1633 lines
52 KiB
C++
1633 lines
52 KiB
C++
#include <algorithm>
|
|
#include <vector>
|
|
#include <float.h>
|
|
#include <unordered_map>
|
|
|
|
#include <png.h>
|
|
|
|
#include "libslic3r.h"
|
|
#include "ClipperUtils.hpp"
|
|
#include "EdgeGrid.hpp"
|
|
#include "Geometry.hpp"
|
|
#include "SVG.hpp"
|
|
#include "PNGReadWrite.hpp"
|
|
|
|
// #define EDGE_GRID_DEBUG_OUTPUT
|
|
|
|
#if 0
|
|
// Enable debugging and assert in this file.
|
|
#define DEBUG
|
|
#define _DEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
|
|
namespace Slic3r {
|
|
|
|
EdgeGrid::Grid::Grid() :
|
|
m_rows(0), m_cols(0)
|
|
{
|
|
}
|
|
|
|
EdgeGrid::Grid::~Grid()
|
|
{
|
|
m_contours.clear();
|
|
m_cell_data.clear();
|
|
m_cells.clear();
|
|
}
|
|
|
|
void EdgeGrid::Grid::create(const Polygons &polygons, coord_t resolution)
|
|
{
|
|
// Count the contours.
|
|
size_t ncontours = 0;
|
|
for (size_t j = 0; j < polygons.size(); ++ j)
|
|
if (! polygons[j].points.empty())
|
|
++ ncontours;
|
|
|
|
// Collect the contours.
|
|
m_contours.assign(ncontours, nullptr);
|
|
ncontours = 0;
|
|
for (size_t j = 0; j < polygons.size(); ++ j)
|
|
if (! polygons[j].points.empty())
|
|
m_contours[ncontours ++] = &polygons[j].points;
|
|
|
|
create_from_m_contours(resolution);
|
|
}
|
|
|
|
void EdgeGrid::Grid::create(const std::vector<const Polygon*> &polygons, coord_t resolution)
|
|
{
|
|
// Count the contours.
|
|
size_t ncontours = 0;
|
|
for (size_t j = 0; j < polygons.size(); ++ j)
|
|
if (! polygons[j]->points.empty())
|
|
++ ncontours;
|
|
|
|
// Collect the contours.
|
|
m_contours.assign(ncontours, nullptr);
|
|
ncontours = 0;
|
|
for (size_t j = 0; j < polygons.size(); ++ j)
|
|
if (! polygons[j]->points.empty())
|
|
m_contours[ncontours ++] = &polygons[j]->points;
|
|
|
|
create_from_m_contours(resolution);
|
|
}
|
|
|
|
void EdgeGrid::Grid::create(const std::vector<Points> &polygons, coord_t resolution)
|
|
{
|
|
// Count the contours.
|
|
size_t ncontours = 0;
|
|
for (size_t j = 0; j < polygons.size(); ++ j)
|
|
if (! polygons[j].empty())
|
|
++ ncontours;
|
|
|
|
// Collect the contours.
|
|
m_contours.assign(ncontours, nullptr);
|
|
ncontours = 0;
|
|
for (size_t j = 0; j < polygons.size(); ++ j)
|
|
if (! polygons[j].empty())
|
|
m_contours[ncontours ++] = &polygons[j];
|
|
|
|
create_from_m_contours(resolution);
|
|
}
|
|
|
|
void EdgeGrid::Grid::create(const ExPolygon &expoly, coord_t resolution)
|
|
{
|
|
// Count the contours.
|
|
size_t ncontours = 0;
|
|
if (! expoly.contour.points.empty())
|
|
++ ncontours;
|
|
for (size_t j = 0; j < expoly.holes.size(); ++ j)
|
|
if (! expoly.holes[j].points.empty())
|
|
++ ncontours;
|
|
|
|
// Collect the contours.
|
|
m_contours.assign(ncontours, nullptr);
|
|
ncontours = 0;
|
|
if (! expoly.contour.points.empty())
|
|
m_contours[ncontours++] = &expoly.contour.points;
|
|
for (size_t j = 0; j < expoly.holes.size(); ++ j)
|
|
if (! expoly.holes[j].points.empty())
|
|
m_contours[ncontours++] = &expoly.holes[j].points;
|
|
|
|
create_from_m_contours(resolution);
|
|
}
|
|
|
|
void EdgeGrid::Grid::create(const ExPolygons &expolygons, coord_t resolution)
|
|
{
|
|
// Count the contours.
|
|
size_t ncontours = 0;
|
|
for (size_t i = 0; i < expolygons.size(); ++ i) {
|
|
const ExPolygon &expoly = expolygons[i];
|
|
if (! expoly.contour.points.empty())
|
|
++ ncontours;
|
|
for (size_t j = 0; j < expoly.holes.size(); ++ j)
|
|
if (! expoly.holes[j].points.empty())
|
|
++ ncontours;
|
|
}
|
|
|
|
// Collect the contours.
|
|
m_contours.assign(ncontours, nullptr);
|
|
ncontours = 0;
|
|
for (size_t i = 0; i < expolygons.size(); ++ i) {
|
|
const ExPolygon &expoly = expolygons[i];
|
|
if (! expoly.contour.points.empty())
|
|
m_contours[ncontours++] = &expoly.contour.points;
|
|
for (size_t j = 0; j < expoly.holes.size(); ++ j)
|
|
if (! expoly.holes[j].points.empty())
|
|
m_contours[ncontours++] = &expoly.holes[j].points;
|
|
}
|
|
|
|
create_from_m_contours(resolution);
|
|
}
|
|
|
|
void EdgeGrid::Grid::create(const ExPolygonCollection &expolygons, coord_t resolution)
|
|
{
|
|
create(expolygons.expolygons, resolution);
|
|
}
|
|
|
|
// m_contours has been initialized. Now fill in the edge grid.
|
|
void EdgeGrid::Grid::create_from_m_contours(coord_t resolution)
|
|
{
|
|
assert(resolution > 0);
|
|
// 1) Measure the bounding box.
|
|
for (size_t i = 0; i < m_contours.size(); ++ i) {
|
|
const Slic3r::Points &pts = *m_contours[i];
|
|
for (size_t j = 0; j < pts.size(); ++ j)
|
|
m_bbox.merge(pts[j]);
|
|
}
|
|
coord_t eps = 16;
|
|
m_bbox.min(0) -= eps;
|
|
m_bbox.min(1) -= eps;
|
|
m_bbox.max(0) += eps;
|
|
m_bbox.max(1) += eps;
|
|
|
|
// 2) Initialize the edge grid.
|
|
m_resolution = resolution;
|
|
m_cols = (m_bbox.max(0) - m_bbox.min(0) + m_resolution - 1) / m_resolution;
|
|
m_rows = (m_bbox.max(1) - m_bbox.min(1) + m_resolution - 1) / m_resolution;
|
|
m_cells.assign(m_rows * m_cols, Cell());
|
|
|
|
// 3) First round of contour rasterization, count the edges per grid cell.
|
|
for (size_t i = 0; i < m_contours.size(); ++ i) {
|
|
const Slic3r::Points &pts = *m_contours[i];
|
|
for (size_t j = 0; j < pts.size(); ++ j) {
|
|
// End points of the line segment.
|
|
Slic3r::Point p1(pts[j]);
|
|
Slic3r::Point p2 = pts[(j + 1 == pts.size()) ? 0 : j + 1];
|
|
p1(0) -= m_bbox.min(0);
|
|
p1(1) -= m_bbox.min(1);
|
|
p2(0) -= m_bbox.min(0);
|
|
p2(1) -= m_bbox.min(1);
|
|
// Get the cells of the end points.
|
|
coord_t ix = p1(0) / m_resolution;
|
|
coord_t iy = p1(1) / m_resolution;
|
|
coord_t ixb = p2(0) / m_resolution;
|
|
coord_t iyb = p2(1) / m_resolution;
|
|
assert(ix >= 0 && size_t(ix) < m_cols);
|
|
assert(iy >= 0 && size_t(iy) < m_rows);
|
|
assert(ixb >= 0 && size_t(ixb) < m_cols);
|
|
assert(iyb >= 0 && size_t(iyb) < m_rows);
|
|
// Account for the end points.
|
|
++ m_cells[iy*m_cols+ix].end;
|
|
if (ix == ixb && iy == iyb)
|
|
// Both ends fall into the same cell.
|
|
continue;
|
|
// Raster the centeral part of the line.
