PrusaSlicer-NonPlainar/src/libslic3r/Layer.cpp
Vojtech Bubnik e6d10fc747 Fixed crash on reslicing after infill invalidation.
The crash was introduced with sorting the extrusions into islands.
2022-11-28 10:07:22 +01:00

825 lines
42 KiB
C++

#include "Layer.hpp"
#include <clipper/clipper_z.hpp>
#include "ClipperUtils.hpp"
#include "Print.hpp"
#include "Fill/Fill.hpp"
#include "ShortestPath.hpp"
#include "SVG.hpp"
#include "BoundingBox.hpp"
#include <boost/log/trivial.hpp>
namespace Slic3r {
Layer::~Layer()
{
this->lower_layer = this->upper_layer = nullptr;
for (LayerRegion *region : m_regions)
delete region;
m_regions.clear();
}
// Test whether whether there are any slices assigned to this layer.
bool Layer::empty() const
{
for (const LayerRegion *layerm : m_regions)
if (layerm != nullptr && ! layerm->slices().empty())
// Non empty layer.
return false;
return true;
}
LayerRegion* Layer::add_region(const PrintRegion *print_region)
{
m_regions.emplace_back(new LayerRegion(this, print_region));
return m_regions.back();
}
// merge all regions' slices to get islands
void Layer::make_slices()
{
ExPolygons slices;
if (m_regions.size() == 1) {
// optimization: if we only have one region, take its slices
slices = to_expolygons(m_regions.front()->slices().surfaces);
} else {
Polygons slices_p;
for (LayerRegion *layerm : m_regions)
polygons_append(slices_p, to_polygons(layerm->slices().surfaces));
slices = union_safety_offset_ex(slices_p);
}
this->lslices.clear();
this->lslices.reserve(slices.size());
// prepare ordering points
Points ordering_points;
ordering_points.reserve(slices.size());
for (const ExPolygon &ex : slices)
ordering_points.push_back(ex.contour.first_point());
// sort slices
std::vector<Points::size_type> order = chain_points(ordering_points);
// populate slices vector
for (size_t i : order)
this->lslices.emplace_back(std::move(slices[i]));
}
// used by Layer::build_up_down_graph()
[[nodiscard]] static ClipperLib_Z::Paths expolygons_to_zpaths(const ExPolygons &expolygons, coord_t isrc)
{
size_t num_paths = 0;
for (const ExPolygon &expolygon : expolygons)
num_paths += expolygon.num_contours();
ClipperLib_Z::Paths out;
out.reserve(num_paths);
for (const ExPolygon &expolygon : expolygons) {
for (size_t icontour = 0; icontour < expolygon.num_contours(); ++ icontour) {
const Polygon &contour = expolygon.contour_or_hole(icontour);
out.emplace_back();
ClipperLib_Z::Path &path = out.back();
path.reserve(contour.size());
for (const Point &p : contour.points)
path.push_back({ p.x(), p.y(), isrc });
}
++ isrc;
}
return out;
}
// used by Layer::build_up_down_graph()
static void connect_layer_slices(
Layer &below,
Layer &above,
const ClipperLib_Z::PolyTree &polytree,
const std::vector<std::pair<coord_t, coord_t>> &intersections,
const coord_t offset_below,
const coord_t offset_above
#ifndef NDEBUG
, const coord_t offset_end
#endif // NDEBUG
)
{
class Visitor {
public:
Visitor(const std::vector<std::pair<coord_t, coord_t>> &intersections,
Layer &below, Layer &above, const coord_t offset_below, const coord_t offset_above
#ifndef NDEBUG
, const coord_t offset_end
#endif // NDEBUG
) :
m_intersections(intersections), m_below(below), m_above(above), m_offset_below(offset_below), m_offset_above(offset_above)
#ifndef NDEBUG
, m_offset_end(offset_end)
#endif // NDEBUG
{}
void visit(const ClipperLib_Z::PolyNode &polynode)
{
#ifndef NDEBUG
auto assert_intersection_valid = [this](int i, int j) {
assert(i != j);
if (i > j)
std::swap(i, j);
assert(i >= m_offset_below);
assert(i < m_offset_above);
assert(j >= m_offset_above);
assert(j < m_offset_end);
return true;
};
#endif // NDEBUG
if (polynode.Contour.size() >= 3) {
// If there is an intersection point, it should indicate which contours (one from layer below, the other from layer above) intersect.
