581 lines
23 KiB
C++
581 lines
23 KiB
C++
#include <iostream>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
#include <map>
|
|
|
|
#include "ItsNeighborIndex.hpp"
|
|
|
|
#include "tbb/parallel_sort.h"
|
|
|
|
namespace Slic3r {
|
|
|
|
FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its)
|
|
{
|
|
// Just to be clear what type of object are we referencing
|
|
using FaceID = size_t;
|
|
using VertexID = uint64_t;
|
|
using EdgeID = uint64_t;
|
|
|
|
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
|
|
|
|
struct Edge // Will contain IDs of the two facets touching this edge
|
|
{
|
|
FaceID first, second;
|
|
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
|
|
void assign(FaceID fid)
|
|
{
|
|
first == UNASSIGNED ? first = fid : second = fid;
|
|
}
|
|
};
|
|
|
|
// All vertex IDs will fit into this number of bits. (Used for hashing)
|
|
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
|
|
assert(max_vertex_id_bits <= 32);
|
|
|
|
std::unordered_map< EdgeID, Edge > edge_index;
|
|
|
|
// Edge id is constructed by concatenating two vertex ids, starting with
|
|
// the lowest in MSB
|
|
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
|
|
if (a > b) std::swap(a, b);
|
|
return (a << max_vertex_id_bits) + b;
|
|
};
|
|
|
|
// Go through all edges of all facets and mark the facets touching each edge
|
|
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
|
|
e3 = hash(face(2), face(0));
|
|
|
|
edge_index[e1].assign(face_id);
|
|
edge_index[e2].assign(face_id);
|
|
edge_index[e3].assign(face_id);
|
|
}
|
|
|
|
FaceNeighborIndex index(its.indices.size());
|
|
|
|
// Now collect the neighbors for each facet into the final index
|
|
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
|
|
e3 = hash(face(2), face(0));
|
|
|
|
const Edge &neighs1 = edge_index[e1];
|
|
const Edge &neighs2 = edge_index[e2];
|
|
const Edge &neighs3 = edge_index[e3];
|
|
|
|
std::array<size_t, 3> &neighs = index[face_id];
|
|
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
|
|
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
|
|
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
std::vector<Vec3i> its_create_neighbors_index_2(const indexed_triangle_set &its)
|
|
{
|
|
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
|
|
|
|
// Create a mapping from triangle edge into face.
|
|
struct EdgeToFace {
|
|
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
|
|
int vertex_low;
|
|
// Index of the 2nd vertex of the triangle edge.
|
|
int vertex_high;
|
|
// Index of a triangular face.
|
|
int face;
|
|
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
|
|
int face_edge;
|
|
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
|
|
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
|
|
};
|
|
std::vector<EdgeToFace> edges_map;
|
|
edges_map.assign(its.indices.size() * 3, EdgeToFace());
|
|
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
|
|
for (int i = 0; i < 3; ++ i) {
|
|
EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
|
|
e2f.vertex_low = its.indices[facet_idx][i];
|
|
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
|
|
e2f.face = facet_idx;
|
|
// 1 based indexing, to be always strictly positive.
|
|
e2f.face_edge = i + 1;
|
|
if (e2f.vertex_low > e2f.vertex_high) {
|
|
// Sort the vertices
|
|
std::swap(e2f.vertex_low, e2f.vertex_high);
|
|
// and make the face_edge negative to indicate a flipped edge.
|
|
e2f.face_edge = - e2f.face_edge;
|
|
}
|
|
}
|
|
|
|
std::sort(edges_map.begin(), edges_map.end());
|
|
|
|
// Assign a unique common edge id to touching triangle edges.
|
|
int num_edges = 0;
|
|
for (size_t i = 0; i < edges_map.size(); ++ i) {
|
|
EdgeToFace &edge_i = edges_map[i];
|
|
if (edge_i.face == -1)
|
|
// This edge has been connected to some neighbor already.
|
|
continue;
|
|
// Unconnected edge. Find its neighbor with the correct orientation.
|
|
size_t j;
|
|
bool found = false;
|
|
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
|
|
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
|
|
// Faces touching with opposite oriented edges and none of the edges is connected yet.
|
|
found = true;
|
|
break;
|
|
}
|
|
if (! found) {
|
|
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
|
|
// admesh can assign the same edge ID to more than two facets (which is
|
|
// still topologically correct), so we have to search for a duplicate of
|
|
// this edge too in case it was already seen in this orientation
|
|
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
|
|
if (edges_map[j].face != -1) {
|
|
// Faces touching with equally oriented edges and none of the edges is connected yet.
