PrusaSlicer-NonPlainar/lib/Slic3r/Layer.pm
2012-06-06 21:27:39 +02:00

603 lines
22 KiB
Perl

package Slic3r::Layer;
use Moo;
use Math::Clipper ':all';
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(scale unscale collinear X Y A B PI rad2deg_dir bounding_box_center shortest_path);
use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex xor_ex is_counter_clockwise);
use Slic3r::Surface ':types';
# a sequential number of layer, starting at 0
has 'id' => (
is => 'rw',
#isa => 'Int',
required => 1,
);
has 'slicing_errors' => (is => 'rw');
has 'slice_z' => (is => 'lazy');
has 'print_z' => (is => 'lazy');
has 'height' => (is => 'lazy');
has 'flow' => (is => 'lazy');
has 'perimeters_flow' => (is => 'lazy');
has 'infill_flow' => (is => 'lazy');
# collection of spare segments generated by slicing the original geometry;
# these need to be merged in continuos (closed) polylines
has 'lines' => (
is => 'rw',
#isa => 'ArrayRef[ArrayRef]',
default => sub { [] },
);
# collection of surfaces generated by slicing the original geometry
has 'slices' => (is => 'ro', default => sub { [] });
# collection of polygons or polylines representing thin walls contained
# in the original geometry
has 'thin_walls' => (is => 'ro', default => sub { [] });
# collection of expolygons generated by offsetting the innermost perimeter(s)
# they represent boundaries of areas to fill
has 'fill_boundaries' => (is => 'ro', default => sub { [] });
# collection of polygons or polylines representing thin infill regions that
# need to be filled with a medial axis
has 'thin_fills' => (is => 'ro', default => sub { [] });
# collection of surfaces generated by clipping the slices to the fill boundaries
has 'surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface]',
default => sub { [] },
);
# collection of surfaces for infill
has 'fill_surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface]',
default => sub { [] },
);
# ordered collection of extrusion paths to build all perimeters
has 'perimeters' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
default => sub { [] },
);
# ordered collection of extrusion paths to fill surfaces for support material
has 'support_fills' => (
is => 'rw',
#isa => 'Slic3r::ExtrusionPath::Collection',
);
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionPath::Collection]',
default => sub { [] },
);
# Z used for slicing
sub _build_slice_z {
my $self = shift;
if ($self->id == 0) {
return $Slic3r::_first_layer_height / 2 / $Slic3r::scaling_factor;
}
return ($Slic3r::_first_layer_height + (($self->id-1) * $Slic3r::layer_height) + ($Slic3r::layer_height/2))
/ $Slic3r::scaling_factor; #/
}
# Z used for printing
sub _build_print_z {
my $self = shift;
return ($Slic3r::_first_layer_height + ($self->id * $Slic3r::layer_height)) / $Slic3r::scaling_factor;
}
sub _build_height {
my $self = shift;
return $self->id == 0 ? $Slic3r::_first_layer_height : $Slic3r::layer_height;
}
sub _build_flow {
my $self = shift;
return $self->id == 0 && $Slic3r::first_layer_flow
? $Slic3r::first_layer_flow
: $Slic3r::flow;
}
sub _build_perimeters_flow {
my $self = shift;
return $self->id == 0 && $Slic3r::first_layer_flow
? $Slic3r::first_layer_flow
: $Slic3r::perimeters_flow;
}
sub _build_infill_flow {
my $self = shift;
return $self->id == 0 && $Slic3r::first_layer_flow
? $Slic3r::first_layer_flow
: $Slic3r::infill_flow;
}
sub add_line {
my $self = shift;
my ($line) = @_;
push @{ $self->lines }, $line;
return $line;
}
# build polylines from lines
sub make_surfaces {
my $self = shift;
my ($loops) = @_;
{
# merge everything
my $expolygons = union_ex($loops);
$_->simplify(scale $Slic3r::resolution) for @$expolygons;
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
push @{$self->slices},
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL),
@$expolygons;
}
# the contours must be offsetted by half extrusion width inwards
{
my $distance = scale $self->perimeters_flow->width / 2;
my @surfaces = @{$self->slices};
@{$self->slices} = ();
foreach my $surface (@surfaces) {
push @{$self->slices}, map Slic3r::Surface->new
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
$surface->expolygon->offset_ex(-$distance);
}
# now detect thin walls by re-outgrowing offsetted surfaces and subtracting
# them from the original slices
my $outgrown = Math::Clipper::offset([ map $_->p, @{$self->slices} ], $distance);
my $diff = diff_ex(
[ map $_->p, @surfaces ],
$outgrown,
1,
);
if (@$diff) {
my $area_threshold = scale($self->perimeters_flow->spacing) ** 2;
@$diff = grep $_->area > ($area_threshold), @$diff;
push @{$self->thin_walls},
map $_->medial_axis(scale $self->perimeters_flow->width),
@$diff;
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls};
}
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "surfaces.svg",
polygons => [ map $_->contour, @{$self->slices} ],
red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ],
);
}
}
sub make_perimeters {
my $self = shift;
Slic3r::debugf "Making perimeters for layer %d\n", $self->id;
