PrusaSlicer-NonPlainar/src/libslic3r/SLAPrint.cpp

491 lines
17 KiB
C++

#include "SLAPrint.hpp"
#include "SLA/SLASupportTree.hpp"
#include "SLA/SLABasePool.hpp"
#include <tbb/parallel_for.h>
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
#include "I18N.hpp"
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
using SlicedModel = SlicedSupports;
using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
class SLAPrintObject::SupportData {
public:
sla::EigenMesh3D emesh; // index-triangle representation
sla::PointSet support_points; // all the support points (manual/auto)
SupportTreePtr support_tree_ptr; // the supports
SlicedSupports support_slices; // sliced supports
};
namespace {
const std::array<unsigned, slaposCount> OBJ_STEP_LEVELS =
{
0,
20,
30,
50,
70,
90
};
const std::array<std::string, slaposCount> OBJ_STEP_LABELS =
{
L("Slicing model"), // slaposObjectSlice,
L("Generating islands"), // slaposSupportIslands,
L("Scanning model structure"), // slaposSupportPoints,
L("Generating support tree"), // slaposSupportTree,
L("Generating base pool"), // slaposBasePool,
L("Slicing supports") // slaposSliceSupports,
};
const std::array<unsigned, slapsCount> PRINT_STEP_LEVELS =
{
// This is after processing all the Print objects, so we start from 50%
50, // slapsRasterize
90, // slapsValidate
};
const std::array<std::string, slapsCount> PRINT_STEP_LABELS =
{
L("Rasterizing layers"), // slapsRasterize
L("Validating"), // slapsValidate
};
}
void SLAPrint::clear()
{
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (SLAPrintObject *object : m_objects) delete object;
m_objects.clear();
}
SLAPrint::ApplyStatus SLAPrint::apply(const Model &model,
const DynamicPrintConfig &config_in)
{
// if (m_objects.empty())
// return APPLY_STATUS_UNCHANGED;
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
if(m_objects.empty() && model.objects.empty())
return APPLY_STATUS_UNCHANGED;
// Temporary: just to have to correct layer height for the rasterization
DynamicPrintConfig config(config_in);
config.normalize();
auto lh = config.opt<ConfigOptionFloat>("layer_height");
// Temporary quick fix, just invalidate everything.
{
for (SLAPrintObject *print_object : m_objects) {
print_object->invalidate_all_steps();
delete print_object;
}
m_objects.clear();
this->invalidate_all_steps();
// Copy the model by value (deep copy),
// keep the Model / ModelObject / ModelInstance / ModelVolume IDs.
m_model.assign_copy(model);
// Generate new SLAPrintObjects.
for (ModelObject *model_object : m_model.objects) {
auto po = new SLAPrintObject(this, model_object);
po->m_config.layer_height.set(lh);
m_objects.emplace_back(po);
for (ModelInstance *oinst : model_object->instances) {
Point tr = Point::new_scale(oinst->get_offset()(X),
oinst->get_offset()(Y));
auto rotZ = float(oinst->get_rotation()(Z));
po->m_instances.emplace_back(oinst->id(), tr, rotZ);
}
}
}
return APPLY_STATUS_INVALIDATED;
}
void SLAPrint::process()
{
using namespace sla;
// Assumption: at this point the print objects should be populated only with
// the model objects we have to process and the instances are also filtered
// shortcut to initial layer height
auto ilh = float(m_material_config.initial_layer_height.getFloat());
// Slicing the model object. This method is oversimplified and needs to
// be compared with the fff slicing algorithm for verification
auto slice_model = [this, ilh](SLAPrintObject& po) {
auto lh = float(po.m_config.layer_height.getFloat());
TriangleMesh mesh = po.transformed_mesh();
TriangleMeshSlicer slicer(&mesh);
auto bb3d = mesh.bounding_box();
auto H = bb3d.max(Z) - bb3d.min(Z);
auto gnd = float(bb3d.min(Z));
std::vector<float> heights = {gnd};
for(float h = gnd + ilh; h < gnd + H; h += lh) heights.emplace_back(h);
auto& layers = po.m_model_slices;
slicer.slice(heights, &layers, [this](){
throw_if_canceled();
});
};
auto support_points = [](SLAPrintObject& po) {
ModelObject& mo = *po.m_model_object;
if(!mo.sla_support_points.empty()) {
po.m_supportdata.reset(new SLAPrintObject::SupportData());
po.m_supportdata->emesh = sla::to_eigenmesh(po.transformed_mesh());
po.m_supportdata->support_points =
sla::to_point_set(po.transformed_support_points());
}
// for(SLAPrintObject *po : pobjects) {
// TODO: calculate automatic support points
// po->m_supportdata->slice_cache contains the slices at this point
//}
};
// In this step we create the supports
auto support_tree = [this](SLAPrintObject& po) {
if(!po.m_supportdata) return;
auto& emesh = po.m_supportdata->emesh;
auto& pts = po.m_supportdata->support_points; // nowhere filled yet