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
// Assign an edge index to the 1st face.
|
|
// out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
|
|
if (found) {
|
|
EdgeToFace &edge_j = edges_map[j];
|
|
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
|
|
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
|
|
// Mark the edge as connected.
|
|
edge_j.face = -1;
|
|
}
|
|
++ num_edges;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
std::vector<Vec3i> its_create_neighbors_index_3(const indexed_triangle_set &its)
|
|
{
|
|
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
|
|
|
|
// Create a mapping from triangle edge into face.
|
|
struct EdgeToFace {
|
|
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
|
|
int vertex_low;
|
|
// Index of the 2nd vertex of the triangle edge.
|
|
int vertex_high;
|
|
// Index of a triangular face.
|
|
int face;
|
|
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
|
|
int face_edge;
|
|
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
|
|
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
|
|
};
|
|
std::vector<EdgeToFace> edges_map;
|
|
edges_map.assign(its.indices.size() * 3, EdgeToFace());
|
|
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
|
|
for (int i = 0; i < 3; ++ i) {
|
|
EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
|
|
e2f.vertex_low = its.indices[facet_idx][i];
|
|
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
|
|
e2f.face = facet_idx;
|
|
// 1 based indexing, to be always strictly positive.
|
|
e2f.face_edge = i + 1;
|
|
if (e2f.vertex_low > e2f.vertex_high) {
|
|
// Sort the vertices
|
|
std::swap(e2f.vertex_low, e2f.vertex_high);
|
|
// and make the face_edge negative to indicate a flipped edge.
|
|
e2f.face_edge = - e2f.face_edge;
|
|
}
|
|
}
|
|
|
|
tbb::parallel_sort(edges_map.begin(), edges_map.end());
|
|
|
|
// Assign a unique common edge id to touching triangle edges.
|
|
int num_edges = 0;
|
|
for (size_t i = 0; i < edges_map.size(); ++ i) {
|
|
EdgeToFace &edge_i = edges_map[i];
|
|
if (edge_i.face == -1)
|
|
// This edge has been connected to some neighbor already.
|
|
continue;
|
|
// Unconnected edge. Find its neighbor with the correct orientation.
|
|
size_t j;
|
|
bool found = false;
|
|
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
|
|
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
|
|
// Faces touching with opposite oriented edges and none of the edges is connected yet.
|
|
found = true;
|
|
break;
|
|
}
|
|
if (! found) {
|
|
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
|
|
// admesh can assign the same edge ID to more than two facets (which is
|
|
// still topologically correct), so we have to search for a duplicate of
|
|
// this edge too in case it was already seen in this orientation
|
|
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
|
|
if (edges_map[j].face != -1) {
|
|
// Faces touching with equally oriented edges and none of the edges is connected yet.
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
// Assign an edge index to the 1st face.
|
|
// out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
|
|
if (found) {
|
|
EdgeToFace &edge_j = edges_map[j];
|
|
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
|
|
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
|
|
// Mark the edge as connected.