# this array will hold one arrayref per original surface (island);
# each item of this arrayref is an arrayref representing a depth (from outer
# perimeters to inner); each item of this arrayref is an ExPolygon:
# @perimeters = (
# [ # first island
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
# ],
# [ # second island
# ...
# ]
# )
my @perimeters = (); # one item per depth; each item
# organize islands using a shortest path search
my @surfaces = @{shortest_path([
map [ $_->contour->[0], $_ ], @{$self->slices},
])};
# for each island:
foreach my $surface (@surfaces) {
my @last_offsets = ($surface->expolygon);
my $distance = 0;
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
foreach my $hole ($last_offsets[0]->holes) {
my $circumference = abs($hole->length);
next unless $circumference <= $Slic3r::small_perimeter_length;
# revert the compensation done in make_surfaces() and get the actual radius
# of the hole
my $radius = ($circumference / PI / 2) - scale $self->perimeters_flow->spacing/2;
my $new_radius = (scale($self->perimeters_flow->width) + sqrt((scale($self->perimeters_flow->width)**2) + (4*($radius**2)))) / 2;
# holes are always turned to contours, so reverse point order before and after
$hole->reverse;
my @offsetted = $hole->offset(+ ($new_radius - $radius));
# skip arc compensation when hole is not round (thus leads to multiple offsets)
@$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1;
$hole->reverse;
}
# generate perimeters inwards
my $loop_number = $Slic3r::perimeters + ($surface->additional_inner_perimeters || 0);
push @perimeters, [];
for (my $loop = 0; $loop < $loop_number; $loop++) {
# offsetting a polygon can result in one or many offset polygons
@last_offsets = map $_->offset_ex(-$distance), @last_offsets if $distance;
last if !@last_offsets;
push @{ $perimeters[-1] }, [@last_offsets];
# offset distance for inner loops
$distance = scale $self->perimeters_flow->spacing;
}
# create one more offset to be used as boundary for fill
{
my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets;
push @{ $self->fill_boundaries }, @fill_boundaries;
# detect the small gaps that we need to treat like thin polygons,
# thus generating the skeleton and using it to fill them
my $small_gaps = diff_ex(
[ map @$_, map $_->offset_ex(-$distance/2), map @$_, @{$perimeters[-1]} ],
[ map @$_, map $_->offset_ex(+$distance/2), @fill_boundaries ],
);
push @{ $self->thin_fills },
map $_->medial_axis(scale $self->perimeters_flow->width),
@$small_gaps if 0;
}
}
# process one island (original surface) at time
foreach my $island (@perimeters) {
# do holes starting from innermost one
my @holes = ();
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
# organize the outermost hole loops using a shortest path search
@{$hole_depths[0]} = @{shortest_path([
map [ $_->[0], $_ ], @{$hole_depths[0]},
])};
CYCLE: while (map @$_, @hole_depths) {
shift @hole_depths while !@{$hole_depths[0]};
# take first available hole
push @holes, shift @{$hole_depths[0]};
my $current_depth = 0;
while (1) {
$current_depth++;
# look for the hole containing this one if any
next CYCLE if !$hole_depths[$current_depth];
my $parent_hole;
for (@{$hole_depths[$current_depth]}) {
if ($_->encloses_point($holes[-1]->[0])) {
$parent_hole = $_;
last;
}
}
next CYCLE if !$parent_hole;
# look for other holes contained in such parent
for (@{$hole_depths[$current_depth-1]}) {
if ($parent_hole->encloses_point($_->[0])) {
# we have a sibling, so let's move onto next iteration
next CYCLE;
}
}
push @holes, $parent_hole;
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
}
}
# do holes, then contours starting from innermost one
$self->add_perimeter($_) for reverse @holes;
for my $depth (reverse 0 .. $#$island) {
my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER : EXTR_ROLE_PERIMETER;
$self->add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]};
}
}
# add thin walls as perimeters
{
my @thin_paths = ();
for (@{ $self->thin_walls }) {
if ($_->isa('Slic3r::Polygon')) {
