PrusaSlicer-NonPlainar/xs/src/polypartition.cpp
2014-04-25 12:40:21 +02:00

1562 lines
43 KiB
C++
Raw Blame History

//Copyright (C) 2011 by Ivan Fratric
//
//Permission is hereby granted, free of charge, to any person obtaining a copy
//of this software and associated documentation files (the "Software"), to deal
//in the Software without restriction, including without limitation the rights
//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//copies of the Software, and to permit persons to whom the Software is
//furnished to do so, subject to the following conditions:
//
//The above copyright notice and this permission notice shall be included in
//all copies or substantial portions of the Software.
//
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
//THE SOFTWARE.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <list>
#include <algorithm>
#include <set>
using namespace std;
#include "polypartition.h"
#define TPPL_VERTEXTYPE_REGULAR 0
#define TPPL_VERTEXTYPE_START 1
#define TPPL_VERTEXTYPE_END 2
#define TPPL_VERTEXTYPE_SPLIT 3
#define TPPL_VERTEXTYPE_MERGE 4
TPPLPoly::TPPLPoly() {
hole = false;
numpoints = 0;
points = NULL;
}
TPPLPoly::~TPPLPoly() {
if(points) delete [] points;
}
void TPPLPoly::Clear() {
if(points) delete [] points;
hole = false;
numpoints = 0;
points = NULL;
}
void TPPLPoly::Init(long numpoints) {
Clear();
this->numpoints = numpoints;
points = new TPPLPoint[numpoints];
}
void TPPLPoly::Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
Init(3);
points[0] = p1;
points[1] = p2;
points[2] = p3;
}
TPPLPoly::TPPLPoly(const TPPLPoly &src) {
hole = src.hole;
numpoints = src.numpoints;
points = new TPPLPoint[numpoints];
memcpy(points, src.points, numpoints*sizeof(TPPLPoint));
}
TPPLPoly& TPPLPoly::operator=(const TPPLPoly &src) {
Clear();
hole = src.hole;
numpoints = src.numpoints;
points = new TPPLPoint[numpoints];
memcpy(points, src.points, numpoints*sizeof(TPPLPoint));
return *this;
}
int TPPLPoly::GetOrientation() {
long i1,i2;
tppl_float area = 0;
for(i1=0; i1<numpoints; i1++) {
i2 = i1+1;
if(i2 == numpoints) i2 = 0;
area += points[i1].x * points[i2].y - points[i1].y * points[i2].x;
}
if(area>0) return TPPL_CCW;
if(area<0) return TPPL_CW;
return 0;
}
void TPPLPoly::SetOrientation(int orientation) {
int polyorientation = GetOrientation();
if(polyorientation&&(polyorientation!=orientation)) {
Invert();
}
}
void TPPLPoly::Invert() {
long i;
TPPLPoint *invpoints;
invpoints = new TPPLPoint[numpoints];
for(i=0;i<numpoints;i++) {
invpoints[i] = points[numpoints-i-1];
}
delete [] points;
points = invpoints;
}
TPPLPoint TPPLPartition::Normalize(const TPPLPoint &p) {
TPPLPoint r;
tppl_float n = sqrt(p.x*p.x + p.y*p.y);
if(n!=0) {
r = p/n;
} else {
r.x = 0;
r.y = 0;
}
return r;
}
tppl_float TPPLPartition::Distance(const TPPLPoint &p1, const TPPLPoint &p2) {
tppl_float dx,dy;
dx = p2.x - p1.x;
dy = p2.y - p1.y;
return(sqrt(dx*dx + dy*dy));
}
//checks if two lines intersect
int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22) {
if((p11.x == p21.x)&&(p11.y == p21.y)) return 0;
if((p11.x == p22.x)&&(p11.y == p22.y)) return 0;
if((p12.x == p21.x)&&(p12.y == p21.y)) return 0;
if((p12.x == p22.x)&&(p12.y == p22.y)) return 0;
TPPLPoint v1ort,v2ort,v;
tppl_float dot11,dot12,dot21,dot22;
v1ort.x = p12.y-p11.y;
v1ort.y = p11.x-p12.x;
v2ort.x = p22.y-p21.y;
v2ort.y = p21.x-p22.x;
v = p21-p11;
dot21 = v.x*v1ort.x + v.y*v1ort.y;
v = p22-p11;
dot22 = v.x*v1ort.x + v.y*v1ort.y;
v = p11-p21;
dot11 = v.x*v2ort.x + v.y*v2ort.y;
v = p12-p21;
dot12 = v.x*v2ort.x + v.y*v2ort.y;
if(dot11*dot12>0) return 0;
if(dot21*dot22>0) return 0;
return 1;
}
//removes holes from inpolys by merging them with non-holes
int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys) {
list<TPPLPoly> polys;
list<TPPLPoly>::iterator holeiter,polyiter,iter,iter2;
long i,i2,holepointindex,polypointindex;
TPPLPoint holepoint,polypoint,bestpolypoint;
TPPLPoint linep1,linep2;
TPPLPoint v1,v2;
TPPLPoly newpoly;
bool hasholes;
bool pointvisible;
bool pointfound;
//check for trivial case (no holes)
hasholes = false;
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
if(iter->IsHole()) {
hasholes = true;
break;
}
}
if(!hasholes) {
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
outpolys->push_back(*iter);
}
return 1;
}
polys = *inpolys;
while(1) {
//find the hole point with the largest x
hasholes = false;
for(iter = polys.begin(); iter!=polys.end(); iter++) {
if(!iter->IsHole()) continue;