try {
SupportConfig scfg; // TODO fill or replace with po.m_config
sla::Controller ctl;
ctl.statuscb = [this](unsigned st, const std::string& msg) {
unsigned stinit = OBJ_STEP_LEVELS[slaposSupportTree];
double d = (OBJ_STEP_LEVELS[slaposBasePool] - stinit) / 100.0;
set_status(unsigned(stinit + st*d), msg);
};
ctl.stopcondition = [this](){ return canceled(); };
ctl.cancelfn = [this]() { throw_if_canceled(); };
po.m_supportdata->support_tree_ptr.reset(
new SLASupportTree(pts, emesh, scfg, ctl));
} catch(sla::SLASupportsStoppedException&) {
// no need to rethrow
// throw_if_canceled();
}
};
// This step generates the sla base pad
auto base_pool = [](SLAPrintObject& po) {
// this step can only go after the support tree has been created
// and before the supports had been sliced. (or the slicing has to be
// repeated)
if(po.is_step_done(slaposSupportTree) &&
po.m_supportdata &&
po.m_supportdata->support_tree_ptr)
{
double wt = po.m_config.pad_wall_thickness.getFloat();
double h = po.m_config.pad_wall_height.getFloat();
double md = po.m_config.pad_max_merge_distance.getFloat();
double er = po.m_config.pad_edge_radius.getFloat();
double lh = po.m_config.layer_height.getFloat();
double elevation = po.m_config.support_object_elevation.getFloat();
sla::ExPolygons bp;
if(elevation < h/2)
sla::base_plate(po.transformed_mesh(), bp,
float(h/2), float(lh));
po.m_supportdata->support_tree_ptr->add_pad(bp, wt, h, md, er);
}
};
// Slicing the support geometries similarly to the model slicing procedure.
// If the pad had been added previously (see step "base_pool" than it will
// be part of the slices)
auto slice_supports = [ilh](SLAPrintObject& po) {
auto& sd = po.m_supportdata;
if(sd && sd->support_tree_ptr) {
auto lh = float(po.m_config.layer_height.getFloat());
sd->support_slices = sd->support_tree_ptr->slice(lh, ilh);
}
};
// Rasterizing the model objects, and their supports
auto rasterize = [this, ilh]() {
using Layer = sla::ExPolygons;
using LayerCopies = std::vector<SLAPrintObject::Instance>;
struct LayerRef {
std::reference_wrapper<const Layer> lref;
std::reference_wrapper<const LayerCopies> copies;
LayerRef(const Layer& lyr, const LayerCopies& cp) :
lref(std::cref(lyr)), copies(std::cref(cp)) {}
};
using LayerRefs = std::vector<LayerRef>;
// layers according to quantized height levels
std::map<long long, LayerRefs> levels;
// For all print objects, go through its initial layers and place them
// into the layers hash
for(SLAPrintObject *o : m_objects) {
double gndlvl = o->transformed_mesh().bounding_box().min(Z);
double lh = o->m_config.layer_height.getFloat();
SlicedModel & oslices = o->m_model_slices;
for(int i = 0; i < oslices.size(); ++i) {
int a = i == 0 ? 0 : 1;
int b = i == 0 ? 0 : i - 1;
double h = gndlvl + ilh * a + b * lh;
long long lyridx = static_cast<long long>(scale_(h));
auto& lyrs = levels[lyridx]; // this initializes a new record
lyrs.emplace_back(oslices[i], o->m_instances);
}
if(o->m_supportdata) { // deal with the support slices if present
auto& sslices = o->m_supportdata->support_slices;
double el = o->m_config.support_object_elevation.getFloat();
//TODO: remove next line:
el = SupportConfig().object_elevation_mm;
for(int i = 0; i < sslices.size(); ++i) {
int a = i == 0 ? 0 : 1;
int b = i == 0 ? 0 : i - 1;
double h = gndlvl - el + ilh * a + b * lh;
long long lyridx = static_cast<long long>(scale_(h));
auto& lyrs = levels[lyridx];
lyrs.emplace_back(sslices[i], o->m_instances);
}
}
}
if(canceled()) return;
// collect all the keys
std::vector<long long> keys; keys.reserve(levels.size());
for(auto& e : levels) keys.emplace_back(e.first);
{ // create a raster printer for the current print parameters
// I don't know any better
auto& ocfg = m_objects.front()->m_config;
auto& matcfg = m_material_config;
auto& printcfg = m_printer_config;
double w = printcfg.display_width.getFloat();
double h = printcfg.display_height.getFloat();
unsigned pw = printcfg.display_pixels_x.getInt();
unsigned ph = printcfg.display_pixels_y.getInt();
double lh = ocfg.layer_height.getFloat();
double exp_t = matcfg.exposure_time.getFloat();
double iexp_t = matcfg.initial_exposure_time.getFloat();
m_printer.reset(new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t));
}
// Allocate space for all the layers
SLAPrinter& printer = *m_printer;
auto lvlcnt = unsigned(levels.size());
printer.layers(lvlcnt);
// TODO exclusive progress indication for this step would be good
// as it is the longest of all. It would require synchronization
// in the parallel processing.
