dd59945098
Improvement of the infill path planning. Regression fix of Gyroid infill crashes. Some unit tests for elephant foot and path planning.
419 lines
17 KiB
C++
419 lines
17 KiB
C++
#include <catch2/catch.hpp>
|
|
|
|
#include "libslic3r/Point.hpp"
|
|
#include "libslic3r/BoundingBox.hpp"
|
|
#include "libslic3r/Polygon.hpp"
|
|
#include "libslic3r/Polyline.hpp"
|
|
#include "libslic3r/Line.hpp"
|
|
#include "libslic3r/Geometry.hpp"
|
|
#include "libslic3r/ClipperUtils.hpp"
|
|
#include "libslic3r/ShortestPath.hpp"
|
|
|
|
using namespace Slic3r;
|
|
|
|
TEST_CASE("Polygon::contains works properly", "[Geometry]"){
|
|
// this test was failing on Windows (GH #1950)
|
|
Slic3r::Polygon polygon(std::vector<Point>({
|
|
Point(207802834,-57084522),
|
|
Point(196528149,-37556190),
|
|
Point(173626821,-25420928),
|
|
Point(171285751,-21366123),
|
|
Point(118673592,-21366123),
|
|
Point(116332562,-25420928),
|
|
Point(93431208,-37556191),
|
|
Point(82156517,-57084523),
|
|
Point(129714478,-84542120),
|
|
Point(160244873,-84542120)
|
|
}));
|
|
Point point(95706562, -57294774);
|
|
REQUIRE(polygon.contains(point));
|
|
}
|
|
|
|
SCENARIO("Intersections of line segments", "[Geometry]"){
|
|
GIVEN("Integer coordinates"){
|
|
Line line1(Point(5,15),Point(30,15));
|
|
Line line2(Point(10,20), Point(10,10));
|
|
THEN("The intersection is valid"){
|
|
Point point;
|
|
line1.intersection(line2,&point);
|
|
REQUIRE(Point(10,15) == point);
|
|
}
|
|
}
|
|
|
|
GIVEN("Scaled coordinates"){
|
|
Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
|
|
Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
|
|
THEN("There is still an intersection"){
|
|
Point point;
|
|
REQUIRE(line1.intersection(line2,&point));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Tests for unused methods still written in perl
|
|
{
|
|
my $polygon = Slic3r::Polygon->new(
|
|
[45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800],
|
|
[43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600],
|
|
[75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500],
|
|
[107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300],
|
|
[82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500],
|
|
[285273900, 461246400], [254081000, 515273900],
|
|
);
|
|
|
|
# this points belongs to $polyline
|
|
# note: it's actually a vertex, while we should better check an intermediate point
|
|
my $point = Slic3r::Point->new(104577600, 327748400);
|
|
|
|
local $Slic3r::Geometry::epsilon = 1E-5;
|
|
is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp,
|
|
[ [107014700, 340000000], [104577600, 327748400] ],
|
|
'polygon_segment_having_point';
|
|
}
|
|
{
|
|
auto point = Point(736310778.185108, 5017423926.8924);
|
|
auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000));
|
|
//is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
|
|
}
|
|
|
|
// Possible to delete
|
|
{
|
|
//my $p1 = [10, 10];
|
|
//my $p2 = [10, 20];
|
|
//my $p3 = [10, 30];
|
|
//my $p4 = [20, 20];
|
|
//my $p5 = [0, 20];
|
|
|
|
THEN("Points in a line give the correct angles"){
|
|
//is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points';
|
|
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
|
|
}
|
|
THEN("Left turns give the correct angle"){
|
|
//is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points';
|
|
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points';
|
|
}
|
|
THEN("Right turns give the correct angle"){
|
|
//is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points';
|
|
//is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points';
|
|
}
|
|
//my $p1 = [30, 30];
|
|
//my $p2 = [20, 20];
|
|
//my $p3 = [10, 10];
|
|
//my $p4 = [30, 10];
|
|
|
|
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
|
|
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points';
|
|
//is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points';
|
|
}
|
|
|
|
SCENARIO("polygon_is_convex works"){
|
|
GIVEN("A square of dimension 10"){
|
|
//my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
|
|
THEN("It is not convex clockwise"){
|
|
//is polygon_is_convex($cw_square), 0, 'cw square is not convex';
|
|
}
|
|
THEN("It is convex counter-clockwise"){
|
|
//is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
|
|
}
|
|
|
|
}
|
|
GIVEN("A concave polygon"){
|
|
//my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
|
|
THEN("It is concave"){
|
|
//is polygon_is_convex($convex1), 0, 'concave polygon';
|
|
}
|
|
}
|
|
}*/
|
|
|
|
|
|
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