// Otherwise the contour is fully inside another contour.
int32_t i = 0, j = 0;
for (int icontour = 0; icontour <= polynode.ChildCount(); ++ icontour) {
const bool first = icontour == 0;
const ClipperLib_Z::Path &contour = first ? polynode.Contour : polynode.Childs[icontour - 1]->Contour;
if (contour.size() >= 3) {
if (first) {
i = contour.front().z();
j = i;
if (i < 0) {
std::tie(i, j) = m_intersections[-i - 1];
assert(assert_intersection_valid(i, j));
goto end;
}
}
for (const ClipperLib_Z::IntPoint& pt : contour) {
j = pt.z();
if (j < 0) {
std::tie(i, j) = m_intersections[-j - 1];
assert(assert_intersection_valid(i, j));
goto end;
}
else if (i != j)
goto end;
}
}
}
end:
bool found = false;
if (i == j) {
// The contour is completely inside another contour.
Point pt(polynode.Contour.front().x(), polynode.Contour.front().y());
if (i < m_offset_above) {
// Index of an island below. Look-it up in the island above.
assert(i >= m_offset_below);
i -= m_offset_below;
for (int l = int(m_above.lslices_ex.size()) - 1; l >= 0; -- l) {
LayerSlice &lslice = m_above.lslices_ex[l];
if (lslice.bbox.contains(pt) && m_above.lslices[l].contains(pt)) {
found = true;
j = l;
assert(i >= 0 && i < m_below.lslices_ex.size());
assert(j >= 0 && j < m_above.lslices_ex.size());
break;
}
}
} else {
// Index of an island above. Look-it up in the island below.
assert(j < m_offset_end);
j -= m_offset_above;
for (int l = int(m_below.lslices_ex.size()) - 1; l >= 0; -- l) {
LayerSlice &lslice = m_below.lslices_ex[l];
if (lslice.bbox.contains(pt) && m_below.lslices[l].contains(pt)) {
found = true;
i = l;
assert(i >= 0 && i < m_below.lslices_ex.size());
assert(j >= 0 && j < m_above.lslices_ex.size());
break;
}
}
}
} else {
assert(assert_intersection_valid(i, j));
if (i > j)
std::swap(i, j);
i -= m_offset_below;
j -= m_offset_above;
assert(i >= 0 && i < m_below.lslices_ex.size());
assert(j >= 0 && j < m_above.lslices_ex.size());
found = true;
}
if (found) {
// Subtract area of holes from the area of outer contour.
double area = ClipperLib_Z::Area(polynode.Contour);
for (int icontour = 0; icontour < polynode.ChildCount(); ++ icontour)
area -= ClipperLib_Z::Area(polynode.Childs[icontour]->Contour);
// Store the links and area into the contours.
LayerSlice::Links &links_below = m_below.lslices_ex[i].overlaps_above;
LayerSlice::Links &links_above = m_above.lslices_ex[j].overlaps_below;
LayerSlice::Link key{ j };
auto it_below = std::lower_bound(links_below.begin(), links_below.end(), key, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; });
if (it_below != links_below.end() && it_below->slice_idx == j) {
it_below->area += area;
} else {
auto it_above = std::lower_bound(links_above.begin(), links_above.end(), key, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; });
if (it_above != links_above.end() && it_above->slice_idx == i) {
it_above->area += area;
} else {
// Insert into one of the two vectors.
bool take_below = false;
if (links_below.size() < LayerSlice::LinksStaticSize)
take_below = false;
else if (links_above.size() >= LayerSlice::LinksStaticSize) {
size_t shift_below = links_below.end() - it_below;
size_t shift_above = links_above.end() - it_above;
take_below = shift_below < shift_above;
}
if (take_below)
links_below.insert(it_below, { j, float(area) });
else
links_above.insert(it_above, { i, float(area) });
}
}
}
}
for (int i = 0; i < polynode.ChildCount(); ++ i)
for (int j = 0; j < polynode.Childs[i]->ChildCount(); ++ j)
this->visit(*polynode.Childs[i]->Childs[j]);
}
private:
const std::vector<std::pair<coord_t, coord_t>> &m_intersections;
Layer &m_below;
Layer &m_above;
const coord_t m_offset_below;
const coord_t m_offset_above;
#ifndef NDEBUG
const coord_t m_offset_end;
#endif // NDEBUG
} visitor(intersections, below, above, offset_below, offset_above
#ifndef NDEBUG
, offset_end
#endif // NDEBUG
);
for (int i = 0; i < polytree.ChildCount(); ++ i)
visitor.visit(*polytree.Childs[i]);
#ifndef NDEBUG
// Verify that only one directional link is stored: either from bottom slice up or from upper slice down.