if(!hasholes) {
hasholes = true;
holeiter = iter;
holepointindex = 0;
}
for(i=0; i < iter->GetNumPoints(); i++) {
if(iter->GetPoint(i).x > holeiter->GetPoint(holepointindex).x) {
holeiter = iter;
holepointindex = i;
}
}
}
if(!hasholes) break;
holepoint = holeiter->GetPoint(holepointindex);
pointfound = false;
for(iter = polys.begin(); iter!=polys.end(); iter++) {
if(iter->IsHole()) continue;
for(i=0; i < iter->GetNumPoints(); i++) {
if(iter->GetPoint(i).x <= holepoint.x) continue;
if(!InCone(iter->GetPoint((i+iter->GetNumPoints()-1)%(iter->GetNumPoints())),
iter->GetPoint(i),
iter->GetPoint((i+1)%(iter->GetNumPoints())),
holepoint))
continue;
polypoint = iter->GetPoint(i);
if(pointfound) {
v1 = Normalize(polypoint-holepoint);
v2 = Normalize(bestpolypoint-holepoint);
if(v2.x > v1.x) continue;
}
pointvisible = true;
for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) {
if(iter2->IsHole()) continue;
for(i2=0; i2 < iter2->GetNumPoints(); i2++) {
linep1 = iter2->GetPoint(i2);
linep2 = iter2->GetPoint((i2+1)%(iter2->GetNumPoints()));
if(Intersects(holepoint,polypoint,linep1,linep2)) {
pointvisible = false;
break;
}
}
if(!pointvisible) break;
}
if(pointvisible) {
pointfound = true;
bestpolypoint = polypoint;
polyiter = iter;
polypointindex = i;
}
}
}
if(!pointfound) return 0;
newpoly.Init(holeiter->GetNumPoints() + polyiter->GetNumPoints() + 2);
i2 = 0;
for(i=0;i<=polypointindex;i++) {
newpoly[i2] = polyiter->GetPoint(i);
i2++;
}
for(i=0;i<=holeiter->GetNumPoints();i++) {
newpoly[i2] = holeiter->GetPoint((i+holepointindex)%holeiter->GetNumPoints());
i2++;
}
for(i=polypointindex;i<polyiter->GetNumPoints();i++) {
newpoly[i2] = polyiter->GetPoint(i);
i2++;
}
polys.erase(holeiter);
polys.erase(polyiter);
polys.push_back(newpoly);
}
for(iter = polys.begin(); iter!=polys.end(); iter++) {
outpolys->push_back(*iter);
}
return 1;
}
bool TPPLPartition::IsConvex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3) {
tppl_float tmp;
tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
if(tmp>0) return 1;
else return 0;
}
bool TPPLPartition::IsReflex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3) {
tppl_float tmp;
tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
if(tmp<0) return 1;
else return 0;
}
bool TPPLPartition::IsInside(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3, TPPLPoint &p) {
if(IsConvex(p1,p,p2)) return false;
if(IsConvex(p2,p,p3)) return false;
if(IsConvex(p3,p,p1)) return false;
return true;
}
bool TPPLPartition::InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
bool convex;
convex = IsConvex(p1,p2,p3);
if(convex) {
if(!IsConvex(p1,p2,p)) return false;
if(!IsConvex(p2,p3,p)) return false;
return true;
} else {
if(IsConvex(p1,p2,p)) return true;
if(IsConvex(p2,p3,p)) return true;
return false;
}
}
bool TPPLPartition::InCone(PartitionVertex *v, TPPLPoint &p) {
TPPLPoint p1,p2,p3;
p1 = v->previous->p;
p2 = v->p;
p3 = v->next->p;
return InCone(p1,p2,p3,p);
}
void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) {
PartitionVertex *v1,*v3;
v1 = v->previous;
v3 = v->next;
v->isConvex = !IsReflex(v1->p,v->p,v3->p);
}
void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
long i;
PartitionVertex *v1,*v3;
TPPLPoint vec1,vec3;
v1 = v->previous;
v3 = v->next;
v->isConvex = IsConvex(v1->p,v->p,v3->p);
vec1 = Normalize(v1->p - v->p);
vec3 = Normalize(v3->p - v->p);
v->angle = vec1.x*vec3.x + vec1.y*vec3.y;
if(v->isConvex) {
v->isEar = true;
for(i=0;i<numvertices;i++) {
if((vertices[i].p.x==v->p.x)&&(vertices[i].p.y==v->p.y)) continue;
if((vertices[i].p.x==v1->p.x)&&(vertices[i].p.y==v1->p.y)) continue;
if((vertices[i].p.x==v3->p.x)&&(vertices[i].p.y==v3->p.y)) continue;
if(IsInside(v1->p,v->p,v3->p,vertices[i].p)) {
v->isEar = false;
break;
}
}
} else {
v->isEar = false;
}
}
//triangulation by ear removal
int TPPLPartition::Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles) {
long numvertices;
PartitionVertex *vertices;
PartitionVertex *ear;
TPPLPoly triangle;
long i,j;
bool earfound;
if(poly->GetNumPoints() < 3) return 0;
if(poly->GetNumPoints() == 3) {
triangles->push_back(*poly);
return 1;
}
numvertices = poly->GetNumPoints();
vertices = new PartitionVertex[numvertices];
for(i=0;i<numvertices;i++) {
vertices[i].isActive = true;
vertices[i].p = poly->GetPoint(i);
if(i==(numvertices-1)) vertices[i].next=&(vertices[0]);
else vertices[i].next=&(vertices[i+1]);
if(i==0) vertices[i].previous = &(vertices[numvertices-1]);
else vertices[i].previous = &(vertices[i-1]);
