PrusaSlicer-NonPlainar/xs/src/slic3r/GUI/3DScene.hpp
2017-09-11 09:49:59 +02:00

369 lines
16 KiB
C++

#ifndef slic3r_3DScene_hpp_
#define slic3r_3DScene_hpp_
#include "../../libslic3r/libslic3r.h"
#include "../../libslic3r/Point.hpp"
#include "../../libslic3r/Line.hpp"
#include "../../libslic3r/TriangleMesh.hpp"
#include "../../libslic3r/Utils.hpp"
namespace Slic3r {
class Print;
class PrintObject;
class Model;
class ModelObject;
// A container for interleaved arrays of 3D vertices and normals,
// possibly indexed by triangles and / or quads.
class GLIndexedVertexArray {
public:
GLIndexedVertexArray() :
vertices_and_normals_interleaved_VBO_id(0),
triangle_indices_VBO_id(0),
quad_indices_VBO_id(0)
{ this->setup_sizes(); }
GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
triangle_indices(rhs.triangle_indices),
quad_indices(rhs.quad_indices),
vertices_and_normals_interleaved_VBO_id(0),
triangle_indices_VBO_id(0),
quad_indices_VBO_id(0)
{ this->setup_sizes(); }
GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
triangle_indices(std::move(rhs.triangle_indices)),
quad_indices(std::move(rhs.quad_indices)),
vertices_and_normals_interleaved_VBO_id(0),
triangle_indices_VBO_id(0),
quad_indices_VBO_id(0)
{ this->setup_sizes(); }
GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved;
this->triangle_indices = rhs.triangle_indices;
this->quad_indices = rhs.quad_indices;
this->setup_sizes();
return *this;
}
GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved);
this->triangle_indices = std::move(rhs.triangle_indices);
this->quad_indices = std::move(rhs.quad_indices);
this->setup_sizes();
return *this;
}
// Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
std::vector<float> vertices_and_normals_interleaved;
std::vector<int> triangle_indices;
std::vector<int> quad_indices;
// When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
// the above mentioned std::vectors are cleared and the following variables keep their original length.
size_t vertices_and_normals_interleaved_size;
size_t triangle_indices_size;
size_t quad_indices_size;
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
// Zero if the VBOs are not used.
unsigned int vertices_and_normals_interleaved_VBO_id;
unsigned int triangle_indices_VBO_id;
unsigned int quad_indices_VBO_id;
void load_mesh_flat_shading(const TriangleMesh &mesh);
inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }
inline void reserve(size_t sz) {
this->vertices_and_normals_interleaved.reserve(sz * 6);
this->triangle_indices.reserve(sz * 3);
this->quad_indices.reserve(sz * 4);
}
inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
this->vertices_and_normals_interleaved.push_back(nx);
this->vertices_and_normals_interleaved.push_back(ny);
this->vertices_and_normals_interleaved.push_back(nz);
this->vertices_and_normals_interleaved.push_back(x);
this->vertices_and_normals_interleaved.push_back(y);
this->vertices_and_normals_interleaved.push_back(z);
};
inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
}
inline void push_triangle(int idx1, int idx2, int idx3) {
if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
this->triangle_indices.push_back(idx1);
this->triangle_indices.push_back(idx2);
this->triangle_indices.push_back(idx3);
};
inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
this->quad_indices.push_back(idx1);
this->quad_indices.push_back(idx2);
this->quad_indices.push_back(idx3);
this->quad_indices.push_back(idx4);
};
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool use_VBOs);
// Release the geometry data, release OpenGL VBOs.
void release_geometry();
// Render either using an immediate mode, or the VBOs.
void render() const;
void render(const std::pair<size_t, size_t> &tverts_range, const std::pair<size_t, size_t> &qverts_range) const;
// Is there any geometry data stored?
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
// Is this object indexed, or is it just a set of triangles?
bool indexed() const { return ! this->empty() && this->triangle_indices_size + this->quad_indices_size > 0; }
void clear() {
this->vertices_and_normals_interleaved.clear();
this->triangle_indices.clear();
this->quad_indices.clear();
this->setup_sizes();
}
// Shrink the internal storage to tighly fit the data stored.
void shrink_to_fit() {
if (! this->has_VBOs())
this->setup_sizes();
this->vertices_and_normals_interleaved.shrink_to_fit();
this->triangle_indices.shrink_to_fit();
this->quad_indices.shrink_to_fit();
}
BoundingBoxf3 bounding_box() const {
BoundingBoxf3 bbox;
if (! this->vertices_and_normals_interleaved.empty()) {
bbox.min.x = bbox.max.x = this->vertices_and_normals_interleaved[3];
bbox.min.y = bbox.max.y = this->vertices_and_normals_interleaved[4];
bbox.min.z = bbox.max.z = this->vertices_and_normals_interleaved[5];
for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) {
const float *verts = this->vertices_and_normals_interleaved.data() + i;
bbox.min.x = std::min<coordf_t>(bbox.min.x, verts[0]);
bbox.min.y = std::min<coordf_t>(bbox.min.y, verts[1]);
bbox.min.z = std::min<coordf_t>(bbox.min.z, verts[2]);
bbox.max.x = std::max<coordf_t>(bbox.max.x, verts[0]);
bbox.max.y = std::max<coordf_t>(bbox.max.y, verts[1]);
bbox.max.z = std::max<coordf_t>(bbox.max.z, verts[2]);
}
}
return bbox;
}
private:
inline void setup_sizes() {
vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
triangle_indices_size = this->triangle_indices.size();
quad_indices_size = this->quad_indices.size();
}
};
class GLTexture
{
public:
GLTexture() : width(0), height(0), levels(0), cells(0) {}
// Texture data
std::vector<char> data;
// Width of the texture, top level.