for (int32_t islice = 0; islice < below.lslices_ex.size(); ++ islice) {
LayerSlice::Links &links1 = below.lslices_ex[islice].overlaps_above;
for (LayerSlice::Link &link1 : links1) {
LayerSlice::Links &links2 = above.lslices_ex[link1.slice_idx].overlaps_below;
assert(! std::binary_search(links2.begin(), links2.end(), link1, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; }));
}
}
for (int32_t islice = 0; islice < above.lslices_ex.size(); ++ islice) {
LayerSlice::Links &links1 = above.lslices_ex[islice].overlaps_below;
for (LayerSlice::Link &link1 : links1) {
LayerSlice::Links &links2 = below.lslices_ex[link1.slice_idx].overlaps_above;
assert(! std::binary_search(links2.begin(), links2.end(), link1, [](auto &l, auto &r){ return l.slice_idx < r.slice_idx; }));
}
}
#endif // NDEBUG
// Scatter the links, but don't sort them yet.
for (int32_t islice = 0; islice < below.lslices_ex.size(); ++ islice)
for (LayerSlice::Link &link : below.lslices_ex[islice].overlaps_above)
above.lslices_ex[link.slice_idx].overlaps_below.push_back({ islice, link.area });
for (int32_t islice = 0; islice < above.lslices_ex.size(); ++ islice)
for (LayerSlice::Link &link : above.lslices_ex[islice].overlaps_below)
below.lslices_ex[link.slice_idx].overlaps_above.push_back({ islice, link.area });
// Sort the links.
for (LayerSlice &lslice : below.lslices_ex)
std::sort(lslice.overlaps_above.begin(), lslice.overlaps_above.end(), [](const LayerSlice::Link &l, const LayerSlice::Link &r){ return l.slice_idx < r.slice_idx; });
for (LayerSlice &lslice : above.lslices_ex)
std::sort(lslice.overlaps_below.begin(), lslice.overlaps_below.end(), [](const LayerSlice::Link &l, const LayerSlice::Link &r){ return l.slice_idx < r.slice_idx; });
}
void Layer::build_up_down_graph(Layer& below, Layer& above)
{
coord_t paths_below_offset = 0;
ClipperLib_Z::Paths paths_below = expolygons_to_zpaths(below.lslices, paths_below_offset);
coord_t paths_above_offset = paths_below_offset + coord_t(below.lslices.size());
ClipperLib_Z::Paths paths_above = expolygons_to_zpaths(above.lslices, paths_above_offset);
#ifndef NDEBUG
coord_t paths_end = paths_above_offset + coord_t(above.lslices.size());
#endif // NDEBUG
class ZFill {
public:
ZFill() = default;
void reset() { m_intersections.clear(); }
void operator()(
const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top,
const ClipperLib_Z::IntPoint& e2bot, const ClipperLib_Z::IntPoint& e2top,
ClipperLib_Z::IntPoint& pt) {
coord_t srcs[4]{ e1bot.z(), e1top.z(), e2bot.z(), e2top.z() };
coord_t* begin = srcs;
coord_t* end = srcs + 4;
std::sort(begin, end);
end = std::unique(begin, end);
assert(begin + 2 == end);
if (begin + 1 == end)
pt.z() = *begin;
else if (begin + 2 <= end) {
// store a -1 based negative index into the "intersections" vector here.
m_intersections.emplace_back(srcs[0], srcs[1]);
pt.z() = -coord_t(m_intersections.size());
}
}
const std::vector<std::pair<coord_t, coord_t>>& intersections() const { return m_intersections; }
private:
std::vector<std::pair<coord_t, coord_t>> m_intersections;
} zfill;
ClipperLib_Z::Clipper clipper;
ClipperLib_Z::PolyTree result;
clipper.ZFillFunction(
[&zfill](const ClipperLib_Z::IntPoint &e1bot, const ClipperLib_Z::IntPoint &e1top,
const ClipperLib_Z::IntPoint &e2bot, const ClipperLib_Z::IntPoint &e2top, ClipperLib_Z::IntPoint &pt)
{ return zfill(e1bot, e1top, e2bot, e2top, pt); });
clipper.AddPaths(paths_below, ClipperLib_Z::ptSubject, true);
clipper.AddPaths(paths_above, ClipperLib_Z::ptClip, true);
clipper.Execute(ClipperLib_Z::ctIntersection, result, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
connect_layer_slices(below, above, result, zfill.intersections(), paths_below_offset, paths_above_offset
#ifndef NDEBUG
, paths_end
#endif // NDEBUG
);
}
static inline bool layer_needs_raw_backup(const Layer *layer)
{
return ! (layer->regions().size() == 1 && (layer->id() > 0 || layer->object()->config().elefant_foot_compensation.value == 0));
}
void Layer::backup_untyped_slices()
{
if (layer_needs_raw_backup(this)) {
for (LayerRegion *layerm : m_regions)
layerm->m_raw_slices = to_expolygons(layerm->slices().surfaces);
} else {
assert(m_regions.size() == 1);
m_regions.front()->m_raw_slices.clear();
}
}
void Layer::restore_untyped_slices()
{
if (layer_needs_raw_backup(this)) {
for (LayerRegion *layerm : m_regions)
layerm->m_slices.set(layerm->m_raw_slices, stInternal);
} else {
assert(m_regions.size() == 1);
m_regions.front()->m_slices.set(this->lslices, stInternal);
}
}
// Similar to Layer::restore_untyped_slices()
// To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442.