|
|
coord_t dx = std::abs(p2(0) - p1(0));
|
|
coord_t dy = std::abs(p2(1) - p1(1));
|
|
if (p1(0) < p2(0)) {
|
|
int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy);
|
|
if (p1(1) < p2(1)) {
|
|
// x positive, y positive
|
|
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
|
do {
|
|
assert(ix <= ixb && iy <= iyb);
|
|
if (ex < ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix += 1;
|
|
}
|
|
else if (ex == ey) {
|
|
ex = int64_t(dy) * m_resolution;
|
|
ey = int64_t(dx) * m_resolution;
|
|
ix += 1;
|
|
iy += 1;
|
|
}
|
|
else {
|
|
assert(ex > ey);
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy += 1;
|
|
}
|
|
++m_cells[iy*m_cols + ix].end;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
else {
|
|
// x positive, y non positive
|
|
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
|
do {
|
|
assert(ix <= ixb && iy >= iyb);
|
|
if (ex <= ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix += 1;
|
|
}
|
|
else {
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy -= 1;
|
|
}
|
|
++m_cells[iy*m_cols + ix].end;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
}
|
|
else {
|
|
int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy);
|
|
if (p1(1) < p2(1)) {
|
|
// x non positive, y positive
|
|
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
|
do {
|
|
assert(ix >= ixb && iy <= iyb);
|
|
if (ex < ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix -= 1;
|
|
}
|
|
else {
|
|
assert(ex >= ey);
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy += 1;
|
|
}
|
|
++m_cells[iy*m_cols + ix].end;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
else {
|
|
// x non positive, y non positive
|
|
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
|
do {
|
|
assert(ix >= ixb && iy >= iyb);
|
|
if (ex < ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix -= 1;
|
|
}
|
|
else if (ex == ey) {
|
|
// The lower edge of a grid cell belongs to the cell.
|
|
// Handle the case where the ray may cross the lower left corner of a cell in a general case,
|
|
// or a left or lower edge in a degenerate case (horizontal or vertical line).
|
|
if (dx > 0) {
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix -= 1;
|
|
}
|
|
if (dy > 0) {
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy -= 1;
|
|
}
|
|
}
|
|
else {
|
|
assert(ex > ey);
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy -= 1;
|
|
}
|
|
++m_cells[iy*m_cols + ix].end;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4) Prefix sum the numbers of hits per cells to get an index into m_cell_data.
|
|
size_t cnt = m_cells.front().end;
|
|
for (size_t i = 1; i < m_cells.size(); ++ i) {
|
|
m_cells[i].begin = cnt;
|
|
cnt += m_cells[i].end;
|
|
m_cells[i].end = cnt;
|
|
}
|
|
|
|
// 5) Allocate the cell data.
|
|
m_cell_data.assign(cnt, std::pair<size_t, size_t>(size_t(-1), size_t(-1)));
|
|
|
|
// 6) Finally fill in m_cell_data by rasterizing the lines once again.
|
|
for (size_t i = 0; i < m_cells.size(); ++i)
|
|
m_cells[i].end = m_cells[i].begin;
|
|
|
|
struct Visitor {
|
|
Visitor(std::vector<std::pair<size_t, size_t>> &cell_data, std::vector<Cell> &cells, size_t cols) :
|
|
cell_data(cell_data), cells(cells), cols(cols), i(0), j(0) {}
|
|
|
|
inline bool operator()(coord_t iy, coord_t ix) {
|
|
cell_data[cells[iy*cols + ix].end++] = std::pair<size_t, size_t>(i, j);
|
|
// Continue traversing the grid along the edge.
|
|
return true;
|
|
}
|
|
|
|
std::vector<std::pair<size_t, size_t>> &cell_data;
|
|
std::vector<Cell> &cells;
|
|
size_t cols;
|
|
size_t i;
|
|
size_t j;
|
|
} visitor(m_cell_data, m_cells, m_cols);
|
|
|
|
assert(visitor.i == 0);
|
|
for (; visitor.i < m_contours.size(); ++ visitor.i) {
|
|
const Slic3r::Points &pts = *m_contours[visitor.i];
|
|
for (visitor.j = 0; visitor.j < pts.size(); ++ visitor.j)
|
|
this->visit_cells_intersecting_line(pts[visitor.j], pts[(visitor.j + 1 == pts.size()) ? 0 : visitor.j + 1], visitor);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// Divide, round to a grid coordinate.
|
|
// Divide x/y, round down. y is expected to be positive.
|
|
static inline coord_t div_floor(coord_t x, coord_t y)
|
|
{
|
|
assert(y > 0);
|
|
return ((x < 0) ? (x - y + 1) : x) / y;
|
|
}
|
|
|
|
// Walk the polyline, test whether any lines of this polyline does not intersect
|
|
// any line stored into the grid.
|
|
bool EdgeGrid::Grid::intersect(const MultiPoint &polyline, bool closed)
|
|
{
|
|
size_t n = polyline.points.size();
|
|
if (closed)
|
|
++ n;
|
|
for (size_t i = 0; i < n; ++ i) {
|
|
size_t j = i + 1;
|
|
if (j == polyline.points.size())
|
|
j = 0;
|
|
Point p1src = polyline.points[i];
|
|
Point p2src = polyline.points[j];
|
|
Point p1 = p1src;
|
|
Point p2 = p2src;
|
|
// Discretize the line segment p1, p2.
|
|
p1(0) -= m_bbox.min(0);
|
|
p1(1) -= m_bbox.min(1);
|
|
p2(0) -= m_bbox.min(0);
|
|
p2(1) -= m_bbox.min(1);
|
|
// Get the cells of the end points.
|
|
coord_t ix = div_floor(p1(0), m_resolution);
|
|
coord_t iy = div_floor(p1(1), m_resolution);
|
|
coord_t ixb = div_floor(p2(0), m_resolution);
|
|
coord_t iyb = div_floor(p2(1), m_resolution);
|
|
// assert(ix >= 0 && ix < m_cols);
|
|
// assert(iy >= 0 && iy < m_rows);
|
|
// assert(ixb >= 0 && ixb < m_cols);
|
|
// assert(iyb >= 0 && iyb < m_rows);
|
|
// Account for the end points.
|
|
if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix]))
|
|
return true;
|
|
if (ix == ixb && iy == iyb)
|
|
// Both ends fall into the same cell.
|
|
continue;
|
|
// Raster the centeral part of the line.
|
|
coord_t dx = std::abs(p2(0) - p1(0));
|
|
coord_t dy = std::abs(p2(1) - p1(1));
|
|
if (p1(0) < p2(0)) {
|
|
int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy);
|
|
if (p1(1) < p2(1)) {
|
|
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
|
do {
|
|
assert(ix <= ixb && iy <= iyb);
|
|
if (ex < ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix += 1;
|
|
}
|
|
else if (ex == ey) {
|
|
ex = int64_t(dy) * m_resolution;
|
|
ey = int64_t(dx) * m_resolution;
|
|
ix += 1;
|
|
iy += 1;
|
|
}
|
|
else {
|
|
assert(ex > ey);
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy += 1;
|
|
}
|
|
if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix]))
|
|
return true;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
else {
|
|
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
|
do {
|
|
assert(ix <= ixb && iy >= iyb);
|
|
if (ex <= ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix += 1;
|
|
}
|
|
else {
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy -= 1;
|
|
}
|
|
if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix]))
|
|
return true;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
}
|
|
else {
|
|
int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy);
|
|
if (p1(1) < p2(1)) {
|
|
int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
|
|
do {
|
|
assert(ix >= ixb && iy <= iyb);
|
|
if (ex < ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix -= 1;
|
|
}
|
|
else {
|
|
assert(ex >= ey);
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy += 1;
|
|
}
|
|
if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix]))
|
|
return true;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
else {
|
|
int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
|
|
do {
|
|
assert(ix >= ixb && iy >= iyb);
|
|
if (ex < ey) {
|
|
ey -= ex;
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix -= 1;
|
|
}
|
|
else if (ex == ey) {
|
|
if (dx > 0) {
|
|
ex = int64_t(dy) * m_resolution;
|
|
ix -= 1;
|
|
}
|
|
if (dy > 0) {
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy -= 1;
|
|
}
|
|
}
|
|
else {
|
|
assert(ex > ey);
|
|
ex -= ey;
|
|
ey = int64_t(dx) * m_resolution;
|
|
iy -= 1;
|
|
}
|
|
if (line_cell_intersect(p1src, p2src, m_cells[iy*m_cols + ix]))
|
|
return true;
|
|
} while (ix != ixb || iy != iyb);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool EdgeGrid::Grid::line_cell_intersect(const Point &p1a, const Point &p2a, const Cell &cell)
|
|
{
|
|
BoundingBox bbox(p1a, p1a);
|
|
bbox.merge(p2a);
|
|
int64_t va_x = p2a(0) - p1a(0);
|
|
int64_t va_y = p2a(1) - p1a(1);
|
|
for (size_t i = cell.begin; i != cell.end; ++ i) {
|
|
const std::pair<size_t, size_t> &cell_data = m_cell_data[i];
|
|
// Contour indexed by the ith line of this cell.