}
for(i=0;i<numvertices;i++) {
UpdateVertex(&vertices[i],vertices,numvertices);
}
for(i=0;i<numvertices-3;i++) {
earfound = false;
//find the most extruded ear
for(j=0;j<numvertices;j++) {
if(!vertices[j].isActive) continue;
if(!vertices[j].isEar) continue;
if(!earfound) {
earfound = true;
ear = &(vertices[j]);
} else {
if(vertices[j].angle > ear->angle) {
ear = &(vertices[j]);
}
}
}
if(!earfound) {
delete [] vertices;
return 0;
}
triangle.Triangle(ear->previous->p,ear->p,ear->next->p);
triangles->push_back(triangle);
ear->isActive = false;
ear->previous->next = ear->next;
ear->next->previous = ear->previous;
if(i==numvertices-4) break;
UpdateVertex(ear->previous,vertices,numvertices);
UpdateVertex(ear->next,vertices,numvertices);
}
for(i=0;i<numvertices;i++) {
if(vertices[i].isActive) {
triangle.Triangle(vertices[i].previous->p,vertices[i].p,vertices[i].next->p);
triangles->push_back(triangle);
break;
}
}
delete [] vertices;
return 1;
}
int TPPLPartition::Triangulate_EC(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles) {
list<TPPLPoly> outpolys;
list<TPPLPoly>::iterator iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0;
for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
if(!Triangulate_EC(&(*iter),triangles)) return 0;
}
return 1;
}
int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts) {
list<TPPLPoly> triangles;
list<TPPLPoly>::iterator iter1,iter2;
TPPLPoly *poly1,*poly2;
TPPLPoly newpoly;
TPPLPoint d1,d2,p1,p2,p3;
long i11,i12,i21,i22,i13,i23,j,k;
bool isdiagonal;
long numreflex;
//check if the poly is already convex
numreflex = 0;
for(i11=0;i11<poly->GetNumPoints();i11++) {
if(i11==0) i12 = poly->GetNumPoints()-1;
else i12=i11-1;
if(i11==(poly->GetNumPoints()-1)) i13=0;
else i13=i11+1;
if(IsReflex(poly->GetPoint(i12),poly->GetPoint(i11),poly->GetPoint(i13))) {
numreflex = 1;
break;
}
}
if(numreflex == 0) {
parts->push_back(*poly);
return 1;
}
if(!Triangulate_EC(poly,&triangles)) return 0;
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
poly1 = &(*iter1);
for(i11=0;i11<poly1->GetNumPoints();i11++) {
d1 = poly1->GetPoint(i11);
i12 = (i11+1)%(poly1->GetNumPoints());
d2 = poly1->GetPoint(i12);
isdiagonal = false;
for(iter2 = iter1; iter2 != triangles.end(); iter2++) {
if(iter1 == iter2) continue;
poly2 = &(*iter2);
for(i21=0;i21<poly2->GetNumPoints();i21++) {
if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue;
i22 = (i21+1)%(poly2->GetNumPoints());
if((d1.x != poly2->GetPoint(i22).x)||(d1.y != poly2->GetPoint(i22).y)) continue;
isdiagonal = true;
break;
}
if(isdiagonal) break;
}
if(!isdiagonal) continue;
p2 = poly1->GetPoint(i11);
if(i11 == 0) i13 = poly1->GetNumPoints()-1;
else i13 = i11-1;
p1 = poly1->GetPoint(i13);
if(i22 == (poly2->GetNumPoints()-1)) i23 = 0;
else i23 = i22+1;
p3 = poly2->GetPoint(i23);
if(!IsConvex(p1,p2,p3)) continue;
p2 = poly1->GetPoint(i12);
if(i12 == (poly1->GetNumPoints()-1)) i13 = 0;
else i13 = i12+1;
p3 = poly1->GetPoint(i13);
if(i21 == 0) i23 = poly2->GetNumPoints()-1;
else i23 = i21-1;
p1 = poly2->GetPoint(i23);
if(!IsConvex(p1,p2,p3)) continue;
newpoly.Init(poly1->GetNumPoints()+poly2->GetNumPoints()-2);
k = 0;
for(j=i12;j!=i11;j=(j+1)%(poly1->GetNumPoints())) {
newpoly[k] = poly1->GetPoint(j);
k++;
}
for(j=i22;j!=i21;j=(j+1)%(poly2->GetNumPoints())) {
newpoly[k] = poly2->GetPoint(j);
k++;
}
triangles.erase(iter2);
*iter1 = newpoly;
poly1 = &(*iter1);
i11 = -1;
continue;
}
}
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
parts->push_back(*iter1);
}
return 1;
}
int TPPLPartition::ConvexPartition_HM(list<TPPLPoly> *inpolys, list<TPPLPoly> *parts) {
list<TPPLPoly> outpolys;
list<TPPLPoly>::iterator iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0;
for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
if(!ConvexPartition_HM(&(*iter),parts)) return 0;
}
return 1;
}
//minimum-weight polygon triangulation by dynamic programming
//O(n^3) time complexity
//O(n^2) space complexity
int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles) {
long i,j,k,gap,n;
DPState **dpstates;
TPPLPoint p1,p2,p3,p4;
long bestvertex;
tppl_float weight,minweight,d1,d2;
Diagonal diagonal,newdiagonal;
list<Diagonal> diagonals;
TPPLPoly triangle;
int ret = 1;
n = poly->GetNumPoints();
dpstates = new DPState *[n];
for(i=1;i<n;i++) {
dpstates[i] = new DPState[i];
}
//init states and visibility
for(i=0;i<(n-1);i++) {
p1 = poly->GetPoint(i);
for(j=i+1;j<n;j++) {
dpstates[j][i].visible = true;