// procedure to process one height level. This will run in parallel
auto lvlfn = [this, &keys, &levels, &printer](unsigned level_id) {
if(canceled()) return;
LayerRefs& lrange = levels[keys[level_id]];
// Switch to the appropriate layer in the printer
printer.begin_layer(level_id);
for(auto& lyrref : lrange) { // for all layers in the current level
if(canceled()) break;
const Layer& sl = lyrref.lref; // get the layer reference
const LayerCopies& copies = lyrref.copies;
// Draw all the polygons in the slice to the actual layer.
for(auto& cp : copies) {
for(ExPolygon slice : sl) {
slice.translate(cp.shift(X), cp.shift(Y));
slice.rotate(cp.rotation);
printer.draw_polygon(slice, level_id);
}
}
}
// Finish the layer for later saving it.
printer.finish_layer(level_id);
};
// last minute escape
if(canceled()) return;
// Sequential version (for testing)
// for(unsigned l = 0; l < lvlcnt; ++l) process_level(l);
// Print all the layers in parallel
tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
};
using slaposFn = std::function<void(SLAPrintObject&)>;
using slapsFn = std::function<void(void)>;
std::array<SLAPrintObjectStep, slaposCount> objectsteps = {
slaposObjectSlice,
slaposSupportIslands,
slaposSupportPoints,
slaposSupportTree,
slaposBasePool,
slaposSliceSupports
};
std::array<slaposFn, slaposCount> pobj_program =
{
slice_model,
[](SLAPrintObject&){}, // slaposSupportIslands now empty
support_points,
support_tree,
base_pool,
slice_supports
};
std::array<slapsFn, slapsCount> print_program =
{
rasterize,
[](){} // validate
};
const unsigned min_objstatus = 0;
const unsigned max_objstatus = PRINT_STEP_LEVELS[slapsRasterize];
const size_t objcount = m_objects.size();
const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0);
for(SLAPrintObject * po : m_objects) {
for(size_t s = 0; s < pobj_program.size(); ++s) {
auto currentstep = objectsteps[s];
// Cancellation checking. Each step will check for cancellation
// on its own and return earlier gracefully. Just after it returns
// execution gets to this point and throws the canceled signal.
throw_if_canceled();
if(po->m_stepmask[s] && !po->is_step_done(currentstep)) {
unsigned st = OBJ_STEP_LEVELS[currentstep];
st = unsigned(min_objstatus + st * ostepd);
set_status(st, OBJ_STEP_LABELS[currentstep]);
po->set_started(currentstep);
pobj_program[s](*po);
po->set_done(currentstep);
}
}
}
std::array<SLAPrintStep, slapsCount> printsteps = {
slapsRasterize, slapsValidate
};
// this would disable the rasterization step
// m_stepmask[slapsRasterize] = false;
for(size_t s = 0; s < print_program.size(); ++s) {
auto currentstep = printsteps[s];
throw_if_canceled();
if(m_stepmask[s] && !is_step_done(currentstep)) {
set_status(PRINT_STEP_LEVELS[currentstep],
PRINT_STEP_LABELS[currentstep]);
set_started(currentstep);
print_program[s]();
set_done(currentstep);
}
}
// If everything vent well
set_status(100, L("Slicing done"));
}
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
Inherited(print, model_object),
m_stepmask(slaposCount, true)
{
}
SLAPrintObject::~SLAPrintObject() {}
TriangleMesh SLAPrintObject::support_mesh() const
{
TriangleMesh trm;
if(m_supportdata && m_supportdata->support_tree_ptr)
m_supportdata->support_tree_ptr->merged_mesh(trm);
// TODO: is this necessary?
trm.repair();
return trm;
}
TriangleMesh SLAPrintObject::pad_mesh() const
{
if(!m_supportdata || !m_supportdata->support_tree_ptr) return {};
return m_supportdata->support_tree_ptr->get_pad();
}
const TriangleMesh &SLAPrintObject::transformed_mesh() const {
// we need to transform the raw mesh...
// currently all the instances share the same x and y rotation and scaling
// so we have to extract those from e.g. the first instance and apply to the
// raw mesh. This is also true for the support points.
// BUT: when the support structure is spawned for each instance than it has
// to omit the X, Y rotation and scaling as those have been already applied
// or apply an inverse transformation on the support structure after it
// has been created.
if(m_trmesh_valid) return m_transformed_rmesh;
m_transformed_rmesh = m_model_object->raw_mesh();
m_transformed_rmesh.transform(m_trafo);
m_trmesh_valid = true;
return m_transformed_rmesh;
}
std::vector<Vec3d> SLAPrintObject::transformed_support_points() const
{
assert(m_model_object != nullptr);
auto& spts = m_model_object->sla_support_points;
// this could be cached as well
std::vector<Vec3d> ret; ret.reserve(spts.size());
for(auto& sp : spts) ret.emplace_back( trafo() * Vec3d(sp.cast<double>()));
return ret;
}
} // namespace Slic3r