push @thin_paths, Slic3r::ExtrusionLoop->new(polygon => $_, role => EXTR_ROLE_PERIMETER);
} else {
push @thin_paths, Slic3r::ExtrusionPath->new(polyline => $_, role => EXTR_ROLE_PERIMETER);
}
}
my $collection = Slic3r::ExtrusionPath::Collection->new(paths => \@thin_paths);
push @{ $self->perimeters }, $collection->shortest_path;
}
}
sub add_perimeter {
my $self = shift;
my ($polygon, $role) = @_;
return unless $polygon->is_printable($self->perimeters_flow->width);
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->new(
polygon => $polygon,
role => (abs($polygon->length) <= $Slic3r::small_perimeter_length) ? EXTR_ROLE_SMALLPERIMETER : ($role // EXTR_ROLE_PERIMETER), #/
);
}
sub prepare_fill_surfaces {
my $self = shift;
my @surfaces = @{$self->surfaces};
# merge too small internal surfaces with their surrounding tops
# (if they're too small, they can be treated as solid)
{
my $min_area = ((7 * $self->infill_flow->spacing / $Slic3r::scaling_factor)**2) * PI;
my $small_internal = [
grep { $_->expolygon->contour->area <= $min_area }
grep { $_->surface_type == S_TYPE_INTERNAL }
@surfaces
];
foreach my $s (@$small_internal) {
@surfaces = grep $_ ne $s, @surfaces;
}
my $union = union_ex([
(map $_->p, grep $_->surface_type == S_TYPE_TOP, @surfaces),
(map @$_, map $_->expolygon->safety_offset, @$small_internal),
]);
my @top = map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_TOP), @$union;
@surfaces = (grep($_->surface_type != S_TYPE_TOP, @surfaces), @top);
}
# remove top/bottom surfaces
if ($Slic3r::solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
}
# remove internal surfaces
if ($Slic3r::fill_density == 0) {
@surfaces = grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
}
$self->fill_surfaces([@surfaces]);
}
sub remove_small_surfaces {
my $self = shift;
my $distance = scale $self->infill_flow->spacing / 2;
my @surfaces = @{$self->fill_surfaces};
@{$self->fill_surfaces} = ();
foreach my $surface (@surfaces) {
# offset inwards
my @offsets = $surface->expolygon->offset_ex(-$distance);
# offset the results outwards again and merge the results
@offsets = map $_->offset_ex($distance), @offsets;
@offsets = @{ union_ex([ map @$_, @offsets ], undef, 1) };
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $surface->surface_type), @offsets;
}
Slic3r::debugf "identified %d small surfaces at layer %d\n",
(@surfaces - @{$self->fill_surfaces}), $self->id
if @{$self->fill_surfaces} != @surfaces;
# the difference between @surfaces and $self->fill_surfaces
# is what's too small; we add it back as solid infill
if ($Slic3r::fill_density > 0) {
my $diff = diff_ex(
[ map $_->p, @surfaces ],
[ map $_->p, @{$self->fill_surfaces} ],
);
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALSOLID), @$diff;
}
}
# make bridges printable
sub process_bridges {
my $self = shift;
# no bridges are possible if we have no internal surfaces
return if $Slic3r::fill_density == 0;
my @bridges = ();
# a bottom surface on a layer > 0 is either a bridge or a overhang
# or a combination of both; any top surface is a candidate for
# reverse bridge processing
my @solid_surfaces = grep {
($_->surface_type == S_TYPE_BOTTOM && $self->id > 0) || $_->surface_type == S_TYPE_TOP
} @{$self->fill_surfaces} or return;
my @internal_surfaces = grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @{$self->slices};
SURFACE: foreach my $surface (@solid_surfaces) {
my $expolygon = $surface->expolygon->safety_offset;
my $description = $surface->surface_type == S_TYPE_BOTTOM ? 'bridge/overhang' : 'reverse bridge';
# offset the contour and intersect it with the internal surfaces to discover
# which of them has contact with our bridge
my @supporting_surfaces = ();
my ($contour_offset) = $expolygon->contour->offset(scale $self->flow->spacing * sqrt(2));
foreach my $internal_surface (@internal_surfaces) {
my $intersection = intersection_ex([$contour_offset], [$internal_surface->p]);
if (@$intersection) {
push @supporting_surfaces, $internal_surface;
}
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "bridge_surfaces.svg",