dpstates[j][i].weight = 0;
dpstates[j][i].bestvertex = -1;
if(j!=(i+1)) {
p2 = poly->GetPoint(j);
//visibility check
if(i==0) p3 = poly->GetPoint(n-1);
else p3 = poly->GetPoint(i-1);
if(i==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(i+1);
if(!InCone(p3,p1,p4,p2)) {
dpstates[j][i].visible = false;
continue;
}
if(j==0) p3 = poly->GetPoint(n-1);
else p3 = poly->GetPoint(j-1);
if(j==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(j+1);
if(!InCone(p3,p2,p4,p1)) {
dpstates[j][i].visible = false;
continue;
}
for(k=0;k<n;k++) {
p3 = poly->GetPoint(k);
if(k==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(k+1);
if(Intersects(p1,p2,p3,p4)) {
dpstates[j][i].visible = false;
break;
}
}
}
}
}
dpstates[n-1][0].visible = true;
dpstates[n-1][0].weight = 0;
dpstates[n-1][0].bestvertex = -1;
for(gap = 2; gap<n; gap++) {
for(i=0; i<(n-gap); i++) {
j = i+gap;
if(!dpstates[j][i].visible) continue;
bestvertex = -1;
for(k=(i+1);k<j;k++) {
if(!dpstates[k][i].visible) continue;
if(!dpstates[j][k].visible) continue;
if(k<=(i+1)) d1=0;
else d1 = Distance(poly->GetPoint(i),poly->GetPoint(k));
if(j<=(k+1)) d2=0;
else d2 = Distance(poly->GetPoint(k),poly->GetPoint(j));
weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
if((bestvertex == -1)||(weight<minweight)) {
bestvertex = k;
minweight = weight;
}
}
if(bestvertex == -1) {
for(i=1;i<n;i++) {
delete [] dpstates[i];
}
delete [] dpstates;
return 0;
}
dpstates[j][i].bestvertex = bestvertex;
dpstates[j][i].weight = minweight;
}
}
newdiagonal.index1 = 0;
newdiagonal.index2 = n-1;
diagonals.push_back(newdiagonal);
while(!diagonals.empty()) {
diagonal = *(diagonals.begin());
diagonals.pop_front();
bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
if(bestvertex == -1) {
ret = 0;
break;
}
triangle.Triangle(poly->GetPoint(diagonal.index1),poly->GetPoint(bestvertex),poly->GetPoint(diagonal.index2));
triangles->push_back(triangle);
if(bestvertex > (diagonal.index1+1)) {
newdiagonal.index1 = diagonal.index1;
newdiagonal.index2 = bestvertex;
diagonals.push_back(newdiagonal);
}
if(diagonal.index2 > (bestvertex+1)) {
newdiagonal.index1 = bestvertex;
newdiagonal.index2 = diagonal.index2;
diagonals.push_back(newdiagonal);
}
}
for(i=1;i<n;i++) {
delete [] dpstates[i];
}
delete [] dpstates;
return ret;
}
void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
Diagonal newdiagonal;
list<Diagonal> *pairs;
long w2;
w2 = dpstates[a][b].weight;
if(w>w2) return;
pairs = &(dpstates[a][b].pairs);
newdiagonal.index1 = i;
newdiagonal.index2 = j;
if(w<w2) {
pairs->clear();
pairs->push_front(newdiagonal);
dpstates[a][b].weight = w;
} else {
if((!pairs->empty())&&(i <= pairs->begin()->index1)) return;
while((!pairs->empty())&&(pairs->begin()->index2 >= j)) pairs->pop_front();
pairs->push_front(newdiagonal);
}
}
void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
list<Diagonal> *pairs;
list<Diagonal>::iterator iter,lastiter;
long top;
long w;
if(!dpstates[i][j].visible) return;
top = j;
w = dpstates[i][j].weight;
if(k-j > 1) {
if (!dpstates[j][k].visible) return;
w += dpstates[j][k].weight + 1;
}
if(j-i > 1) {
pairs = &(dpstates[i][j].pairs);
iter = pairs->end();
lastiter = pairs->end();
while(iter!=pairs->begin()) {
iter--;
if(!IsReflex(vertices[iter->index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
else break;
}
if(lastiter == pairs->end()) w++;
else {
if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->index1].p)) w++;
else top = lastiter->index1;
}
}
UpdateState(i,k,w,top,j,dpstates);
}
void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
list<Diagonal> *pairs;
list<Diagonal>::iterator iter,lastiter;
long top;
long w;
if(!dpstates[j][k].visible) return;
top = j;
w = dpstates[j][k].weight;
if (j-i > 1) {
if (!dpstates[i][j].visible) return;
w += dpstates[i][j].weight + 1;
}
if (k-j > 1) {
pairs = &(dpstates[j][k].pairs);
iter = pairs->begin();
if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p))) {
lastiter = iter;
while(iter!=pairs->end()) {
if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p)) {
lastiter = iter;
iter++;
}
else break;
}
if(IsReflex(vertices[lastiter->index2].p,vertices[k].p,vertices[i].p)) w++;
else top = lastiter->index2;
} else w++;
}
UpdateState(i,k,w,j,top,dpstates);
}
int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
TPPLPoint p1,p2,p3,p4;
PartitionVertex *vertices;
DPState2 **dpstates;
long i,j,k,n,gap;
list<Diagonal> diagonals,diagonals2;
Diagonal diagonal,newdiagonal;
list<Diagonal> *pairs,*pairs2;
