PrusaSlicer-NonPlainar/xs/src/libslic3r/Line.cpp
bubnikv cb138a20b8 Completely replaced the homebrew Pointf3 class with Eigen Vec3d.
Replaced the unscale macro with a template, implemented templates
for unscaling Eigen vectors.
2018-08-21 17:43:05 +02:00

107 lines
3.3 KiB
C++

#include "Geometry.hpp"
#include "Line.hpp"
#include "Polyline.hpp"
#include <algorithm>
#include <cmath>
#include <sstream>
namespace Slic3r {
bool Line::intersection_infinite(const Line &other, Point* point) const
{
Vec2d a1 = this->a.cast<double>();
Vec2d a2 = other.a.cast<double>();
Vec2d v12 = (other.a - this->a).cast<double>();
Vec2d v1 = (this->b - this->a).cast<double>();
Vec2d v2 = (other.b - other.a).cast<double>();
double denom = cross2(v1, v2);
if (std::fabs(denom) < EPSILON)
return false;
double t1 = cross2(v12, v2) / denom;
*point = (a1 + t1 * v1).cast<coord_t>();
return true;
}
/* distance to the closest point of line */
double Line::distance_to(const Point &point) const
{
const Line &line = *this;
const Vec2d v = (line.b - line.a).cast<double>();
const Vec2d va = (point - line.a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
// line.a == line.b case
return va.norm();
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
// We find projection of this point onto the line.
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
return (t * v - va).norm();
}
double Line::perp_distance_to(const Point &point) const
{
const Line &line = *this;
const Vec2d v = (line.b - line.a).cast<double>();
const Vec2d va = (point - line.a).cast<double>();
if (line.a == line.b)
return va.norm();
return std::abs(cross2(v, va)) / v.norm();
}
double Line::orientation() const
{
double angle = this->atan2_();
if (angle < 0) angle = 2*PI + angle;
return angle;
}
double Line::direction() const
{
double atan2 = this->atan2_();
return (fabs(atan2 - PI) < EPSILON) ? 0
: (atan2 < 0) ? (atan2 + PI)
: atan2;
}
bool Line::parallel_to(double angle) const
{
return Slic3r::Geometry::directions_parallel(this->direction(), angle);
}
bool Line::intersection(const Line &l2, Point *intersection) const
{
const Line &l1 = *this;
const Vec2d v1 = (l1.b - l1.a).cast<double>();
const Vec2d v2 = (l2.b - l2.a).cast<double>();
const Vec2d v12 = (l1.a - l2.a).cast<double>();
double denom = cross2(v1, v2);
double nume_a = cross2(v2, v12);
double nume_b = cross2(v1, v12);
if (fabs(denom) < EPSILON)
#if 0
// Lines are collinear. Return true if they are coincident (overlappign).
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
#else
return false;
#endif
double t1 = nume_a / denom;
double t2 = nume_b / denom;
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
// Get the intersection point.
(*intersection) = (l1.a.cast<double>() + t1 * v1).cast<coord_t>();
return true;
}
return false; // not intersecting
}
Vec3d Linef3::intersect_plane(double z) const
{
auto v = (this->b - this->a).cast<double>();
double t = (z - this->a(2)) / v(2);
return Vec3d(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
}
}