// Only resetting layerm->slices if Slice::extra_perimeters is always zero or it will not be used anymore
// after the perimeter generator.
void Layer::restore_untyped_slices_no_extra_perimeters()
{
if (layer_needs_raw_backup(this)) {
for (LayerRegion *layerm : m_regions)
if (! layerm->region().config().extra_perimeters.value)
layerm->m_slices.set(layerm->m_raw_slices, stInternal);
} else {
assert(m_regions.size() == 1);
LayerRegion *layerm = m_regions.front();
// This optimization is correct, as extra_perimeters are only reused by prepare_infill() with multi-regions.
//if (! layerm->region().config().extra_perimeters.value)
layerm->m_slices.set(this->lslices, stInternal);
}
}
ExPolygons Layer::merged(float offset_scaled) const
{
assert(offset_scaled >= 0.f);
// If no offset is set, apply EPSILON offset before union, and revert it afterwards.
float offset_scaled2 = 0;
if (offset_scaled == 0.f) {
offset_scaled = float( EPSILON);
offset_scaled2 = float(- EPSILON);
}
Polygons polygons;
for (LayerRegion *layerm : m_regions) {
const PrintRegionConfig &config = layerm->region().config();
// Our users learned to bend Slic3r to produce empty volumes to act as subtracters. Only add the region if it is non-empty.
if (config.bottom_solid_layers > 0 || config.top_solid_layers > 0 || config.fill_density > 0. || config.perimeters > 0)
append(polygons, offset(layerm->slices().surfaces, offset_scaled));
}
ExPolygons out = union_ex(polygons);
if (offset_scaled2 != 0.f)
out = offset_ex(out, offset_scaled2);
return out;
}
// Here the perimeters are created cummulatively for all layer regions sharing the same parameters influencing the perimeters.
// The perimeter paths and the thin fills (ExtrusionEntityCollection) are assigned to the first compatible layer region.
// The resulting fill surface is split back among the originating regions.
void Layer::make_perimeters()
{
BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id();
// keep track of regions whose perimeters we have already generated
std::vector<unsigned char> done(m_regions.size(), false);
std::vector<uint32_t> layer_region_ids;
std::vector<std::pair<ExtrusionRange, ExtrusionRange>> perimeter_and_gapfill_ranges;
ExPolygons fill_expolygons;
std::vector<ExPolygonRange> fill_expolygons_ranges;
SurfacesPtr surfaces_to_merge;
SurfacesPtr surfaces_to_merge_temp;
auto layer_region_reset_perimeters = [](LayerRegion &layerm) {
layerm.m_perimeters.clear();
layerm.m_fills.clear();
layerm.m_thin_fills.clear();
layerm.m_fill_expolygons.clear();
layerm.m_fill_expolygons_bboxes.clear();
layerm.m_fill_expolygons_composite.clear();
layerm.m_fill_expolygons_composite_bboxes.clear();
};
// Remove layer islands, remove references to perimeters and fills from these layer islands to LayerRegion ExtrusionEntities.