list<Diagonal>::iterator iter,iter2;
int ret;
TPPLPoly newpoly;
list<long> indices;
list<long>::iterator iiter;
bool ijreal,jkreal;
n = poly->GetNumPoints();
vertices = new PartitionVertex[n];
dpstates = new DPState2 *[n];
for(i=0;i<n;i++) {
dpstates[i] = new DPState2[n];
}
//init vertex information
for(i=0;i<n;i++) {
vertices[i].p = poly->GetPoint(i);
vertices[i].isActive = true;
if(i==0) vertices[i].previous = &(vertices[n-1]);
else vertices[i].previous = &(vertices[i-1]);
if(i==(poly->GetNumPoints()-1)) vertices[i].next = &(vertices[0]);
else vertices[i].next = &(vertices[i+1]);
}
for(i=1;i<n;i++) {
UpdateVertexReflexity(&(vertices[i]));
}
//init states and visibility
for(i=0;i<(n-1);i++) {
p1 = poly->GetPoint(i);
for(j=i+1;j<n;j++) {
dpstates[i][j].visible = true;
if(j==i+1) {
dpstates[i][j].weight = 0;
} else {
dpstates[i][j].weight = 2147483647;
}
if(j!=(i+1)) {
p2 = poly->GetPoint(j);
//visibility check
if(!InCone(&vertices[i],p2)) {
dpstates[i][j].visible = false;
continue;
}
if(!InCone(&vertices[j],p1)) {
dpstates[i][j].visible = false;
continue;
}
for(k=0;k<n;k++) {
p3 = poly->GetPoint(k);
if(k==(n-1)) p4 = poly->GetPoint(0);
else p4 = poly->GetPoint(k+1);
if(Intersects(p1,p2,p3,p4)) {
dpstates[i][j].visible = false;
break;
}
}
}
}
}
for(i=0;i<(n-2);i++) {
j = i+2;
if(dpstates[i][j].visible) {
dpstates[i][j].weight = 0;
newdiagonal.index1 = i+1;
newdiagonal.index2 = i+1;
dpstates[i][j].pairs.push_back(newdiagonal);
}
}
dpstates[0][n-1].visible = true;
vertices[0].isConvex = false; //by convention
for(gap=3; gap<n; gap++) {
for(i=0;i<n-gap;i++) {
if(vertices[i].isConvex) continue;
k = i+gap;
if(dpstates[i][k].visible) {
if(!vertices[k].isConvex) {
for(j=i+1;j<k;j++) TypeA(i,j,k,vertices,dpstates);
} else {
for(j=i+1;j<(k-1);j++) {
if(vertices[j].isConvex) continue;
TypeA(i,j,k,vertices,dpstates);
}
TypeA(i,k-1,k,vertices,dpstates);
}
}
}
for(k=gap;k<n;k++) {
if(vertices[k].isConvex) continue;
i = k-gap;
if((vertices[i].isConvex)&&(dpstates[i][k].visible)) {
TypeB(i,i+1,k,vertices,dpstates);
for(j=i+2;j<k;j++) {
if(vertices[j].isConvex) continue;
TypeB(i,j,k,vertices,dpstates);
}
}
}
}
//recover solution
ret = 1;
newdiagonal.index1 = 0;
newdiagonal.index2 = n-1;
diagonals.push_front(newdiagonal);
while(!diagonals.empty()) {
diagonal = *(diagonals.begin());
diagonals.pop_front();
if((diagonal.index2 - diagonal.index1) <=1) continue;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
if(pairs->empty()) {
ret = 0;
break;
}
if(!vertices[diagonal.index1].isConvex) {
iter = pairs->end();
iter--;
j = iter->index2;
newdiagonal.index1 = j;
newdiagonal.index2 = diagonal.index2;
diagonals.push_front(newdiagonal);
if((j - diagonal.index1)>1) {
if(iter->index1 != iter->index2) {
pairs2 = &(dpstates[diagonal.index1][j].pairs);
while(1) {
if(pairs2->empty()) {
ret = 0;
break;
}
iter2 = pairs2->end();
iter2--;
if(iter->index1 != iter2->index1) pairs2->pop_back();
else break;
}
if(ret == 0) break;
}
newdiagonal.index1 = diagonal.index1;
newdiagonal.index2 = j;
diagonals.push_front(newdiagonal);
}
} else {
iter = pairs->begin();
j = iter->index1;
newdiagonal.index1 = diagonal.index1;
newdiagonal.index2 = j;
diagonals.push_front(newdiagonal);
if((diagonal.index2 - j) > 1) {
if(iter->index1 != iter->index2) {
pairs2 = &(dpstates[j][diagonal.index2].pairs);
while(1) {
if(pairs2->empty()) {
ret = 0;
break;
}
iter2 = pairs2->begin();
if(iter->index2 != iter2->index2) pairs2->pop_front();
else break;
}
if(ret == 0) break;
}
newdiagonal.index1 = j;
newdiagonal.index2 = diagonal.index2;
diagonals.push_front(newdiagonal);
}
}
}
if(ret == 0) {
for(i=0;i<n;i++) {
delete [] dpstates[i];
}
delete [] dpstates;
delete [] vertices;
return ret;
}
newdiagonal.index1 = 0;
newdiagonal.index2 = n-1;
diagonals.push_front(newdiagonal);
while(!diagonals.empty()) {
diagonal = *(diagonals.begin());
diagonals.pop_front();
if((diagonal.index2 - diagonal.index1) <= 1) continue;
indices.clear();
diagonals2.clear();
indices.push_back(diagonal.index1);
indices.push_back(diagonal.index2);
diagonals2.push_front(diagonal);
while(!diagonals2.empty()) {
diagonal = *(diagonals2.begin());
diagonals2.pop_front();
if((diagonal.index2 - diagonal.index1) <= 1) continue;
ijreal = true;
jkreal = true;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
if(!vertices[diagonal.index1].isConvex) {
iter = pairs->end();
iter--;
j = iter->index2;
if(iter->index1 != iter->index2) ijreal = false;
} else {
iter = pairs->begin();