|
|
const Slic3r::Points &contour = *m_contours[cell_data.first];
|
|
// Point indices in contour indexed by the ith line of this cell.
|
|
size_t idx1 = cell_data.second;
|
|
size_t idx2 = idx1 + 1;
|
|
if (idx2 == contour.size())
|
|
idx2 = 0;
|
|
// The points of the ith line of this cell and its bounding box.
|
|
const Point &p1b = contour[idx1];
|
|
const Point &p2b = contour[idx2];
|
|
BoundingBox bbox2(p1b, p1b);
|
|
bbox2.merge(p2b);
|
|
// Do the bounding boxes intersect?
|
|
if (! bbox.overlap(bbox2))
|
|
continue;
|
|
// Now intersect the two line segments using exact arithmetics.
|
|
int64_t w1_x = p1b(0) - p1a(0);
|
|
int64_t w1_y = p1b(1) - p1a(1);
|
|
int64_t w2_x = p2b(0) - p1a(0);
|
|
int64_t w2_y = p2b(1) - p1a(1);
|
|
int64_t side1 = va_x * w1_y - va_y * w1_x;
|
|
int64_t side2 = va_x * w2_y - va_y * w2_x;
|
|
if (side1 == side2 && side1 != 0)
|
|
// The line segments don't intersect.
|
|
continue;
|
|
w1_x = p1a(0) - p1b(0);
|
|
w1_y = p1a(1) - p1b(1);
|
|
w2_x = p2a(0) - p1b(0);
|
|
w2_y = p2a(1) - p1b(1);
|
|
int64_t vb_x = p2b(0) - p1b(0);
|
|
int64_t vb_y = p2b(1) - p1b(1);
|
|
side1 = vb_x * w1_y - vb_y * w1_x;
|
|
side2 = vb_x * w2_y - vb_y * w2_x;
|
|
if (side1 == side2 && side1 != 0)
|
|
// The line segments don't intersect.
|
|
continue;
|
|
// The line segments intersect.
|
|
return true;
|
|
}
|
|
// The line segment (p1a, p2a) does not intersect any of the line segments inside this cell.
|
|
return false;
|
|
}
|
|
|
|
// Test, whether a point is inside a contour.
|
|
bool EdgeGrid::Grid::inside(const Point &pt_src)
|
|
{
|
|
Point p = pt_src;
|
|
p(0) -= m_bbox.min(0);
|
|
p(1) -= m_bbox.min(1);
|
|
// Get the cell of the point.
|
|
if (p(0) < 0 || p(1) < 0)
|
|
return false;
|
|
coord_t ix = p(0) / m_resolution;
|
|
coord_t iy = p(1) / m_resolution;
|
|
if (ix >= this->m_cols || iy >= this->m_rows)
|
|
return false;
|
|
|
|
size_t i_closest = (size_t)-1;
|
|
bool inside = false;
|
|
|
|
{
|
|
// Hit in the first cell?
|
|
const Cell &cell = m_cells[iy * m_cols + ix];
|
|
for (size_t i = cell.begin; i != cell.end; ++ i) {
|
|
const std::pair<size_t, size_t> &cell_data = m_cell_data[i];
|
|
// Contour indexed by the ith line of this cell.
|
|
const Slic3r::Points &contour = *m_contours[cell_data.first];
|
|
// Point indices in contour indexed by the ith line of this cell.
|
|
size_t idx1 = cell_data.second;
|
|
size_t idx2 = idx1 + 1;
|
|
if (idx2 == contour.size())
|
|
idx2 = 0;
|
|
const Point &p1 = contour[idx1];
|
|
const Point &p2 = contour[idx2];
|
|
if (p1(1) < p2(1)) {
|
|
if (p(1) < p1(1) || p(1) > p2(1))
|
|
continue;
|
|
//FIXME finish this!
|
|
int64_t vx = 0;// pt_src
|
|
//FIXME finish this!
|
|
int64_t det = 0;
|
|
} else if (p1(1) != p2(1)) {
|
|
assert(p1(1) > p2(1));
|
|
if (p(1) < p2(1) || p(1) > p1(1))
|
|
continue;
|
|
} else {
|
|
assert(p1(1) == p2(1));
|
|
if (p1(1) == p(1)) {
|
|
if (p(0) >= p1(0) && p(0) <= p2(0))
|
|
// On the segment.
|
|
return true;
|
|
// Before or after the segment.
|
|
size_t idx0 = idx1 - 1;
|
|
size_t idx2 = idx1 + 1;
|
|
if (idx0 == (size_t)-1)
|
|
idx0 = contour.size() - 1;
|
|
if (idx2 == contour.size())
|
|
idx2 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//FIXME This code follows only a single direction. Better to follow the direction closest to the bounding box.
|
|
}
|
|
#endif
|
|
|
|
template<const int INCX, const int INCY>
|
|
struct PropagateDanielssonSingleStep {
|
|
PropagateDanielssonSingleStep(float *aL, unsigned char *asigns, size_t astride, coord_t aresolution) :
|
|
L(aL), signs(asigns), stride(astride), resolution(aresolution) {}
|
|
inline void operator()(int r, int c, int addr_delta) {
|
|
size_t addr = r * stride + c;
|
|
if ((signs[addr] & 2) == 0) {
|
|
float *v = &L[addr << 1];
|
|
float l = v[0] * v[0] + v[1] * v[1];
|
|
float *v2s = v + (addr_delta << 1);
|
|
float v2[2] = {
|
|
v2s[0] + INCX * resolution,
|
|
v2s[1] + INCY * resolution
|
|
};
|
|
float l2 = v2[0] * v2[0] + v2[1] * v2[1];
|
|
if (l2 < l) {
|
|
v[0] = v2[0];
|
|
v[1] = v2[1];
|
|
}
|
|
}
|
|
}
|
|
float *L;
|
|
unsigned char *signs;
|
|
size_t stride;
|
|
coord_t resolution;
|
|
};
|
|
|
|
struct PropagateDanielssonSingleVStep3 {
|
|
PropagateDanielssonSingleVStep3(float *aL, unsigned char *asigns, size_t astride, coord_t aresolution) :
|
|
L(aL), signs(asigns), stride(astride), resolution(aresolution) {}
|
|
inline void operator()(int r, int c, int addr_delta, bool has_l, bool has_r) {
|
|
size_t addr = r * stride + c;
|
|
if ((signs[addr] & 2) == 0) {
|
|
float *v = &L[addr<<1];
|
|
float l = v[0]*v[0]+v[1]*v[1];
|
|
float *v2s = v+(addr_delta<<1);
|
|
float v2[2] = {
|
|
v2s[0],
|
|
v2s[1] + resolution
|
|
};
|
|
float l2 = v2[0]*v2[0]+v2[1]*v2[1];
|
|
if (l2 < l) {
|
|
v[0] = v2[0];
|
|
v[1] = v2[1];
|
|
}
|
|
if (has_l) {
|
|
float *v2sl = v2s - 1;
|
|
v2[0] = v2sl[0] + resolution;
|
|
v2[1] = v2sl[1] + resolution;
|
|
l2 = v2[0]*v2[0]+v2[1]*v2[1];
|
|
if (l2 < l) {
|
|
v[0] = v2[0];
|
|
v[1] = v2[1];
|
|
}
|
|
}
|
|
if (has_r) {
|
|
float *v2sr = v2s + 1;
|
|
v2[0] = v2sr[0] + resolution;
|
|
v2[1] = v2sr[1] + resolution;
|
|
l2 = v2[0]*v2[0]+v2[1]*v2[1];
|
|
if (l2 < l) {
|
|
v[0] = v2[0];
|
|
v[1] = v2[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
float *L;
|
|
unsigned char *signs;
|
|
size_t stride;
|
|
coord_t resolution;
|
|
};
|
|
|
|
void EdgeGrid::Grid::calculate_sdf()
|
|
{
|
|
#ifdef EDGE_GRID_DEBUG_OUTPUT
|
|
static int iRun = 0;
|
|
++ iRun;
|
|
#endif
|
|
|
|
// 1) Initialize a signum and an unsigned vector to a zero iso surface.
|
|
size_t nrows = m_rows + 1;
|
|
size_t ncols = m_cols + 1;
|
|
// Unsigned vectors towards the closest point on the surface.
|
|
std::vector<float> L(nrows * ncols * 2, FLT_MAX);
|
|
// Bit 0 set - negative.
|
|
// Bit 1 set - original value, the distance value shall not be changed by the Danielsson propagation.
|
|
// Bit 2 set - signum not propagated yet.