size_t width;
// Height of the texture, top level.
size_t height;
// For how many levels of detail is the data allocated?
size_t levels;
// Number of texture cells allocated for the height texture.
size_t cells;
};
class GLVolume {
public:
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f) :
composite_id(-1),
select_group_id(-1),
drag_group_id(-1),
selected(false),
hover(false),
tverts_range(0, size_t(-1)),
qverts_range(0, size_t(-1))
{
color[0] = r;
color[1] = g;
color[2] = b;
color[3] = a;
}
GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
std::vector<int> load_object(
const ModelObject *model_object,
const std::vector<int> &instance_idxs,
const std::string &color_by,
const std::string &select_by,
const std::string &drag_by);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, bool use_VBOs);
// Bounding box of this volume, in unscaled coordinates.
BoundingBoxf3 bounding_box;
// Offset of the volume to be rendered.
Pointf3 origin;
// Color of the triangles / quads held by this volume.
float color[4];
// An ID containing the object ID, volume ID and instance ID.
int composite_id;
// An ID for group selection. It may be the same for all meshes of all object instances, or for just a single object instance.
int select_group_id;
// An ID for group dragging. It may be the same for all meshes of all object instances, or for just a single object instance.
int drag_group_id;
// Is this object selected?
bool selected;
// Boolean: Is mouse over this object?
bool hover;
// Interleaved triangles & normals with indexed triangles & quads.
GLIndexedVertexArray indexed_vertex_array;
// Ranges of triangle and quad indices to be rendered.
std::pair<size_t, size_t> tverts_range;
std::pair<size_t, size_t> qverts_range;
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
// of the extrusions per layer.
std::vector<coordf_t> print_zs;
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
std::vector<size_t> offsets;
int object_idx() const { return this->composite_id / 1000000; }
int volume_idx() const { return (this->composite_id / 1000) % 1000; }
int instance_idx() const { return this->composite_id % 1000; }
BoundingBoxf3 transformed_bounding_box() const { BoundingBoxf3 bb = this->bounding_box; bb.translate(this->origin); return bb; }
bool empty() const { return this->indexed_vertex_array.empty(); }
bool indexed() const { return this->indexed_vertex_array.indexed(); }
void set_range(coordf_t low, coordf_t high);
void render() const;
void finalize_geometry(bool use_VBOs) { this->indexed_vertex_array.finalize_geometry(use_VBOs); }
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
/************************************************ Layer height texture ****************************************************/
std::shared_ptr<GLTexture> layer_height_texture;
bool has_layer_height_texture() const
{ return this->layer_height_texture.get() != nullptr; }
size_t layer_height_texture_width() const
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->width; }
size_t layer_height_texture_height() const
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->height; }
size_t layer_height_texture_cells() const
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->cells; }
void* layer_height_texture_data_ptr_level0() {
return (layer_height_texture.get() == nullptr) ? 0 :
(void*)layer_height_texture->data.data();
}
void* layer_height_texture_data_ptr_level1() {
return (layer_height_texture.get() == nullptr) ? 0 :
(void*)(layer_height_texture->data.data() + layer_height_texture->width * layer_height_texture->height * 4);
}
double layer_height_texture_z_to_row_id() const {
return (this->layer_height_texture.get() == nullptr) ? 0. :
double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * bounding_box.max.z);
}
void generate_layer_height_texture(PrintObject *print_object, bool force);
};
class GLVolumeCollection
{
public:
std::vector<GLVolume*> volumes;
GLVolumeCollection() {};
~GLVolumeCollection() { clear(); };
std::vector<int> load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
const std::string &select_by,
const std::string &drag_by,
bool use_VBOs);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, bool use_VBOs);
// Render the volumes by OpenGL.
void render_VBOs() const;
void render_legacy() const;
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool use_VBOs) { for (auto *v : volumes) v->finalize_geometry(use_VBOs); }
// Release the geometry data assigned to the volumes.
// If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
// Clear the geometry
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
bool empty() const { return volumes.empty(); }
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
private:
GLVolumeCollection(const GLVolumeCollection &other);
GLVolumeCollection& operator=(const GLVolumeCollection &);
};
class _3DScene
{
public:
static void _glew_init();
static void _load_print_toolpaths(
const Print *print,
GLVolumeCollection *volumes,
const std::vector<std::string> &tool_colors,
bool use_VBOs);
static void _load_print_object_toolpaths(
const PrintObject *print_object,
GLVolumeCollection *volumes,
const std::vector<std::string> &tool_colors,
bool use_VBOs);
static void _load_wipe_tower_toolpaths(
const Print *print,
GLVolumeCollection *volumes,
const std::vector<std::string> &tool_colors_str,
bool use_VBOs);
};
}
#endif