j = iter->index1;
if(iter->index1 != iter->index2) jkreal = false;
}
newdiagonal.index1 = diagonal.index1;
newdiagonal.index2 = j;
if(ijreal) {
diagonals.push_back(newdiagonal);
} else {
diagonals2.push_back(newdiagonal);
}
newdiagonal.index1 = j;
newdiagonal.index2 = diagonal.index2;
if(jkreal) {
diagonals.push_back(newdiagonal);
} else {
diagonals2.push_back(newdiagonal);
}
indices.push_back(j);
}
indices.sort();
newpoly.Init((long)indices.size());
k=0;
for(iiter = indices.begin();iiter!=indices.end();iiter++) {
newpoly[k] = vertices[*iiter].p;
k++;
}
parts->push_back(newpoly);
}
for(i=0;i<n;i++) {
delete [] dpstates[i];
}
delete [] dpstates;
delete [] vertices;
return ret;
}
//triangulates a set of polygons by first partitioning them into monotone polygons
//O(n*log(n)) time complexity, O(n) space complexity
//the algorithm used here is outlined in the book
//"Computational Geometry: Algorithms and Applications"
//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *monotonePolys) {
list<TPPLPoly>::iterator iter;
MonotoneVertex *vertices;
long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
long polystartindex, polyendindex;
TPPLPoly *poly;
MonotoneVertex *v,*v2,*vprev,*vnext;
ScanLineEdge newedge;
bool error = false;
numvertices = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
numvertices += iter->GetNumPoints();
}
maxnumvertices = numvertices*3;
vertices = new MonotoneVertex[maxnumvertices];
newnumvertices = numvertices;
polystartindex = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
poly = &(*iter);
polyendindex = polystartindex + poly->GetNumPoints()-1;
for(i=0;i<poly->GetNumPoints();i++) {
vertices[i+polystartindex].p = poly->GetPoint(i);
if(i==0) vertices[i+polystartindex].previous = polyendindex;
else vertices[i+polystartindex].previous = i+polystartindex-1;
if(i==(poly->GetNumPoints()-1)) vertices[i+polystartindex].next = polystartindex;
else vertices[i+polystartindex].next = i+polystartindex+1;
}
polystartindex = polyendindex+1;
}
//construct the priority queue
long *priority = new long [numvertices];
for(i=0;i<numvertices;i++) priority[i] = i;
std::sort(priority,&(priority[numvertices]),VertexSorter(vertices));
//determine vertex types
char *vertextypes = new char[maxnumvertices];
for(i=0;i<numvertices;i++) {
v = &(vertices[i]);
vprev = &(vertices[v->previous]);
vnext = &(vertices[v->next]);
if(Below(vprev->p,v->p)&&Below(vnext->p,v->p)) {
if(IsConvex(vnext->p,vprev->p,v->p)) {
vertextypes[i] = TPPL_VERTEXTYPE_START;
} else {
vertextypes[i] = TPPL_VERTEXTYPE_SPLIT;
}
} else if(Below(v->p,vprev->p)&&Below(v->p,vnext->p)) {
if(IsConvex(vnext->p,vprev->p,v->p))
{
vertextypes[i] = TPPL_VERTEXTYPE_END;
} else {
vertextypes[i] = TPPL_VERTEXTYPE_MERGE;
}
} else {
vertextypes[i] = TPPL_VERTEXTYPE_REGULAR;
}
}
//helpers
long *helpers = new long[maxnumvertices];
//binary search tree that holds edges intersecting the scanline
//note that while set doesn't actually have to be implemented as a tree
//complexity requirements for operations are the same as for the balanced binary search tree
set<ScanLineEdge> edgeTree;
//store iterators to the edge tree elements
//this makes deleting existing edges much faster
set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter;
edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices];
pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet;
//for each vertex
for(i=0;i<numvertices;i++) {
vindex = priority[i];
v = &(vertices[vindex]);
vindex2 = vindex;
v2 = v;
//depending on the vertex type, do the appropriate action
//comments in the following sections are copied from "Computational Geometry: Algorithms and Applications"
switch(vertextypes[vindex]) {
case TPPL_VERTEXTYPE_START:
//Insert ei in T and set helper(ei) to vi.
newedge.p1 = v->p;
newedge.p2 = vertices[v->next].p;
newedge.index = vindex;
edgeTreeRet = edgeTree.insert(newedge);
edgeTreeIterators[vindex] = edgeTreeRet.first;
helpers[vindex] = vindex;
break;
case TPPL_VERTEXTYPE_END:
//if helper(ei-1) is a merge vertex
if(vertextypes[helpers[v->previous]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(ei-1) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[v->previous]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[v->previous]];
helpers[newnumvertices-1] = helpers[helpers[v->previous]];
}
//Delete ei-1 from T
edgeTree.erase(edgeTreeIterators[v->previous]);
break;
case TPPL_VERTEXTYPE_SPLIT:
//Search in T to find the edge e j directly left of vi.