|
|
std::vector<unsigned char> signs(nrows * ncols, 4);
|
|
// SDF will be initially filled with unsigned DF.
|
|
// m_signed_distance_field.assign(nrows * ncols, FLT_MAX);
|
|
float search_radius = float(m_resolution<<1);
|
|
m_signed_distance_field.assign(nrows * ncols, search_radius);
|
|
// For each cell:
|
|
for (int r = 0; r < (int)m_rows; ++ r) {
|
|
for (int c = 0; c < (int)m_cols; ++ c) {
|
|
const Cell &cell = m_cells[r * m_cols + c];
|
|
// For each segment in the cell:
|
|
for (size_t i = cell.begin; i != cell.end; ++ i) {
|
|
const Slic3r::Points &pts = *m_contours[m_cell_data[i].first];
|
|
size_t ipt = m_cell_data[i].second;
|
|
// End points of the line segment.
|
|
const Slic3r::Point &p1 = pts[ipt];
|
|
const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1];
|
|
// Segment vector
|
|
const Slic3r::Point v_seg = p2 - p1;
|
|
// l2 of v_seg
|
|
const int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
|
// For each corner of this cell and its 1 ring neighbours:
|
|
for (int corner_y = -1; corner_y < 3; ++ corner_y) {
|
|
coord_t corner_r = r + corner_y;
|
|
if (corner_r < 0 || (size_t)corner_r >= nrows)
|
|
continue;
|
|
for (int corner_x = -1; corner_x < 3; ++ corner_x) {
|
|
coord_t corner_c = c + corner_x;
|
|
if (corner_c < 0 || (size_t)corner_c >= ncols)
|
|
continue;
|
|
float &d_min = m_signed_distance_field[corner_r * ncols + corner_c];
|
|
Slic3r::Point pt(m_bbox.min(0) + corner_c * m_resolution, m_bbox.min(1) + corner_r * m_resolution);
|
|
Slic3r::Point v_pt = pt - p1;
|
|
// dot(p2-p1, pt-p1)
|
|
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
|
if (t_pt < 0) {
|
|
// Closest to p1.
|
|
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
|
if (dabs < d_min) {
|
|
// Previous point.
|
|
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
|
|
Slic3r::Point v_seg_prev = p1 - p0;
|
|
int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1));
|
|
if (t2_pt > 0) {
|
|
// Inside the wedge between the previous and the next segment.
|
|
// Set the signum depending on whether the vertex is convex or reflex.
|
|
int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0));
|
|
assert(det != 0);
|
|
d_min = dabs;
|
|
// Fill in an unsigned vector towards the zero iso surface.
|
|
float *l = &L[(corner_r * ncols + corner_c) << 1];
|
|
l[0] = std::abs(v_pt(0));
|
|
l[1] = std::abs(v_pt(1));
|
|
#ifdef _DEBUG
|
|
double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]);
|
|
assert(std::abs(dabs-dabs2) < 1e-4 * std::max(dabs, dabs2));
|
|
#endif /* _DEBUG */
|
|
signs[corner_r * ncols + corner_c] = ((det < 0) ? 1 : 0) | 2;
|
|
}
|
|
}
|
|
}
|
|
else if (t_pt > l2_seg) {
|
|
// Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell.
|
|
continue;
|
|
} else {
|
|
// Closest to the segment.
|
|
assert(t_pt >= 0 && t_pt <= l2_seg);
|
|
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
|
double d = double(d_seg) / sqrt(double(l2_seg));
|
|
double dabs = std::abs(d);
|
|
if (dabs < d_min) {
|
|
d_min = dabs;
|
|
// Fill in an unsigned vector towards the zero iso surface.
|
|
float *l = &L[(corner_r * ncols + corner_c) << 1];
|
|
float linv = float(d_seg) / float(l2_seg);
|
|
l[0] = std::abs(float(v_seg(1)) * linv);
|
|
l[1] = std::abs(float(v_seg(0)) * linv);
|
|
#ifdef _DEBUG
|
|
double dabs2 = sqrt(l[0]*l[0]+l[1]*l[1]);
|
|
assert(std::abs(dabs-dabs2) <= 1e-4 * std::max(dabs, dabs2));
|
|
#endif /* _DEBUG */
|
|
signs[corner_r * ncols + corner_c] = ((d_seg < 0) ? 1 : 0) | 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef EDGE_GRID_DEBUG_OUTPUT
|
|
{
|
|
std::vector<uint8_t> pixels(ncols * nrows * 3, 0);
|
|
for (coord_t r = 0; r < nrows; ++ r) {
|
|
for (coord_t c = 0; c < ncols; ++ c) {
|
|
uint8_t *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3;
|
|
float d = m_signed_distance_field[r * ncols + c];
|
|
if (d != search_radius) {
|
|
float s = 255 * d / search_radius;
|
|
int is = std::max(0, std::min(255, int(floor(s + 0.5f))));
|
|
pxl[0] = 255;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255 - is;
|
|
}
|
|
else {
|
|
pxl[0] = 0;
|
|
pxl[1] = 255;
|
|
pxl[2] = 0;
|
|
}
|
|
}
|
|
}
|
|
png::write_rgb_to_file_scaled(debug_out_path("unsigned_df-%d.png", iRun), ncols, nrows, pixels, 10);
|
|
}
|
|
{
|
|
std::vector<uint8_t> pixels(ncols * nrows * 3, 0);
|
|
for (coord_t r = 0; r < nrows; ++ r) {
|
|
for (coord_t c = 0; c < ncols; ++ c) {
|
|
unsigned char *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3;
|
|
float d = m_signed_distance_field[r * ncols + c];
|
|
if (d != search_radius) {
|
|
float s = 255 * d / search_radius;
|
|
int is = std::max(0, std::min(255, int(floor(s + 0.5f))));
|
|
if ((signs[r * ncols + c] & 1) == 0) {
|
|
// Positive
|
|
pxl[0] = 255;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255 - is;
|
|
}
|
|
else {
|
|
// Negative
|
|
pxl[0] = 255 - is;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255;
|
|
}
|
|
}
|
|
else {
|
|
pxl[0] = 0;
|
|
pxl[1] = 255;
|
|
pxl[2] = 0;
|
|
}
|
|
}
|
|
}
|
|
png::write_rgb_to_file_scaled(debug_out_path("signed_df-%d.png", iRun), ncols, nrows, pixels, 10);
|
|
}
|
|
#endif // EDGE_GRID_DEBUG_OUTPUT
|
|
|
|
// 2) Propagate the signum.
|
|
#define PROPAGATE_SIGNUM_SINGLE_STEP(DELTA) do { \
|
|
size_t addr = r * ncols + c; \
|
|
unsigned char &cur_val = signs[addr]; \
|
|
if (cur_val & 4) { \
|
|
unsigned char old_val = signs[addr + (DELTA)]; \
|
|
if ((old_val & 4) == 0) \
|
|
cur_val = old_val & 1; \
|
|
} \
|
|
} while (0);
|
|
// Top to bottom propagation.
|
|
for (size_t r = 0; r < nrows; ++ r) {
|
|
if (r > 0)
|
|
for (size_t c = 0; c < ncols; ++ c)
|
|
PROPAGATE_SIGNUM_SINGLE_STEP(- int(ncols));
|
|
for (size_t c = 1; c < ncols; ++ c)
|
|
PROPAGATE_SIGNUM_SINGLE_STEP(- 1);
|
|
for (int c = int(ncols) - 2; c >= 0; -- c)
|
|
PROPAGATE_SIGNUM_SINGLE_STEP(+ 1);
|
|
}
|
|
// Bottom to top propagation.
|
|
for (int r = int(nrows) - 2; r >= 0; -- r) {
|
|
for (size_t c = 0; c < ncols; ++ c)
|
|
PROPAGATE_SIGNUM_SINGLE_STEP(+ ncols);
|
|
for (size_t c = 1; c < ncols; ++ c)
|
|
PROPAGATE_SIGNUM_SINGLE_STEP(- 1);
|
|
for (int c = int(ncols) - 2; c >= 0; -- c)
|
|
PROPAGATE_SIGNUM_SINGLE_STEP(+ 1);
|
|
}
|
|
#undef PROPAGATE_SIGNUM_SINGLE_STEP
|
|
|
|
// 3) Propagate the distance by the Danielsson chamfer metric.
|
|
// Top to bottom propagation.
|
|
PropagateDanielssonSingleStep<1, 0> danielsson_hstep(L.data(), signs.data(), ncols, m_resolution);
|
|
PropagateDanielssonSingleStep<0, 1> danielsson_vstep(L.data(), signs.data(), ncols, m_resolution);
|
|
PropagateDanielssonSingleVStep3 danielsson_vstep3(L.data(), signs.data(), ncols, m_resolution);
|
|
// Top to bottom propagation.