for (LayerSlice &lslice : this->lslices_ex)
lslice.islands.clear();
for (LayerRegionPtrs::iterator layerm = m_regions.begin(); layerm != m_regions.end(); ++ layerm)
if (size_t region_id = layerm - m_regions.begin(); ! done[region_id]) {
layer_region_reset_perimeters(**layerm);
if (! (*layerm)->slices().empty()) {
BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << ", region " << region_id;
done[region_id] = true;
const PrintRegionConfig &config = (*layerm)->region().config();
perimeter_and_gapfill_ranges.clear();
fill_expolygons.clear();
fill_expolygons_ranges.clear();
surfaces_to_merge.clear();
// find compatible regions
layer_region_ids.clear();
layer_region_ids.push_back(region_id);
for (LayerRegionPtrs::const_iterator it = layerm + 1; it != m_regions.end(); ++it)
if (! (*it)->slices().empty()) {
LayerRegion* other_layerm = *it;
const PrintRegionConfig &other_config = other_layerm->region().config();
if (config.perimeter_extruder == other_config.perimeter_extruder
&& config.perimeters == other_config.perimeters
&& config.perimeter_speed == other_config.perimeter_speed
&& config.external_perimeter_speed == other_config.external_perimeter_speed
&& (config.gap_fill_enabled ? config.gap_fill_speed.value : 0.) ==
(other_config.gap_fill_enabled ? other_config.gap_fill_speed.value : 0.)
&& config.overhangs == other_config.overhangs
&& config.opt_serialize("perimeter_extrusion_width") == other_config.opt_serialize("perimeter_extrusion_width")
&& config.thin_walls == other_config.thin_walls
&& config.external_perimeters_first == other_config.external_perimeters_first
&& config.infill_overlap == other_config.infill_overlap
&& config.fuzzy_skin == other_config.fuzzy_skin
&& config.fuzzy_skin_thickness == other_config.fuzzy_skin_thickness
&& config.fuzzy_skin_point_dist == other_config.fuzzy_skin_point_dist)
{
layer_region_reset_perimeters(*other_layerm);
layer_region_ids.push_back(it - m_regions.begin());
done[it - m_regions.begin()] = true;
}
}
if (layer_region_ids.size() == 1) { // optimization
(*layerm)->make_perimeters((*layerm)->slices(), perimeter_and_gapfill_ranges, fill_expolygons, fill_expolygons_ranges);
this->sort_perimeters_into_islands((*layerm)->slices(), region_id, perimeter_and_gapfill_ranges, std::move(fill_expolygons), fill_expolygons_ranges, layer_region_ids);
} else {
SurfaceCollection new_slices;
// Use the region with highest infill rate, as the make_perimeters() function below decides on the gap fill based on the infill existence.
LayerRegion *layerm_config = m_regions[layer_region_ids.front()];
{
// Merge slices (surfaces) according to number of extra perimeters.
for (uint32_t region_id : layer_region_ids) {
LayerRegion &layerm = *m_regions[region_id];
for (const Surface &surface : layerm.slices())
surfaces_to_merge.emplace_back(&surface);
if (layerm.region().config().fill_density > layerm_config->region().config().fill_density)
layerm_config = &layerm;
}
std::sort(surfaces_to_merge.begin(), surfaces_to_merge.end(), [](const Surface *l, const Surface *r){ return l->extra_perimeters < r->extra_perimeters; });
for (size_t i = 0; i < surfaces_to_merge.size();) {
size_t j = i;
const Surface &first = *surfaces_to_merge[i];
size_t extra_perimeters = first.extra_perimeters;
for (; j < surfaces_to_merge.size() && surfaces_to_merge[j]->extra_perimeters == extra_perimeters; ++ j) ;
if (i + 1 == j)
// Nothing to merge, just copy.
new_slices.surfaces.emplace_back(*surfaces_to_merge[i]);
else {
surfaces_to_merge_temp.assign(surfaces_to_merge.begin() + i, surfaces_to_merge.begin() + j);
new_slices.append(offset_ex(surfaces_to_merge_temp, ClipperSafetyOffset), first);
}
i = j;
}
}
// make perimeters
layerm_config->make_perimeters(new_slices, perimeter_and_gapfill_ranges, fill_expolygons, fill_expolygons_ranges);
this->sort_perimeters_into_islands(new_slices, region_id, perimeter_and_gapfill_ranges, std::move(fill_expolygons), fill_expolygons_ranges, layer_region_ids);
}
}
}
BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << " - Done";
}
void Layer::sort_perimeters_into_islands(
// Slices for which perimeters and fill_expolygons were just created.
// The slices may have been created by merging multiple source slices with the same perimeter parameters.
const SurfaceCollection &slices,
// Region where the perimeters, gap fills and fill expolygons are stored.
const uint32_t region_id,
// Perimeters and gap fills produced by the perimeter generator for the slices,
// sorted by the source slices.
const std::vector<std::pair<ExtrusionRange, ExtrusionRange>> &perimeter_and_gapfill_ranges,
// Fill expolygons produced for all source slices above.