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
if(edgeIter == edgeTree.begin()) {
error = true;
break;
}
edgeIter--;
//Insert the diagonal connecting vi to helper(ej) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[edgeIter->index]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[edgeIter->index]];
helpers[newnumvertices-1] = helpers[helpers[edgeIter->index]];
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
//helper(e j)<29>vi
helpers[edgeIter->index] = vindex;
//Insert ei in T and set helper(ei) to vi.
newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2;
edgeTreeRet = edgeTree.insert(newedge);
edgeTreeIterators[vindex2] = edgeTreeRet.first;
helpers[vindex2] = vindex2;
break;
case TPPL_VERTEXTYPE_MERGE:
//if helper(ei-1) is a merge vertex
if(vertextypes[helpers[v->previous]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(ei-1) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[v->previous]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[v->previous]];
helpers[newnumvertices-1] = helpers[helpers[v->previous]];
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
}
//Delete ei-1 from T.
edgeTree.erase(edgeTreeIterators[v->previous]);
//Search in T to find the edge e j directly left of vi.
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
if(edgeIter == edgeTree.begin()) {
error = true;
break;
}
edgeIter--;
//if helper(ej) is a merge vertex
if(vertextypes[helpers[edgeIter->index]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D.
AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index]);
vertextypes[newnumvertices-2] = vertextypes[vindex2];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex2];
helpers[newnumvertices-2] = helpers[vindex2];
vertextypes[newnumvertices-1] = vertextypes[helpers[edgeIter->index]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[edgeIter->index]];
helpers[newnumvertices-1] = helpers[helpers[edgeIter->index]];
}
//helper(e j)<29>vi
helpers[edgeIter->index] = vindex2;
break;
case TPPL_VERTEXTYPE_REGULAR:
//if the interior of P lies to the right of vi
if(Below(v->p,vertices[v->previous].p)) {
//if helper(ei-1) is a merge vertex
if(vertextypes[helpers[v->previous]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(ei-1) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[v->previous]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[v->previous]];
helpers[newnumvertices-1] = helpers[helpers[v->previous]];
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
}
//Delete ei-1 from T.
edgeTree.erase(edgeTreeIterators[v->previous]);
//Insert ei in T and set helper(ei) to vi.
newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2;
edgeTreeRet = edgeTree.insert(newedge);
edgeTreeIterators[vindex2] = edgeTreeRet.first;
helpers[vindex2] = vindex;
} else {
//Search in T to find the edge ej directly left of vi.
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
if(edgeIter == edgeTree.begin()) {
error = true;
break;
}
edgeIter--;
//if helper(ej) is a merge vertex
if(vertextypes[helpers[edgeIter->index]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[edgeIter->index]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[edgeIter->index]];
helpers[newnumvertices-1] = helpers[helpers[edgeIter->index]];
}
//helper(e j)<29>vi
helpers[edgeIter->index] = vindex;
}
break;
}
if(error) break;
}
char *used = new char[newnumvertices];
memset(used,0,newnumvertices*sizeof(char));
if(!error) {
//return result
long size;
TPPLPoly mpoly;
for(i=0;i<newnumvertices;i++) {
if(used[i]) continue;
v = &(vertices[i]);
vnext = &(vertices[v->next]);
size = 1;
while(vnext!=v) {
vnext = &(vertices[vnext->next]);
size++;
}
mpoly.Init(size);
v = &(vertices[i]);
mpoly[0] = v->p;
vnext = &(vertices[v->next]);
size = 1;
used[i] = 1;
used[v->next] = 1;
while(vnext!=v) {
mpoly[size] = vnext->p;
used[vnext->next] = 1;
vnext = &(vertices[vnext->next]);
size++;
}
monotonePolys->push_back(mpoly);
}
}
//cleanup
delete [] vertices;
delete [] priority;
delete [] vertextypes;
delete [] edgeTreeIterators;
delete [] helpers;
delete [] used;
if(error) {
return 0;
} else {
return 1;
}
}
//adds a diagonal to the doubly-connected list of vertices
void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2) {
long newindex1,newindex2;
newindex1 = *numvertices;
(*numvertices)++;
newindex2 = *numvertices;
(*numvertices)++;
vertices[newindex1].p = vertices[index1].p;
vertices[newindex2].p = vertices[index2].p;
vertices[newindex2].next = vertices[index2].next;
vertices[newindex1].next = vertices[index1].next;
vertices[vertices[index2].next].previous = newindex2;
vertices[vertices[index1].next].previous = newindex1;
vertices[index1].next = newindex2;
vertices[newindex2].previous = index1;
vertices[index2].next = newindex1;
vertices[newindex1].previous = index2;
}
bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) {
if(p1.y < p2.y) return true;
else if(p1.y == p2.y) {
if(p1.x < p2.x) return true;