|
|
edge_j.face = -1;
|
|
}
|
|
++ num_edges;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its)
|
|
{
|
|
// Just to be clear what type of object are we referencing
|
|
using FaceID = size_t;
|
|
using VertexID = uint64_t;
|
|
using EdgeID = uint64_t;
|
|
|
|
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
|
|
|
|
struct Edge // Will contain IDs of the two facets touching this edge
|
|
{
|
|
FaceID first, second;
|
|
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
|
|
void assign(FaceID fid)
|
|
{
|
|
first == UNASSIGNED ? first = fid : second = fid;
|
|
}
|
|
};
|
|
|
|
Benchmark bm;
|
|
bm.start();
|
|
|
|
// All vertex IDs will fit into this number of bits. (Used for hashing)
|
|
// const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
|
|
// assert(max_vertex_id_bits <= 32);
|
|
|
|
const uint64_t Vn = its.vertices.size();
|
|
// const uint64_t Fn = 3 * its.indices.size();
|
|
// double MaxQ = double(Vn) * (Vn + 1) / Fn;
|
|
// const uint64_t Nq = MaxQ < 0 ? 0 : std::ceil(std::log2(MaxQ));
|
|
// const uint64_t Nr = std::ceil(std::log2(std::min(Vn * (Vn + 1), Fn)));
|
|
// const uint64_t Nfn = std::ceil(std::log2(Fn));
|
|
|
|
//// const uint64_t max_edge_ids = (uint64_t(1) << (Nq + Nr));
|
|
// const uint64_t max_edge_ids = MaxQ * Fn + (std::min(Vn * (Vn + 1), Fn)); //(uint64_t(1) << Nfn);
|
|
const uint64_t Fn = 3 * its.indices.size();
|
|
std::vector< Edge > edge_index(3 * Fn);
|
|
|
|
// Edge id is constructed by concatenating two vertex ids, starting with
|
|
// the lowest in MSB
|
|
auto hash = [Vn, Fn /*, Nr*/] (VertexID a, VertexID b) {
|
|
if (a > b) std::swap(a, b);
|
|
|
|
uint64_t C = Vn * a + b;
|
|
uint64_t Q = C / Fn, R = C % Fn;
|
|
|
|
return Q * Fn + R;
|
|
};
|
|
|
|
// Go through all edges of all facets and mark the facets touching each edge
|
|
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
|
|
e3 = hash(face(2), face(0));
|
|
|
|
edge_index[e1].assign(face_id);
|
|
edge_index[e2].assign(face_id);
|
|
edge_index[e3].assign(face_id);
|
|
}
|
|
|
|
FaceNeighborIndex index(its.indices.size());
|
|
|
|
// Now collect the neighbors for each facet into the final index
|
|
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
|
|
e3 = hash(face(2), face(0));
|
|
|
|
const Edge &neighs1 = edge_index[e1];
|
|
const Edge &neighs2 = edge_index[e2];
|
|
const Edge &neighs3 = edge_index[e3];
|
|
|
|
std::array<size_t, 3> &neighs = index[face_id];
|
|
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
|
|
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
|
|
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
|
|
}
|
|
|
|
bm.stop();
|
|
|
|
std::cout << "Creating neighbor index took: " << bm.getElapsedSec() << " seconds." << std::endl;
|
|
|
|
return index;
|
|
}
|
|
|
|
static int get_vertex_index(size_t vertex_index, const stl_triangle_vertex_indices &triangle_indices) {
|
|
if (vertex_index == triangle_indices[0]) return 0;
|
|
if (vertex_index == triangle_indices[1]) return 1;
|
|
if (vertex_index == triangle_indices[2]) return 2;
|
|
return -1;
|
|
}
|
|
|
|
Vec2crd get_edge_indices(int edge_index, const stl_triangle_vertex_indices &triangle_indices)
|
|
{
|
|
int next_edge_index = (edge_index == 2) ? 0 : edge_index + 1;
|
|
coord_t vi0 = triangle_indices[edge_index];
|
|
coord_t vi1 = triangle_indices[next_edge_index];
|
|
return Vec2crd(vi0, vi1);
|
|
}
|
|
|
|
static std::vector<std::vector<size_t>> create_vertex_faces_index(
|
|
const std::vector<stl_triangle_vertex_indices>& indices, size_t count_vertices)
|
|
{
|
|
if (count_vertices == 0) return {};
|
|
std::vector<std::vector<size_t>> index;
|
|
size_t res = indices.size() / count_vertices;
|
|
index.assign(count_vertices, reserve_vector<size_t>(res));
|
|
for (size_t fi = 0; fi < indices.size(); ++fi) {
|
|
auto &face = indices[fi];
|
|