|
|
for (size_t r = 0; r < nrows; ++ r) {
|
|
if (r > 0)
|
|
for (size_t c = 0; c < ncols; ++ c)
|
|
danielsson_vstep(r, c, -int(ncols));
|
|
// PROPAGATE_DANIELSSON_SINGLE_VSTEP3(-int(ncols), c != 0, c + 1 != ncols);
|
|
for (size_t c = 1; c < ncols; ++ c)
|
|
danielsson_hstep(r, c, -1);
|
|
for (int c = int(ncols) - 2; c >= 0; -- c)
|
|
danielsson_hstep(r, c, +1);
|
|
}
|
|
// Bottom to top propagation.
|
|
for (int r = int(nrows) - 2; r >= 0; -- r) {
|
|
for (size_t c = 0; c < ncols; ++ c)
|
|
danielsson_vstep(r, c, +ncols);
|
|
// PROPAGATE_DANIELSSON_SINGLE_VSTEP3(+int(ncols), c != 0, c + 1 != ncols);
|
|
for (size_t c = 1; c < ncols; ++ c)
|
|
danielsson_hstep(r, c, -1);
|
|
for (int c = int(ncols) - 2; c >= 0; -- c)
|
|
danielsson_hstep(r, c, +1);
|
|
}
|
|
|
|
// Update signed distance field from absolte vectors to the iso-surface.
|
|
for (size_t r = 0; r < nrows; ++ r) {
|
|
for (size_t c = 0; c < ncols; ++ c) {
|
|
size_t addr = r * ncols + c;
|
|
float *v = &L[addr<<1];
|
|
float d = sqrt(v[0]*v[0]+v[1]*v[1]);
|
|
if (signs[addr] & 1)
|
|
d = -d;
|
|
m_signed_distance_field[addr] = d;
|
|
}
|
|
}
|
|
|
|
#ifdef EDGE_GRID_DEBUG_OUTPUT
|
|
{
|
|
std::vector<uint8_t> pixels(ncols * nrows * 3, 0);
|
|
float search_radius = float(m_resolution * 5);
|
|
for (coord_t r = 0; r < nrows; ++r) {
|
|
for (coord_t c = 0; c < ncols; ++c) {
|
|
uint8_t *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3;
|
|
uint8_t sign = signs[r * ncols + c];
|
|
switch (sign) {
|
|
case 0:
|
|
// Positive, outside of a narrow band.
|
|
pxl[0] = 0;
|
|
pxl[1] = 0;
|
|
pxl[2] = 255;
|
|
break;
|
|
case 1:
|
|
// Negative, outside of a narrow band.
|
|
pxl[0] = 255;
|
|
pxl[1] = 0;
|
|
pxl[2] = 0;
|
|
break;
|
|
case 2:
|
|
// Positive, outside of a narrow band.
|
|
pxl[0] = 100;
|
|
pxl[1] = 100;
|
|
pxl[2] = 255;
|
|
break;
|
|
case 3:
|
|
// Negative, outside of a narrow band.
|
|
pxl[0] = 255;
|
|
pxl[1] = 100;
|
|
pxl[2] = 100;
|
|
break;
|
|
case 4:
|
|
// This shall not happen. Undefined signum.
|
|
pxl[0] = 0;
|
|
pxl[1] = 255;
|
|
pxl[2] = 0;
|
|
break;
|
|
default:
|
|
// This shall not happen. Invalid signum value.
|
|
pxl[0] = 255;
|
|
pxl[1] = 255;
|
|
pxl[2] = 255;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
png::write_rgb_to_file_scaled(debug_out_path("signed_df-signs-%d.png", iRun), ncols, nrows, pixels, 10);
|
|
}
|
|
#endif // EDGE_GRID_DEBUG_OUTPUT
|
|
|
|
#ifdef EDGE_GRID_DEBUG_OUTPUT
|
|
{
|
|
std::vector<uint8_t> pixels(ncols * nrows * 3, 0);
|
|
float search_radius = float(m_resolution * 5);
|
|
for (coord_t r = 0; r < nrows; ++r) {
|
|
for (coord_t c = 0; c < ncols; ++c) {
|
|
uint8_t *pxl = pixels.data() + (((nrows - r - 1) * ncols) + c) * 3;
|
|
float d = m_signed_distance_field[r * ncols + c];
|
|
float s = 255.f * fabs(d) / search_radius;
|
|
int is = std::max(0, std::min(255, int(floor(s + 0.5f))));
|
|
if (d < 0.f) {
|
|
pxl[0] = 255;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255 - is;
|
|
}
|
|
else {
|
|
pxl[0] = 255 - is;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255;
|
|
}
|
|
}
|
|
}
|
|
png::write_rgb_to_file_scaled(debug_out_path("signed_df2-%d.png", iRun), ncols, nrows, pixels, 10);
|
|
}
|
|
#endif // EDGE_GRID_DEBUG_OUTPUT
|
|
}
|
|
|
|
float EdgeGrid::Grid::signed_distance_bilinear(const Point &pt) const
|
|
{
|
|
coord_t x = pt(0) - m_bbox.min(0);
|
|
coord_t y = pt(1) - m_bbox.min(1);
|
|
coord_t w = m_resolution * m_cols;
|
|
coord_t h = m_resolution * m_rows;
|
|
bool clamped = false;
|
|
coord_t xcl = x;
|
|
coord_t ycl = y;
|
|
if (x < 0) {
|
|
xcl = 0;
|
|
clamped = true;
|
|
} else if (x >= w) {
|
|
xcl = w - 1;
|
|
clamped = true;
|
|
}
|
|
if (y < 0) {
|
|
ycl = 0;
|
|
clamped = true;
|
|
} else if (y >= h) {
|
|
ycl = h - 1;
|
|
clamped = true;
|
|
}
|
|
|
|
coord_t cell_c = coord_t(floor(xcl / m_resolution));
|
|
coord_t cell_r = coord_t(floor(ycl / m_resolution));
|
|
float tx = float(xcl - cell_c * m_resolution) / float(m_resolution);
|
|
assert(tx >= -1e-5 && tx < 1.f + 1e-5);
|
|
float ty = float(ycl - cell_r * m_resolution) / float(m_resolution);
|
|
assert(ty >= -1e-5 && ty < 1.f + 1e-5);
|
|
size_t addr = cell_r * (m_cols + 1) + cell_c;
|
|
float f00 = m_signed_distance_field[addr];
|
|
float f01 = m_signed_distance_field[addr+1];
|
|
addr += m_cols + 1;
|
|
float f10 = m_signed_distance_field[addr];
|
|
float f11 = m_signed_distance_field[addr+1];
|
|
float f0 = (1.f - tx) * f00 + tx * f01;
|
|
float f1 = (1.f - tx) * f10 + tx * f11;
|
|
float f = (1.f - ty) * f0 + ty * f1;
|
|
|
|
if (clamped) {
|
|
if (f > 0) {
|
|
if (x < 0)
|
|
f += -x;
|
|
else if (x >= w)
|
|
f += x - w + 1;
|
|
if (y < 0)
|
|
f += -y;
|
|
else if (y >= h)
|
|
f += y - h + 1;
|
|
} else {
|
|
if (x < 0)
|
|
f -= -x;
|
|
else if (x >= w)
|
|
f -= x - w + 1;
|
|
if (y < 0)
|
|
f -= -y;
|
|
else if (y >= h)
|
|
f -= y - h + 1;
|
|
}
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
EdgeGrid::Grid::ClosestPointResult EdgeGrid::Grid::closest_point(const Point &pt, coord_t search_radius) const
|
|
{
|
|
BoundingBox bbox;
|
|
bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1));
|
|
bbox.defined = true;
|
|
// Upper boundary, round to grid and test validity.
|
|
bbox.max(0) += search_radius;
|
|
bbox.max(1) += search_radius;
|
|
ClosestPointResult result;
|
|
if (bbox.max(0) < 0 || bbox.max(1) < 0)
|
|
return result;
|
|
bbox.max(0) /= m_resolution;
|
|
bbox.max(1) /= m_resolution;
|
|
if ((size_t)bbox.max(0) >= m_cols)
|
|
bbox.max(0) = m_cols - 1;
|
|
if ((size_t)bbox.max(1) >= m_rows)
|
|
bbox.max(1) = m_rows - 1;
|
|
// Lower boundary, round to grid and test validity.
|
|
bbox.min(0) -= search_radius;
|
|
bbox.min(1) -= search_radius;
|
|
if (bbox.min(0) < 0)
|
|
bbox.min(0) = 0;
|
|
if (bbox.min(1) < 0)
|
|
bbox.min(1) = 0;
|
|
bbox.min(0) /= m_resolution;
|
|
bbox.min(1) /= m_resolution;
|
|
// Is the interval empty?