}
return false;
}
//sorts in the falling order of y values, if y is equal, x is used instead
bool TPPLPartition::VertexSorter::operator() (long index1, long index2) {
if(vertices[index1].p.y > vertices[index2].p.y) return true;
else if(vertices[index1].p.y == vertices[index2].p.y) {
if(vertices[index1].p.x > vertices[index2].p.x) return true;
}
return false;
}
bool TPPLPartition::ScanLineEdge::IsConvex(const TPPLPoint& p1, const TPPLPoint& p2, const TPPLPoint& p3) const {
tppl_float tmp;
tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
if(tmp>0) return 1;
else return 0;
}
bool TPPLPartition::ScanLineEdge::operator < (const ScanLineEdge & other) const {
if(other.p1.y == other.p2.y) {
if(p1.y == p2.y) {
if(p1.y < other.p1.y) return true;
else return false;
}
if(IsConvex(p1,p2,other.p1)) return true;
else return false;
} else if(p1.y == p2.y) {
if(IsConvex(other.p1,other.p2,p1)) return false;
else return true;
} else if(p1.y < other.p1.y) {
if(IsConvex(other.p1,other.p2,p1)) return false;
else return true;
} else {
if(IsConvex(p1,p2,other.p1)) return true;
else return false;
}
}
//triangulates monotone polygon
//O(n) time, O(n) space complexity
int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangles) {
long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
TPPLPoint *points;
long numpoints;
TPPLPoly triangle;
numpoints = inPoly->GetNumPoints();
points = inPoly->GetPoints();
//trivial calses
if(numpoints < 3) return 0;
if(numpoints == 3) {
triangles->push_back(*inPoly);
}
topindex = 0; bottomindex=0;
for(i=1;i<numpoints;i++) {
if(Below(points[i],points[bottomindex])) bottomindex = i;
if(Below(points[topindex],points[i])) topindex = i;
}
//check if the poly is really monotone
i = topindex;
while(i!=bottomindex) {
i2 = i+1; if(i2>=numpoints) i2 = 0;
if(!Below(points[i2],points[i])) return 0;
i = i2;
}
i = bottomindex;
while(i!=topindex) {
i2 = i+1; if(i2>=numpoints) i2 = 0;
if(!Below(points[i],points[i2])) return 0;
i = i2;
}
char *vertextypes = new char[numpoints];
long *priority = new long[numpoints];
//merge left and right vertex chains
priority[0] = topindex;
vertextypes[topindex] = 0;
leftindex = topindex+1; if(leftindex>=numpoints) leftindex = 0;
rightindex = topindex-1; if(rightindex<0) rightindex = numpoints-1;
for(i=1;i<(numpoints-1);i++) {
if(leftindex==bottomindex) {
priority[i] = rightindex;
rightindex--; if(rightindex<0) rightindex = numpoints-1;
vertextypes[priority[i]] = -1;
} else if(rightindex==bottomindex) {
priority[i] = leftindex;
leftindex++; if(leftindex>=numpoints) leftindex = 0;
vertextypes[priority[i]] = 1;
} else {
if(Below(points[leftindex],points[rightindex])) {
priority[i] = rightindex;
rightindex--; if(rightindex<0) rightindex = numpoints-1;
vertextypes[priority[i]] = -1;
} else {
priority[i] = leftindex;
leftindex++; if(leftindex>=numpoints) leftindex = 0;
vertextypes[priority[i]] = 1;
}
}
}
priority[i] = bottomindex;
vertextypes[bottomindex] = 0;
long *stack = new long[numpoints];
long stackptr = 0;
stack[0] = priority[0];
stack[1] = priority[1];
stackptr = 2;
//for each vertex from top to bottom trim as many triangles as possible
for(i=2;i<(numpoints-1);i++) {
vindex = priority[i];
if(vertextypes[vindex]!=vertextypes[stack[stackptr-1]]) {
for(j=0;j<(stackptr-1);j++) {
if(vertextypes[vindex]==1) {
triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
} else {
triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
}
triangles->push_back(triangle);
}
stack[0] = priority[i-1];
stack[1] = priority[i];
stackptr = 2;
} else {
stackptr--;
while(stackptr>0) {
if(vertextypes[vindex]==1) {
if(IsConvex(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]])) {
triangle.Triangle(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]]);
triangles->push_back(triangle);
stackptr--;
} else {
break;
}
} else {
if(IsConvex(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]])) {
triangle.Triangle(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]]);
triangles->push_back(triangle);
stackptr--;
} else {
break;
}
}
}
stackptr++;
stack[stackptr] = vindex;
stackptr++;
}
}
vindex = priority[i];
for(j=0;j<(stackptr-1);j++) {
if(vertextypes[stack[j+1]]==1) {
triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
} else {
triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
}
triangles->push_back(triangle);
}
delete [] priority;
delete [] vertextypes;
delete [] stack;
return 1;
}
int TPPLPartition::Triangulate_MONO(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles) {
list<TPPLPoly> monotone;
list<TPPLPoly>::iterator iter;
if(!MonotonePartition(inpolys,&monotone)) return 0;
for(iter = monotone.begin(); iter!=monotone.end();iter++) {
if(!TriangulateMonotone(&(*iter),triangles)) return 0;
}
return 1;
}
int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, list<TPPLPoly> *triangles) {
list<TPPLPoly> polys;
polys.push_back(*poly);
return Triangulate_MONO(&polys, triangles);
}