PrusaSlicer-NonPlainar/xs/src/libslic3r/Geometry.hpp
2017-09-11 09:49:59 +02:00

161 lines
6.1 KiB
C++

#ifndef slic3r_Geometry_hpp_
#define slic3r_Geometry_hpp_
#include "libslic3r.h"
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
namespace Slic3r { namespace Geometry {
// Generic result of an orientation predicate.
enum Orientation
{
ORIENTATION_CCW = 1,
ORIENTATION_CW = -1,
ORIENTATION_COLINEAR = 0
};
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
// which means, the coord_t types must not have some of the topmost bits utilized.
// As the points are limited to 30 bits + signum,
// the temporaries u, v, w are limited to 61 bits + signum,
// and d is limited to 63 bits + signum and we are good.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
int64_t d = u - v + w;
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}
// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
// using exact arithmetics. The input polygon must not contain duplicate points
// (or at least the left bottom corner point must not have duplicates).
static inline bool is_ccw(const Polygon &poly)
{
// The polygon shall be at least a triangle.
assert(poly.points.size() >= 3);
if (poly.points.size() < 3)
return true;
// 1) Find the lowest lexicographical point.
unsigned int imin = 0;
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
const Point &pmin = poly.points[imin];
const Point &p = poly.points[i];
if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y))
imin = i;
}
// 2) Detect the orientation of the corner imin.
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
// or overlapping segments.
assert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW;
}
inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
{
double denom = v1.x * v2.y - v2.x * v1.y;
if (std::abs(denom) < EPSILON)
return false;
double t = (v2.x * (p1.y - p2.y) - v2.y * (p1.x - p2.x)) / denom;
res.x = p1.x + t * v1.x;
res.y = p1.y + t * v1.y;
return true;
}
inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
{
double denom = v1.x * v2.y - v2.x * v1.y;
if (std::abs(denom) < EPSILON)
// Lines are collinear.
return false;
double s12_x = p1.x - p2.x;
double s12_y = p1.y - p2.y;
double s_numer = v1.x * s12_y - v1.y * s12_x;
bool denom_is_positive = false;
if (denom < 0.) {
denom_is_positive = true;
denom = - denom;
s_numer = - s_numer;
}
if (s_numer < 0.)
// Intersection outside of the 1st segment.
return false;
double t_numer = v2.x * s12_y - v2.y * s12_x;
if (! denom_is_positive)
t_numer = - t_numer;
if (t_numer < 0. || s_numer > denom || t_numer > denom)
// Intersection outside of the 1st or 2nd segment.
return false;
// Intersection inside both of the segments.
double t = t_numer / denom;
res.x = p1.x + t * v1.x;
res.y = p1.y + t * v1.y;
return true;
}
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);
void chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near);
void chained_path(const Points &points, std::vector<Points::size_type> &retval);
template<class T> void chained_path_items(Points &points, T &items, T &retval);
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
double rad2deg(double angle);
double rad2deg_dir(double angle);
template<typename T> T deg2rad(T angle) { return T(PI) * angle / T(180.0); }
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
bool arrange(
// input
size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
// output
Pointfs &positions);
class MedialAxis {
public:
Lines lines;
const ExPolygon* expolygon;
double max_width;
double min_width;
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
void build(ThickPolylines* polylines);
void build(Polylines* polylines);
private:
class VD : public voronoi_diagram<double> {
public:
typedef double coord_type;
typedef boost::polygon::point_data<coordinate_type> point_type;
typedef boost::polygon::segment_data<coordinate_type> segment_type;
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
};
VD vd;
std::set<const VD::edge_type*> edges, valid_edges;
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
bool validate_edge(const VD::edge_type* edge);
const Line& retrieve_segment(const VD::cell_type* cell) const;
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
};
} }
#endif