ExPolygons &&fill_expolygons,
// Fill expolygon ranges sorted by the source slices.
const std::vector<ExPolygonRange> &fill_expolygons_ranges,
// If the current layer consists of multiple regions, then the fill_expolygons above are split by the source LayerRegion surfaces.
const std::vector<uint32_t> &layer_region_ids)
{
LayerRegion &this_layer_region = *m_regions[region_id];
// Bounding boxes of fill_expolygons.
BoundingBoxes fill_expolygons_bboxes;
fill_expolygons_bboxes.reserve(fill_expolygons.size());
for (const ExPolygon &expolygon : fill_expolygons)
fill_expolygons_bboxes.emplace_back(get_extents(expolygon));
// Take one sample point for each source slice, to be used to sort source slices into layer slices.
// source slice index + its sample.
std::vector<std::pair<uint32_t, Point>> perimeter_slices_queue;
perimeter_slices_queue.reserve(slices.size());
for (uint32_t islice = 0; islice < uint32_t(slices.size()); ++ islice) {
const std::pair<ExtrusionRange, ExtrusionRange> &extrusions = perimeter_and_gapfill_ranges[islice];
Point sample;
bool sample_set = false;
if (! extrusions.first.empty()) {
sample = this_layer_region.perimeters().entities[*extrusions.first.begin()]->first_point();
sample_set = true;
} else if (! extrusions.second.empty()) {
sample = this_layer_region.thin_fills().entities[*extrusions.second.begin()]->first_point();
sample_set = true;
} else {
for (uint32_t iexpoly : fill_expolygons_ranges[islice])
if (const ExPolygon &expoly = fill_expolygons[iexpoly]; ! expoly.empty()) {
sample = expoly.contour.points.front();
sample_set = true;
break;
}
}
// There may be a valid empty island.
// assert(sample_set);
if (sample_set)
perimeter_slices_queue.emplace_back(islice, sample);
}
// Map of source fill_expolygon into region and fill_expolygon of that region.
// -1: not set
std::vector<std::pair<int, int>> map_expolygon_to_region_and_fill;
const bool has_multiple_regions = layer_region_ids.size() > 1;
assert(has_multiple_regions || layer_region_ids.size() == 1);
// assign fill_surfaces to each layer
if (! fill_expolygons.empty()) {
if (has_multiple_regions) {
// Sort the bounding boxes lexicographically.
std::vector<uint32_t> fill_expolygons_bboxes_sorted(fill_expolygons_bboxes.size());
std::iota(fill_expolygons_bboxes_sorted.begin(), fill_expolygons_bboxes_sorted.end(), 0);
std::sort(fill_expolygons_bboxes_sorted.begin(), fill_expolygons_bboxes_sorted.end(), [&fill_expolygons_bboxes](uint32_t lhs, uint32_t rhs){
const BoundingBox &bbl = fill_expolygons_bboxes[lhs];
const BoundingBox &bbr = fill_expolygons_bboxes[rhs];
return bbl.min < bbr.min || (bbl.min == bbr.min && bbl.max < bbr.max);
});
map_expolygon_to_region_and_fill.assign(fill_expolygons.size(), std::make_pair(-1, -1));
for (uint32_t region_idx : layer_region_ids) {
LayerRegion &l = *m_regions[region_idx];
l.m_fill_expolygons = intersection_ex(l.slices().surfaces, fill_expolygons);
l.m_fill_expolygons_bboxes.reserve(l.fill_expolygons().size());
for (const ExPolygon &expolygon : l.fill_expolygons()) {
BoundingBox bbox = get_extents(expolygon);
l.m_fill_expolygons_bboxes.emplace_back(bbox);
auto it_bbox = std::lower_bound(fill_expolygons_bboxes_sorted.begin(), fill_expolygons_bboxes_sorted.end(), bbox, [&fill_expolygons_bboxes](uint32_t lhs, const BoundingBox &bbr){
const BoundingBox &bbl = fill_expolygons_bboxes[lhs];
return bbl.min < bbr.min || (bbl.min == bbr.min && bbl.max < bbr.max);
});
if (it_bbox != fill_expolygons_bboxes_sorted.end())
if (uint32_t fill_id = *it_bbox; fill_expolygons_bboxes[fill_id] == bbox) {
// With a very high probability the two expolygons match exactly. Confirm that.
if (expolygons_match(expolygon, fill_expolygons[fill_id])) {
std::pair<int, int> &ref = map_expolygon_to_region_and_fill[fill_id];
// Only one expolygon produced by intersection with LayerRegion surface may match an expolygon of fill_expolygons.
assert(ref.first == -1);
ref.first = region_idx;
ref.second = int(&expolygon - l.fill_expolygons().data());
}
}
}
}
} else {
this_layer_region.m_fill_expolygons = std::move(fill_expolygons);
this_layer_region.m_fill_expolygons_bboxes = std::move(fill_expolygons_bboxes);
}
}
// Sort perimeter extrusions, thin fill extrusions and fill expolygons into islands.
std::vector<uint32_t> region_fill_sorted_last;
auto insert_into_island = [
// Region where the perimeters, gap fills and fill expolygons are stored.
region_id,
// Whether there are infills with different regions generated for this LayerSlice.
has_multiple_regions,
// Perimeters and gap fills to be sorted into islands.