|
|
if (bbox.min(0) > bbox.max(0) ||
|
|
bbox.min(1) > bbox.max(1))
|
|
return result;
|
|
// Traverse all cells in the bounding box.
|
|
double d_min = double(search_radius);
|
|
// Signum of the distance field at pt.
|
|
int sign_min = 0;
|
|
double l2_seg_min = 1.;
|
|
for (int r = bbox.min(1); r <= bbox.max(1); ++ r) {
|
|
for (int c = bbox.min(0); c <= bbox.max(0); ++ c) {
|
|
const Cell &cell = m_cells[r * m_cols + c];
|
|
for (size_t i = cell.begin; i < cell.end; ++ i) {
|
|
const size_t contour_idx = m_cell_data[i].first;
|
|
const Slic3r::Points &pts = *m_contours[contour_idx];
|
|
size_t ipt = m_cell_data[i].second;
|
|
// End points of the line segment.
|
|
const Slic3r::Point &p1 = pts[ipt];
|
|
const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1];
|
|
const Slic3r::Point v_seg = p2 - p1;
|
|
const Slic3r::Point v_pt = pt - p1;
|
|
// dot(p2-p1, pt-p1)
|
|
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
|
// l2 of seg
|
|
int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
|
if (t_pt < 0) {
|
|
// Closest to p1.
|
|
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
|
if (dabs < d_min) {
|
|
// Previous point.
|
|
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
|
|
Slic3r::Point v_seg_prev = p1 - p0;
|
|
int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1));
|
|
if (t2_pt > 0) {
|
|
// Inside the wedge between the previous and the next segment.
|
|
d_min = dabs;
|
|
// Set the signum depending on whether the vertex is convex or reflex.
|
|
int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0));
|
|
assert(det != 0);
|
|
sign_min = (det > 0) ? 1 : -1;
|
|
result.contour_idx = contour_idx;
|
|
result.start_point_idx = ipt;
|
|
result.t = 0.;
|
|
#ifndef NDEBUG
|
|
Vec2d vfoot = (p1 - pt).cast<double>();
|
|
double dist_foot = vfoot.norm();
|
|
double dist_foot_err = dist_foot - d_min;
|
|
assert(std::abs(dist_foot_err) < 1e-7 * d_min);
|
|
#endif /* NDEBUG */
|
|
}
|
|
}
|
|
}
|
|
else if (t_pt > l2_seg) {
|
|
// Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell.
|
|
continue;
|
|
} else {
|
|
// Closest to the segment.
|
|
assert(t_pt >= 0 && t_pt <= l2_seg);
|
|
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
|
double d = double(d_seg) / sqrt(double(l2_seg));
|
|
double dabs = std::abs(d);
|
|
if (dabs < d_min) {
|
|
d_min = dabs;
|
|
sign_min = (d_seg < 0) ? -1 : ((d_seg == 0) ? 0 : 1);
|
|
l2_seg_min = l2_seg;
|
|
result.contour_idx = contour_idx;
|
|
result.start_point_idx = ipt;
|
|
result.t = t_pt;
|
|
#ifndef NDEBUG
|
|
Vec2d foot = p1.cast<double>() * (1. - result.t / l2_seg_min) + p2.cast<double>() * (result.t / l2_seg_min);
|
|
Vec2d vfoot = foot - pt.cast<double>();
|
|
double dist_foot = vfoot.norm();
|
|
double dist_foot_err = dist_foot - d_min;
|
|
assert(std::abs(dist_foot_err) < 1e-7 || std::abs(dist_foot_err) < 1e-7 * d_min);
|
|
#endif /* NDEBUG */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (result.contour_idx != size_t(-1) && d_min <= double(search_radius)) {
|
|
result.distance = d_min * sign_min;
|
|
result.t /= l2_seg_min;
|
|
assert(result.t >= 0. && result.t <= 1.);
|
|
#ifndef NDEBUG
|
|
{
|
|
const Slic3r::Points &pts = *m_contours[result.contour_idx];
|
|
const Slic3r::Point &p1 = pts[result.start_point_idx];
|
|
const Slic3r::Point &p2 = pts[(result.start_point_idx + 1 == pts.size()) ? 0 : result.start_point_idx + 1];
|
|
Vec2d vfoot;
|
|
if (result.t == 0)
|
|
vfoot = p1.cast<double>() - pt.cast<double>();
|
|
else
|
|
vfoot = p1.cast<double>() * (1. - result.t) + p2.cast<double>() * result.t - pt.cast<double>();
|
|
double dist_foot = vfoot.norm();
|
|
double dist_foot_err = dist_foot - std::abs(result.distance);
|
|
assert(std::abs(dist_foot_err) < 1e-7 || std::abs(dist_foot_err) < 1e-7 * std::abs(result.distance));
|
|
}
|
|
#endif /* NDEBUG */
|
|
} else
|
|
result = ClosestPointResult();
|
|
return result;
|
|
}
|
|
|
|
bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment) const
|
|
{
|
|
BoundingBox bbox;
|
|
bbox.min = bbox.max = Point(pt(0) - m_bbox.min(0), pt(1) - m_bbox.min(1));
|
|
bbox.defined = true;
|
|
// Upper boundary, round to grid and test validity.
|
|
bbox.max(0) += search_radius;
|
|
bbox.max(1) += search_radius;
|
|
if (bbox.max(0) < 0 || bbox.max(1) < 0)
|
|
return false;
|
|
bbox.max(0) /= m_resolution;
|
|
bbox.max(1) /= m_resolution;
|
|
if ((size_t)bbox.max(0) >= m_cols)
|
|
bbox.max(0) = m_cols - 1;
|
|
if ((size_t)bbox.max(1) >= m_rows)
|
|
bbox.max(1) = m_rows - 1;
|
|
// Lower boundary, round to grid and test validity.
|
|
bbox.min(0) -= search_radius;
|
|
bbox.min(1) -= search_radius;
|
|
if (bbox.min(0) < 0)
|
|
bbox.min(0) = 0;
|
|
if (bbox.min(1) < 0)
|
|
bbox.min(1) = 0;
|
|
bbox.min(0) /= m_resolution;
|
|
bbox.min(1) /= m_resolution;
|
|
// Is the interval empty?
|
|
if (bbox.min(0) > bbox.max(0) ||
|
|
bbox.min(1) > bbox.max(1))
|
|
return false;
|
|
// Traverse all cells in the bounding box.
|
|
double d_min = double(search_radius);
|
|
// Signum of the distance field at pt.
|
|
int sign_min = 0;
|
|
bool on_segment = false;
|
|
for (int r = bbox.min(1); r <= bbox.max(1); ++ r) {
|
|
for (int c = bbox.min(0); c <= bbox.max(0); ++ c) {
|
|
const Cell &cell = m_cells[r * m_cols + c];
|
|
for (size_t i = cell.begin; i < cell.end; ++ i) {
|
|
const Slic3r::Points &pts = *m_contours[m_cell_data[i].first];
|
|
size_t ipt = m_cell_data[i].second;
|
|
// End points of the line segment.
|
|
const Slic3r::Point &p1 = pts[ipt];
|
|
const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1];
|
|
Slic3r::Point v_seg = p2 - p1;
|
|
Slic3r::Point v_pt = pt - p1;
|
|
// dot(p2-p1, pt-p1)
|
|
int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1));
|
|
// l2 of seg
|
|
int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1));
|
|
if (t_pt < 0) {
|
|
// Closest to p1.
|
|
double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1)));
|
|
if (dabs < d_min) {
|
|
// Previous point.
|
|
const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1];
|
|
Slic3r::Point v_seg_prev = p1 - p0;
|
|
int64_t t2_pt = int64_t(v_seg_prev(0)) * int64_t(v_pt(0)) + int64_t(v_seg_prev(1)) * int64_t(v_pt(1));
|
|
if (t2_pt > 0) {
|
|
// Inside the wedge between the previous and the next segment.
|
|
d_min = dabs;
|
|
// Set the signum depending on whether the vertex is convex or reflex.
|
|
int64_t det = int64_t(v_seg_prev(0)) * int64_t(v_seg(1)) - int64_t(v_seg_prev(1)) * int64_t(v_seg(0));
|
|
assert(det != 0);
|
|
sign_min = (det > 0) ? 1 : -1;
|
|
on_segment = false;
|
|
}
|
|
}
|
|
}
|
|
else if (t_pt > l2_seg) {
|
|
// Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the same cell.
|
|
continue;
|
|
} else {
|
|
// Closest to the segment.