index[face(0)].emplace_back(fi);
|
|
index[face(1)].emplace_back(fi);
|
|
index[face(2)].emplace_back(fi);
|
|
}
|
|
return index;
|
|
}
|
|
|
|
std::vector<Vec3crd> its_create_neighbors_index_5(const indexed_triangle_set &its)
|
|
{
|
|
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
|
|
size_t vertices_size = its.vertices.size();
|
|
|
|
if (indices.empty() || vertices_size == 0) return {};
|
|
std::vector<std::vector<size_t>> vertex_triangles = create_vertex_faces_index(indices, vertices_size);
|
|
coord_t no_value = -1;
|
|
std::vector<Vec3crd> neighbors(indices.size(), Vec3crd(no_value, no_value, no_value));
|
|
for (const stl_triangle_vertex_indices& triangle_indices : indices) {
|
|
coord_t index = &triangle_indices - &indices.front();
|
|
Vec3crd& neighbor = neighbors[index];
|
|
for (int edge_index = 0; edge_index < 3; ++edge_index) {
|
|
// check if done
|
|
coord_t& neighbor_edge = neighbor[edge_index];
|
|
if (neighbor_edge != no_value) continue;
|
|
Vec2crd edge_indices = get_edge_indices(edge_index, triangle_indices);
|
|
// IMPROVE: use same vector for 2 sides of triangle
|
|
const std::vector<size_t> &faces = vertex_triangles[edge_indices[0]];
|
|
for (const size_t &face : faces) {
|
|
if (face <= index) continue;
|
|
const stl_triangle_vertex_indices &face_indices = indices[face];
|
|
int vertex_index = get_vertex_index(edge_indices[1], face_indices);
|
|
// NOT Contain second vertex?
|
|
if (vertex_index < 0) continue;
|
|
// Has NOT oposit direction?
|
|
if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue;
|
|
neighbor_edge = face;
|
|
neighbors[face][vertex_index] = index;
|
|
break;
|
|
}
|
|
// must be paired
|
|
assert(neighbor_edge != no_value);
|
|
}
|
|
}
|
|
|
|
return neighbors;
|
|
}
|
|
|
|
std::vector<std::array<size_t, 3>> its_create_neighbors_index_6(const indexed_triangle_set &its)
|
|
{
|
|
constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
|
|
constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
|
|
struct Edge
|
|
{
|
|
uint64_t id = UNASSIGNED_EDGE;
|
|
size_t face_id = UNASSIGNED_FACE;
|
|
bool operator < (const Edge &e) const { return id < e.id; }
|
|
};
|
|
|
|
const size_t facenum = its.indices.size();
|
|
|
|
// All vertex IDs will fit into this number of bits. (Used for hashing)
|
|
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
|
|
assert(max_vertex_id_bits <= 32);
|
|
|
|
// Edge id is constructed by concatenating two vertex ids, starting with
|
|
// the lowest in MSB
|
|
auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
|
|
if (a > b) std::swap(a, b);
|
|
return (a << max_vertex_id_bits) + b;
|
|
};
|
|
|
|
std::vector<Edge> edge_map(3 * facenum);
|
|
|
|
// Go through all edges of all facets and mark the facets touching each edge
|
|
for (size_t face_id = 0; face_id < facenum; ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
|
|
edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
|
|
edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
|
|
}
|
|
|
|
std::sort(edge_map.begin(), edge_map.end());
|
|
|
|
std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
|
|
|
|
auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
|
|
if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
|
|
if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
|
|
if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
|
|
};
|
|
|
|
for (auto it = edge_map.begin(); it != edge_map.end();) {
|
|
size_t face_id = it->face_id;
|
|
uint64_t edge_id = it->id;
|
|
|
|
while (++it != edge_map.end() && (it->id == edge_id)) {
|
|
size_t other_face_id = it->face_id;
|
|
add_neighbor(out[other_face_id], face_id);
|
|
add_neighbor(out[face_id], other_face_id);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
std::vector<std::array<size_t, 3>> its_create_neighbors_index_7(const indexed_triangle_set &its)
|
|
{
|
|
constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
|
|
constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
|
|
struct Edge
|
|
{
|
|
uint64_t id = UNASSIGNED_EDGE;
|
|
size_t face_id = UNASSIGNED_FACE;
|
|
bool operator < (const Edge &e) const { return id < e.id; }
|
|
};
|
|
|
|
const size_t facenum = its.indices.size();
|
|
|
|
// All vertex IDs will fit into this number of bits. (Used for hashing)
|
|
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
|
|
assert(max_vertex_id_bits <= 32);
|
|
|
|
// Edge id is constructed by concatenating two vertex ids, starting with
|
|
// the lowest in MSB
|
|
auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
|
|
if (a > b) std::swap(a, b);
|
|
return (a << max_vertex_id_bits) + b;
|
|
};
|
|
|
|
std::vector<Edge> edge_map(3 * facenum);
|
|
|
|
// Go through all edges of all facets and mark the facets touching each edge
|
|
for (size_t face_id = 0; face_id < facenum; ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
|
|
edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
|
|
edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
|
|
}
|
|
|
|
tbb::parallel_sort(edge_map.begin(), edge_map.end());
|
|
|
|
std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
|
|
|
|
auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
|
|
if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
|
|
if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
|
|
if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
|
|
};
|
|
|
|
for (auto it = edge_map.begin(); it != edge_map.end();) {
|
|
size_t face_id = it->face_id;
|
|
uint64_t edge_id = it->id;
|
|
|
|
while (++it != edge_map.end() && (it->id == edge_id)) {
|
|
size_t other_face_id = it->face_id;
|
|
add_neighbor(out[other_face_id], face_id);
|
|
add_neighbor(out[face_id], other_face_id);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its)
|
|
{
|
|
// Just to be clear what type of object are we referencing
|
|
using FaceID = size_t;
|
|
using VertexID = uint64_t;
|
|
using EdgeID = uint64_t;
|
|
|
|
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
|
|
|
|
struct Edge // Will contain IDs of the two facets touching this edge
|
|
{
|
|
FaceID first, second;
|
|
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
|
|
void assign(FaceID fid)
|
|
{
|
|
first == UNASSIGNED ? first = fid : second = fid;
|
|
}
|
|
};
|
|
|
|
// All vertex IDs will fit into this number of bits. (Used for hashing)
|
|
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
|
|
assert(max_vertex_id_bits <= 32);
|
|
|
|
std::map< EdgeID, Edge > edge_index;
|
|
|
|
// Edge id is constructed by concatenating two vertex ids, starting with
|
|
// the lowest in MSB
|
|
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
|
|
if (a > b) std::swap(a, b);
|
|
return (a << max_vertex_id_bits) + b;
|
|
};
|
|
|
|
// Go through all edges of all facets and mark the facets touching each edge
|
|
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
|
|
e3 = hash(face(2), face(0));
|
|
|
|
edge_index[e1].assign(face_id);
|
|
edge_index[e2].assign(face_id);
|
|
edge_index[e3].assign(face_id);
|
|
}
|
|
|
|
FaceNeighborIndex index(its.indices.size());
|
|
|
|
// Now collect the neighbors for each facet into the final index
|
|
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
|
|
const Vec3i &face = its.indices[face_id];
|
|
|
|
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
|
|
e3 = hash(face(2), face(0));
|
|
|
|
const Edge &neighs1 = edge_index[e1];
|
|
const Edge &neighs2 = edge_index[e2];
|
|
const Edge &neighs3 = edge_index[e3];
|
|
|
|
std::array<size_t, 3> &neighs = index[face_id];
|
|
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
|
|
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
|
|
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
} // namespace Slic3r
|