&perimeter_and_gapfill_ranges,
// Infill regions to be sorted into islands.
&fill_expolygons, &fill_expolygons_bboxes, &fill_expolygons_ranges,
// Mapping of fill_expolygon to region and its infill.
&map_expolygon_to_region_and_fill,
// Output
&regions = m_regions, &lslices_ex = this->lslices_ex,
// fill_expolygons and fill_expolygons_bboxes need to be sorted into contiguous sequence by island,
// thus region_fill_sorted_last contains last fill_expolygon processed (meaning sorted).
&region_fill_sorted_last]
(int lslice_idx, int source_slice_idx) {
lslices_ex[lslice_idx].islands.push_back({});
LayerIsland &island = lslices_ex[lslice_idx].islands.back();
island.perimeters = LayerExtrusionRange(region_id, perimeter_and_gapfill_ranges[source_slice_idx].first);
island.thin_fills = perimeter_and_gapfill_ranges[source_slice_idx].second;
if (ExPolygonRange fill_range = fill_expolygons_ranges[source_slice_idx]; ! fill_range.empty()) {
if (has_multiple_regions) {
// Check whether the fill expolygons of this island were split into multiple regions.
island.fill_region_id = LayerIsland::fill_region_composite_id;
for (uint32_t fill_idx : fill_range) {
const std::pair<int, int> &kvp = map_expolygon_to_region_and_fill[fill_idx];
if (kvp.first == -1 || (island.fill_region_id != -1 && island.fill_region_id != kvp.second)) {
island.fill_region_id = LayerIsland::fill_region_composite_id;
break;
} else
island.fill_region_id = kvp.second;
}
if (island.fill_expolygons_composite()) {
// They were split, thus store the unsplit "composite" expolygons into the region of perimeters.
LayerRegion &this_layer_region = *regions[region_id];
auto begin = uint32_t(this_layer_region.fill_expolygons_composite().size());
this_layer_region.m_fill_expolygons_composite.reserve(this_layer_region.fill_expolygons_composite().size() + fill_range.size());
std::move(fill_expolygons.begin() + *fill_range.begin(), fill_expolygons.begin() + *fill_range.end(), std::back_inserter(this_layer_region.m_fill_expolygons_composite));
this_layer_region.m_fill_expolygons_composite_bboxes.insert(this_layer_region.m_fill_expolygons_composite_bboxes.end(),
fill_expolygons_bboxes.begin() + *fill_range.begin(), fill_expolygons_bboxes.begin() + *fill_range.end());
island.fill_expolygons = ExPolygonRange(begin, uint32_t(this_layer_region.fill_expolygons_composite().size()));
} else {
if (region_fill_sorted_last.empty())
region_fill_sorted_last.assign(regions.size(), 0);
uint32_t &last = region_fill_sorted_last[island.fill_region_id];
// They were not split and they belong to the same region.
// Sort the region m_fill_expolygons to a continuous span.
uint32_t begin = last;
LayerRegion &layerm = *regions[island.fill_region_id];
for (uint32_t fill_id : fill_range) {
uint32_t region_fill_id = map_expolygon_to_region_and_fill[fill_id].second;
assert(region_fill_id >= last);
if (region_fill_id > last) {
std::swap(layerm.m_fill_expolygons[region_fill_id], layerm.m_fill_expolygons[last]);
std::swap(layerm.m_fill_expolygons_bboxes[region_fill_id], layerm.m_fill_expolygons_bboxes[last]);
}
++ last;
}
island.fill_expolygons = ExPolygonRange(begin, last);
}
} else {
// Layer island is made of one fill region only.
island.fill_expolygons = fill_range;
island.fill_region_id = region_id;
}
}
};
// First sort into islands using exact fit.