green_polygons => [ map $_->p, @supporting_surfaces ],
red_polygons => [ @$expolygon ],
);
}
Slic3r::debugf "Found $description on layer %d with %d support(s)\n",
$self->id, scalar(@supporting_surfaces);
next SURFACE unless @supporting_surfaces;
my $bridge_angle = undef;
if ($surface->surface_type == S_TYPE_BOTTOM) {
# detect optimal bridge angle
my $bridge_over_hole = 0;
my @edges = (); # edges are POLYLINES
foreach my $supporting_surface (@supporting_surfaces) {
my @surface_edges = map $_->clip_with_polygon($contour_offset),
($supporting_surface->contour, $supporting_surface->holes);
if (@supporting_surfaces == 1 && @surface_edges == 1
&& @{$supporting_surface->contour} == @{$surface_edges[0]}) {
$bridge_over_hole = 1;
}
push @edges, grep { @$_ } @surface_edges;
}
Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges);
Slic3r::debugf " and covers a hole\n" if $bridge_over_hole;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "bridge_edges.svg",
polylines => [ map $_->p, @edges ],
);
}
if (@edges == 2) {
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
my @midpoints = map $_->midpoint, @chords;
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
$bridge_angle = rad2deg_dir($line_between_midpoints->direction);
} elsif (@edges == 1) {
# TODO: this case includes both U-shaped bridges and plain overhangs;
# we need a trapezoidation algorithm to detect the actual bridged area
# and separate it from the overhang area.
# in the mean time, we're treating as overhangs all cases where
# our supporting edge is a straight line
if (@{$edges[0]} > 2) {
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
$bridge_angle = rad2deg_dir($line->direction);
}
} elsif (@edges) {
my $center = bounding_box_center([ map @$_, @edges ]);
my $x = my $y = 0;
foreach my $point (map @$, @edges) {
my $line = Slic3r::Line->new($center, $point);
my $dir = $line->direction;
my $len = $line->length;
$x += cos($dir) * $len;
$y += sin($dir) * $len;
}
$bridge_angle = rad2deg_dir(atan2($y, $x));
}
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
$self->id, $bridge_angle if defined $bridge_angle;
}
# now, extend our bridge by taking a portion of supporting surfaces
{
# offset the bridge by the specified amount of mm (minimum 3)
my $bridge_overlap = scale 3;
my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap);
# calculate the new bridge
my $intersection = intersection_ex(
[ @$expolygon, map $_->p, @supporting_surfaces ],
[ $bridge_offset ],
);
push @bridges, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $surface->surface_type,
bridge_angle => $bridge_angle,
), @$intersection;
}
}
# now we need to merge bridges to avoid overlapping
{
# build a list of unique bridge types
my @surface_groups = Slic3r::Surface->group(@bridges);
# merge bridges of the same type, removing any of the bridges already merged;
# the order of @surface_groups determines the priority between bridges having
# different surface_type or bridge_angle
@bridges = ();
foreach my $surfaces (@surface_groups) {
my $union = union_ex([ map $_->p, @$surfaces ]);
my $diff = diff_ex(
[ map @$_, @$union ],
[ map $_->p, @bridges ],
);
push @bridges, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $surfaces->[0]->surface_type,
bridge_angle => $surfaces->[0]->bridge_angle,
), @$union;
}
}
# apply bridges to layer
{
my @surfaces = @{$self->fill_surfaces};
@{$self->fill_surfaces} = ();
# intersect layer surfaces with bridges to get actual bridges
foreach my $bridge (@bridges) {
my $actual_bridge = intersection_ex(
[ map $_->p, @surfaces ],
[ $bridge->p ],
);
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $bridge->surface_type,
bridge_angle => $bridge->bridge_angle,
), @$actual_bridge;
}
# difference between layer surfaces and bridges are the other surfaces
foreach my $group (Slic3r::Surface->group(@surfaces)) {
my $difference = diff_ex(
[ map $_->p, @$group ],
[ map $_->p, @bridges ],
);
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $group->[0]->surface_type), @$difference;
}
}
}
1;