Common methods ************************************************/
public:
// Evaluate signum of a 2x2 determinant, use a numeric filter to avoid 128 bit multiply if possible.
static int sign_determinant_2x2_filtered(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
{
// First try to calculate the determinant over the upper 31 bits.
// Round p1, p2, q1, q2 to 31 bits.
int64_t a11s = (a11 + (1 << 31)) >> 32;
int64_t a12s = (a12 + (1 << 31)) >> 32;
int64_t a21s = (a21 + (1 << 31)) >> 32;
int64_t a22s = (a22 + (1 << 31)) >> 32;
// Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
int64_t det = a11s * a22s - a12s * a21s;
// Maximum absolute of the remainder of the exact determinant, divided by 2^64.
int64_t err = ((std::abs(a11s) + std::abs(a12s) + std::abs(a21s) + std::abs(a22s)) << 1) + 1;
assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) == sign_determinant_2x2(a11, a12, a21, a22));
return (std::abs(det) > err) ?
((det > 0) ? 1 : -1) :
sign_determinant_2x2(a11, a12, a21, a22);
}
// Compare two rational numbers, use a numeric filter to avoid 128 bit multiply if possible.
static int compare_rationals_filtered(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
{
// First try to calculate the determinant over the upper 31 bits.
// Round p1, p2, q1, q2 to 31 bits.
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
int64_t q1s = (q1 + (1 << 31)) >> 32;
int64_t q2s = (q2 + (1 << 31)) >> 32;
if (q1s != 0 && q2s != 0) {
int64_t p1s = (p1 + (1 << 31)) >> 32;
int64_t p2s = (p2 + (1 << 31)) >> 32;
// Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
int64_t det = p1s * q2s - p2s * q1s;
// Maximum absolute of the remainder of the exact determinant, divided by 2^64.
int64_t err = ((std::abs(p1s) + std::abs(q1s) + std::abs(p2s) + std::abs(q2s)) << 1) + 1;
assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) * invert == compare_rationals(p1, q1, p2, q2));
if (std::abs(det) > err)
return ((det > 0) ? 1 : -1) * invert;
}
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
}
};
#endif // SLIC3R_INT128_HPP