|
|
assert(t_pt >= 0 && t_pt <= l2_seg);
|
|
int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1));
|
|
double d = double(d_seg) / sqrt(double(l2_seg));
|
|
double dabs = std::abs(d);
|
|
if (dabs < d_min) {
|
|
d_min = dabs;
|
|
sign_min = (d_seg < 0) ? -1 : ((d_seg == 0) ? 0 : 1);
|
|
on_segment = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (d_min >= search_radius)
|
|
return false;
|
|
result_min_dist = d_min * sign_min;
|
|
if (pon_segment != NULL)
|
|
*pon_segment = on_segment;
|
|
return true;
|
|
}
|
|
|
|
bool EdgeGrid::Grid::signed_distance(const Point &pt, coord_t search_radius, coordf_t &result_min_dist) const
|
|
{
|
|
if (signed_distance_edges(pt, search_radius, result_min_dist))
|
|
return true;
|
|
if (m_signed_distance_field.empty())
|
|
return false;
|
|
result_min_dist = signed_distance_bilinear(pt);
|
|
return true;
|
|
}
|
|
|
|
Polygons EdgeGrid::Grid::contours_simplified(coord_t offset, bool fill_holes) const
|
|
{
|
|
assert(std::abs(2 * offset) < m_resolution);
|
|
|
|
typedef std::unordered_multimap<Point, int, PointHash> EndPointMapType;
|
|
// 0) Prepare a binary grid.
|
|
size_t cell_rows = m_rows + 2;
|
|
size_t cell_cols = m_cols + 2;
|
|
std::vector<char> cell_inside(cell_rows * cell_cols, false);
|
|
for (int r = 0; r < int(cell_rows); ++ r)
|
|
for (int c = 0; c < int(cell_cols); ++ c)
|
|
cell_inside[r * cell_cols + c] = cell_inside_or_crossing(r - 1, c - 1);
|
|
// Fill in empty cells, which have a left / right neighbor filled.
|
|
// Fill in empty cells, which have the top / bottom neighbor filled.
|
|
if (fill_holes) {
|
|
std::vector<char> cell_inside2(cell_inside);
|
|
for (int r = 1; r + 1 < int(cell_rows); ++ r) {
|
|
for (int c = 1; c + 1 < int(cell_cols); ++ c) {
|
|
int addr = r * cell_cols + c;
|
|
if ((cell_inside2[addr - 1] && cell_inside2[addr + 1]) ||
|
|
(cell_inside2[addr - cell_cols] && cell_inside2[addr + cell_cols]))
|
|
cell_inside[addr] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1) Collect the lines.
|
|
std::vector<Line> lines;
|
|
EndPointMapType start_point_to_line_idx;
|
|
for (int r = 0; r <= int(m_rows); ++ r) {
|
|
for (int c = 0; c <= int(m_cols); ++ c) {
|
|
int addr = (r + 1) * cell_cols + c + 1;
|
|
bool left = cell_inside[addr - 1];
|
|
bool top = cell_inside[addr - cell_cols];
|
|
bool current = cell_inside[addr];
|
|
if (left != current) {
|
|
lines.push_back(
|
|
left ?
|
|
Line(Point(c, r+1), Point(c, r )) :
|
|
Line(Point(c, r ), Point(c, r+1)));
|
|
start_point_to_line_idx.insert(std::pair<Point, int>(lines.back().a, int(lines.size()) - 1));
|
|
}
|
|
if (top != current) {
|
|
lines.push_back(
|
|
top ?
|
|
Line(Point(c , r), Point(c+1, r)) :
|
|
Line(Point(c+1, r), Point(c , r)));
|
|
start_point_to_line_idx.insert(std::pair<Point, int>(lines.back().a, int(lines.size()) - 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2) Chain the lines.
|
|
std::vector<char> line_processed(lines.size(), false);
|
|
Polygons out;
|
|
for (int i_candidate = 0; i_candidate < int(lines.size()); ++ i_candidate) {
|
|
if (line_processed[i_candidate])
|
|
continue;
|
|
Polygon poly;
|
|
line_processed[i_candidate] = true;
|
|
poly.points.push_back(lines[i_candidate].b);
|
|
int i_line_current = i_candidate;
|
|
for (;;) {
|
|
std::pair<EndPointMapType::iterator,EndPointMapType::iterator> line_range =
|
|
start_point_to_line_idx.equal_range(lines[i_line_current].b);
|
|
// The interval has to be non empty, there shall be at least one line continuing the current one.
|
|
assert(line_range.first != line_range.second);
|
|
int i_next = -1;
|
|
for (EndPointMapType::iterator it = line_range.first; it != line_range.second; ++ it) {
|
|
if (it->second == i_candidate) {
|
|
// closing the loop.
|
|
goto end_of_poly;
|
|
}
|
|
if (line_processed[it->second])
|
|
continue;
|
|
if (i_next == -1) {
|
|
i_next = it->second;
|
|
} else {
|
|
// This is a corner, where two lines meet exactly. Pick the line, which encloses a smallest angle with
|
|
// the current edge.
|
|
const Line &line_current = lines[i_line_current];
|
|
const Line &line_next = lines[it->second];
|
|
const Vector v1 = line_current.vector();
|
|
const Vector v2 = line_next.vector();
|
|
int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v2(0)) * int64_t(v1(1));
|
|
if (cross > 0) {
|
|
// This has to be a convex right angle. There is no better next line.
|
|
i_next = it->second;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
line_processed[i_next] = true;
|
|
i_line_current = i_next;
|
|
poly.points.push_back(lines[i_line_current].b);
|
|
}
|
|
end_of_poly:
|
|
out.push_back(std::move(poly));
|
|
}
|
|
|
|
// 3) Scale the polygons back into world, shrink slightly and remove collinear points.
|
|
for (size_t i = 0; i < out.size(); ++ i) {
|
|
Polygon &poly = out[i];
|
|
for (size_t j = 0; j < poly.points.size(); ++ j) {
|
|
Point &p = poly.points[j];
|
|
p(0) *= m_resolution;
|
|
p(1) *= m_resolution;
|
|
p(0) += m_bbox.min(0);
|
|
p(1) += m_bbox.min(1);
|
|
}
|
|
// Shrink the contour slightly, so if the same contour gets discretized and simplified again, one will get the same result.
|
|
// Remove collineaer points.
|
|
Points pts;
|
|
pts.reserve(poly.points.size());
|
|
for (size_t j = 0; j < poly.points.size(); ++ j) {
|
|
size_t j0 = (j == 0) ? poly.points.size() - 1 : j - 1;
|
|
size_t j2 = (j + 1 == poly.points.size()) ? 0 : j + 1;
|
|
Point v = poly.points[j2] - poly.points[j0];
|
|
if (v(0) != 0 && v(1) != 0) {
|
|
// This is a corner point. Copy it to the output contour.
|
|
Point p = poly.points[j];
|
|
p(1) += (v(0) < 0) ? - offset : offset;
|
|
p(0) += (v(1) > 0) ? - offset : offset;
|
|
pts.push_back(p);
|
|
}
|
|
}
|
|
poly.points = std::move(pts);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> EdgeGrid::Grid::intersecting_edges() const
|
|
{
|
|
std::vector<std::pair<ContourEdge, ContourEdge>> out;
|
|
// For each cell:
|
|
for (int r = 0; r < (int)m_rows; ++ r) {
|
|
for (int c = 0; c < (int)m_cols; ++ c) {
|
|
const Cell &cell = m_cells[r * m_cols + c];
|
|
// For each pair of segments in the cell:
|
|
for (size_t i = cell.begin; i != cell.end; ++ i) {
|
|
const Slic3r::Points &ipts = *m_contours[m_cell_data[i].first];
|
|
size_t ipt = m_cell_data[i].second;
|
|
// End points of the line segment and their vector.
|
|
const Slic3r::Point &ip1 = ipts[ipt];
|
|
const Slic3r::Point &ip2 = ipts[(ipt + 1 == ipts.size()) ? 0 : ipt + 1];
|
|
for (size_t j = i + 1; j != cell.end; ++ j) {
|
|
const Slic3r::Points &jpts = *m_contours[m_cell_data[j].first];
|
|
size_t jpt = m_cell_data[j].second;
|
|
// End points of the line segment and their vector.
|
|
const Slic3r::Point &jp1 = jpts[jpt];
|
|
const Slic3r::Point &jp2 = jpts[(jpt + 1 == jpts.size()) ? 0 : jpt + 1];
|
|
if (&ipts == &jpts && (&ip1 == &jp2 || &jp1 == &ip2))
|
|
// Segments of the same contour share a common vertex.
|
|
continue;
|
|
if (Geometry::segments_intersect(ip1, ip2, jp1, jp2)) {
|
|
// The two segments intersect. Add them to the output.