// Traverse the slices in an increasing order of bounding box size, so that the islands inside another islands are tested first,
// so we can just test a point inside ExPolygon::contour and we may skip testing the holes.
auto point_inside_surface = [&lslices = this->lslices, &lslices_ex = this->lslices_ex](size_t lslice_idx, const Point &point) {
const BoundingBox &bbox = lslices_ex[lslice_idx].bbox;
return point.x() >= bbox.min.x() && point.x() < bbox.max.x() &&
point.y() >= bbox.min.y() && point.y() < bbox.max.y() &&
// Exact match: Don't just test whether a point is inside the outer contour of an island,
// test also whether the point is not inside some hole of the same expolygon.
// This is unfortunatelly necessary because the point may be inside an expolygon of one of this expolygon's hole
// and missed due to numerical issues.
lslices[lslice_idx].contains(point);
};
for (int lslice_idx = int(lslices_ex.size()) - 1; lslice_idx >= 0 && ! perimeter_slices_queue.empty(); -- lslice_idx)
for (auto it_source_slice = perimeter_slices_queue.begin(); it_source_slice != perimeter_slices_queue.end(); ++ it_source_slice)
if (point_inside_surface(lslice_idx, it_source_slice->second)) {
insert_into_island(lslice_idx, it_source_slice->first);
if (std::next(it_source_slice) != perimeter_slices_queue.end())
// Remove the current slice & point pair from the queue.
*it_source_slice = perimeter_slices_queue.back();
perimeter_slices_queue.pop_back();
break;
}
// If anything fails to be sorted in using exact fit, try to find a closest island.
auto point_inside_surface_dist2 =
[&lslices = this->lslices, &lslices_ex = this->lslices_ex, bbox_eps = scaled<coord_t>(this->object()->print()->config().gcode_resolution.value) + SCALED_EPSILON]
(const size_t lslice_idx, const Point &point) {
const BoundingBox &bbox = lslices_ex[lslice_idx].bbox;
return
point.x() < bbox.min.x() - bbox_eps || point.x() > bbox.max.x() + bbox_eps ||
point.y() < bbox.min.y() - bbox_eps || point.y() > bbox.max.y() + bbox_eps ?
std::numeric_limits<double>::max() :
(lslices[lslice_idx].point_projection(point) - point).cast<double>().squaredNorm();
};
for (auto it_source_slice = perimeter_slices_queue.begin(); it_source_slice != perimeter_slices_queue.end(); ++ it_source_slice) {
double d2min = std::numeric_limits<double>::max();
int lslice_idx_min = -1;
for (int lslice_idx = int(lslices_ex.size()) - 1; lslice_idx >= 0; -- lslice_idx)
if (double d2 = point_inside_surface_dist2(lslice_idx, it_source_slice->second); d2 < d2min) {
d2min = d2;
lslice_idx_min = lslice_idx;
}
assert(lslice_idx_min != -1);
insert_into_island(lslice_idx_min, it_source_slice->first);
}
}
void Layer::export_region_slices_to_svg(const char *path) const
{
BoundingBox bbox;
for (const auto *region : m_regions)
for (const auto &surface : region->slices())
bbox.merge(get_extents(surface.expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const auto *region : m_regions)
for (const auto &surface : region->slices())
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void Layer::export_region_slices_to_svg_debug(const char *name) const
{
static size_t idx = 0;
this->export_region_slices_to_svg(debug_out_path("Layer-slices-%s-%d.svg", name, idx ++).c_str());
}
void Layer::export_region_fill_surfaces_to_svg(const char *path) const
{
BoundingBox bbox;
for (const auto *region : m_regions)
for (const auto &surface : region->slices())
bbox.merge(get_extents(surface.expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const auto *region : m_regions)
for (const auto &surface : region->slices())
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void Layer::export_region_fill_surfaces_to_svg_debug(const char *name) const
{
static size_t idx = 0;
this->export_region_fill_surfaces_to_svg(debug_out_path("Layer-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
}
BoundingBox get_extents(const LayerRegion &layer_region)
{
BoundingBox bbox;
if (! layer_region.slices().empty()) {
bbox = get_extents(layer_region.slices().surfaces.front());
for (auto it = layer_region.slices().surfaces.cbegin() + 1; it != layer_region.slices().surfaces.cend(); ++ it)
bbox.merge(get_extents(*it));
}
return bbox;
}
BoundingBox get_extents(const LayerRegionPtrs &layer_regions)
{
BoundingBox bbox;
if (!layer_regions.empty()) {
bbox = get_extents(*layer_regions.front());
for (auto it = layer_regions.begin() + 1; it != layer_regions.end(); ++it)
bbox.merge(get_extents(**it));
}
return bbox;
}
}