|
|
int jfirst = (&jpts < &ipts) || (&jpts == &ipts && jpt < ipt);
|
|
out.emplace_back(jfirst ?
|
|
std::make_pair(std::make_pair(&ipts, ipt), std::make_pair(&jpts, jpt)) :
|
|
std::make_pair(std::make_pair(&ipts, ipt), std::make_pair(&jpts, jpt)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Slic3r::sort_remove_duplicates(out);
|
|
return out;
|
|
}
|
|
|
|
bool EdgeGrid::Grid::has_intersecting_edges() const
|
|
{
|
|
// For each cell:
|
|
for (int r = 0; r < (int)m_rows; ++ r) {
|
|
for (int c = 0; c < (int)m_cols; ++ c) {
|
|
const Cell &cell = m_cells[r * m_cols + c];
|
|
// For each pair of segments in the cell:
|
|
for (size_t i = cell.begin; i != cell.end; ++ i) {
|
|
const Slic3r::Points &ipts = *m_contours[m_cell_data[i].first];
|
|
size_t ipt = m_cell_data[i].second;
|
|
// End points of the line segment and their vector.
|
|
const Slic3r::Point &ip1 = ipts[ipt];
|
|
const Slic3r::Point &ip2 = ipts[(ipt + 1 == ipts.size()) ? 0 : ipt + 1];
|
|
for (size_t j = i + 1; j != cell.end; ++ j) {
|
|
const Slic3r::Points &jpts = *m_contours[m_cell_data[j].first];
|
|
size_t jpt = m_cell_data[j].second;
|
|
// End points of the line segment and their vector.
|
|
const Slic3r::Point &jp1 = jpts[jpt];
|
|
const Slic3r::Point &jp2 = jpts[(jpt + 1 == jpts.size()) ? 0 : jpt + 1];
|
|
if (! (&ipts == &jpts && (&ip1 == &jp2 || &jp1 == &ip2)) &&
|
|
Geometry::segments_intersect(ip1, ip2, jp1, jp2))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void EdgeGrid::save_png(const EdgeGrid::Grid &grid, const BoundingBox &bbox, coord_t resolution, const char *path, size_t scale)
|
|
{
|
|
coord_t w = (bbox.max(0) - bbox.min(0) + resolution - 1) / resolution;
|
|
coord_t h = (bbox.max(1) - bbox.min(1) + resolution - 1) / resolution;
|
|
|
|
std::vector<uint8_t> pixels(w * h * 3, 0);
|
|
|
|
const coord_t search_radius = grid.resolution() * 2;
|
|
const coord_t display_blend_radius = grid.resolution() * 2;
|
|
for (coord_t r = 0; r < h; ++r) {
|
|
for (coord_t c = 0; c < w; ++ c) {
|
|
unsigned char *pxl = pixels.data() + (((h - r - 1) * w) + c) * 3;
|
|
Point pt(c * resolution + bbox.min(0), r * resolution + bbox.min(1));
|
|
coordf_t min_dist;
|
|
bool on_segment = true;
|
|
#if 0
|
|
if (grid.signed_distance_edges(pt, search_radius, min_dist, &on_segment)) {
|
|
#else
|
|
if (grid.signed_distance(pt, search_radius, min_dist)) {
|
|
#endif
|
|
float s = 255 * std::abs(min_dist) / float(display_blend_radius);
|
|
int is = std::max(0, std::min(255, int(floor(s + 0.5f))));
|
|
if (min_dist < 0) {
|
|
if (on_segment) {
|
|
pxl[0] = 255;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255 - is;
|
|
} else {
|
|
pxl[0] = 255;
|
|
pxl[1] = 0;
|
|
pxl[2] = 255 - is;
|
|
}
|
|
}
|
|
else {
|
|
if (on_segment) {
|
|
pxl[0] = 255 - is;
|
|
pxl[1] = 255 - is;
|
|
pxl[2] = 255;
|
|
} else {
|
|
pxl[0] = 255 - is;
|
|
pxl[1] = 0;
|
|
pxl[2] = 255;
|
|
}
|
|
}
|
|
} else {
|
|
pxl[0] = 0;
|
|
pxl[1] = 255;
|
|
pxl[2] = 0;
|
|
}
|
|
|
|
float gridx = float(pt(0) - grid.bbox().min(0)) / float(grid.resolution());
|
|
float gridy = float(pt(1) - grid.bbox().min(1)) / float(grid.resolution());
|
|
if (gridx >= -0.4f && gridy >= -0.4f && gridx <= grid.cols() + 0.4f && gridy <= grid.rows() + 0.4f) {
|
|
int ix = int(floor(gridx + 0.5f));
|
|
int iy = int(floor(gridy + 0.5f));
|
|
float dx = gridx - float(ix);
|
|
float dy = gridy - float(iy);
|
|
float d = sqrt(dx*dx + dy*dy) * float(grid.resolution()) / float(resolution);
|
|
if (d < 1.f) {
|
|
// Less than 1 pixel from the grid point.
|
|
float t = 0.5f + 0.5f * d;
|
|
pxl[0] = (unsigned char)(t * pxl[0]);
|
|
pxl[1] = (unsigned char)(t * pxl[1]);
|
|
pxl[2] = (unsigned char)(t * pxl[2]);
|
|
}
|
|
}
|
|
|
|
float dgrid = fabs(min_dist) / float(grid.resolution());
|
|
float igrid = floor(dgrid + 0.5f);
|
|
dgrid = std::abs(dgrid - igrid) * float(grid.resolution()) / float(resolution);
|
|
if (dgrid < 1.f) {
|
|
// Less than 1 pixel from the grid point.
|
|
float t = 0.5f + 0.5f * dgrid;
|
|
pxl[0] = (unsigned char)(t * pxl[0]);
|
|
pxl[1] = (unsigned char)(t * pxl[1]);
|
|
pxl[2] = (unsigned char)(t * pxl[2]);
|
|
if (igrid > 0.f) {
|
|
// Other than zero iso contour.
|
|
int g = pxl[1] + 255.f * (1.f - t);
|
|
pxl[1] = std::min(g, 255);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
png::write_rgb_to_file_scaled(path, w, h, pixels, scale);
|
|
}
|
|
|
|
// Find all pairs of intersectiong edges from the set of polygons.
|
|
std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> intersecting_edges(const Polygons &polygons)
|
|
{
|
|
double len = 0;
|
|
size_t cnt = 0;
|
|
BoundingBox bbox;
|
|
for (const Polygon &poly : polygons) {
|
|
if (poly.points.size() < 2)
|
|
continue;
|
|
for (size_t i = 0; i < poly.points.size(); ++ i) {
|
|
bbox.merge(poly.points[i]);
|
|
size_t j = (i == 0) ? (poly.points.size() - 1) : i - 1;
|
|
len += (poly.points[j] - poly.points[i]).cast<double>().norm();
|
|
++ cnt;
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> out;
|
|
if (cnt > 0) {
|
|
len /= double(cnt);
|
|
bbox.offset(20);
|
|
EdgeGrid::Grid grid;
|
|
grid.set_bbox(bbox);
|
|
grid.create(polygons, len);
|
|
out = grid.intersecting_edges();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// Find all pairs of intersectiong edges from the set of polygons, highlight them in an SVG.
|
|
void export_intersections_to_svg(const std::string &filename, const Polygons &polygons)
|
|
{
|
|
std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> intersections = intersecting_edges(polygons);
|
|
BoundingBox bbox = get_extents(polygons);
|
|
SVG svg(filename.c_str(), bbox);
|
|
svg.draw(union_ex(polygons), "gray", 0.25f);
|
|
svg.draw_outline(polygons, "black");
|
|
std::set<const Points*> intersecting_contours;
|
|
for (const std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge> &ie : intersections) {
|
|
intersecting_contours.insert(ie.first.first);
|
|
intersecting_contours.insert(ie.second.first);
|
|
}
|
|
// Highlight the contours with intersections.
|
|
coord_t line_width = coord_t(scale_(0.01));
|
|
for (const Points *ic : intersecting_contours) {
|
|
svg.draw_outline(Polygon(*ic), "green");
|
|
svg.draw_outline(Polygon(*ic), "black", line_width);
|
|
}
|
|
// Paint the intersections.
|
|
for (const std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge> &intersecting_edges : intersections) {
|
|
auto edge = [](const EdgeGrid::Grid::ContourEdge &e) {
|
|
return Line(e.first->at(e.second),
|
|
e.first->at((e.second + 1 == e.first->size()) ? 0 : e.second + 1));
|
|
};
|
|
svg.draw(edge(intersecting_edges.first), "red", line_width);
|
|
svg.draw(edge(intersecting_edges.second), "red", line_width);
|
|
}
|
|
svg.Close();
|
|
}
|
|
|
|
} // namespace Slic3r
|