|
|
Slic3r::Polyline polyline;
|
|
polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
|
|
REQUIRE(polyline.lines().at(0).a == Point(0,0));
|
|
REQUIRE(polyline.lines().at(0).b == Point(10,0));
|
|
REQUIRE(polyline.lines().at(1).a == Point(10,0));
|
|
REQUIRE(polyline.lines().at(1).b == Point(20,0));
|
|
}
|
|
|
|
TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
|
|
Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
|
|
Slic3r::Polyline split = polygon.split_at_index(1);
|
|
REQUIRE(split.points[0]==Point(10,0));
|
|
REQUIRE(split.points[1]==Point(5,5));
|
|
REQUIRE(split.points[2]==Point(0,0));
|
|
REQUIRE(split.points[3]==Point(10,0));
|
|
}
|
|
|
|
|
|
TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
|
|
BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
|
|
bb.scale(2);
|
|
REQUIRE(bb.min == Point(0,2));
|
|
REQUIRE(bb.max == Point(40,4));
|
|
}
|
|
|
|
|
|
TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
|
|
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
|
|
Slic3r::Polygon area = offset(tmp,5).at(0);
|
|
REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
|
|
}
|
|
|
|
SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
|
|
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
|
|
Vec2d expected_center(-6, 0);
|
|
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
|
|
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
|
|
|
|
WHEN("Circle fit is called on the entire array") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample);
|
|
THEN("A center point of -6,0 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the first four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
|
THEN("A center point of -6,0 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the middle four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
|
THEN("A center point of -6,0 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
}
|
|
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
|
|
Vec2d expected_center(-3, 9);
|
|
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
|
|
Vec2d(0, 6.0),
|
|
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
|
|
|
|
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
|
|
|
|
|
|
WHEN("Circle fit is called on the entire array") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample);
|
|
THEN("A center point of 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the first four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
|
THEN("A center point of 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the middle four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
|
THEN("A center point of 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
}
|
|
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
|
|
Point expected_center { Point::new_scale(-3, 9)};
|
|
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
|
|
Point::new_scale(0, 6.0),
|
|
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
|
|
|
|
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
|
|
|
|
|
|
WHEN("Circle fit is called on the entire array") {
|
|
Point result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample);
|
|
THEN("A center point of scaled 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the first four points") {
|
|
Point result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
|
THEN("A center point of scaled 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the middle four points") {
|
|
Point result_center(0,0);
|
|
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
|
THEN("A center point of scaled 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SCENARIO("Path chaining", "[Geometry]") {
|
|
GIVEN("A path") {
|
|
std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
|
|
THEN("Chained with no diagonals (thus 26 units long)") {
|
|
std::vector<Points::size_type> indices = chain_points(points);
|
|
for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
|
|
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
|
|
REQUIRE(std::abs(dist-26) <= EPSILON);
|
|
}
|
|
}
|
|
}
|
|
GIVEN("Loop pieces") {
|
|
Point a { 2185796, 19058485 };
|
|
Point b { 3957902, 18149382 };
|
|
Point c { 2912841, 18790564 };
|
|
Point d { 2831848, 18832390 };
|
|
Point e { 3179601, 18627769 };
|
|
Point f { 3137952, 18653370 };
|
|
Polylines polylines = { { a, b },
|
|
{ c, d },
|
|
{ e, f },
|
|
{ d, a },
|
|
{ f, c },
|
|
{ b, e } };
|
|
Polylines chained = chain_polylines(polylines, &a);
|
|
THEN("Connected without a gap") {
|
|
for (size_t i = 0; i < chained.size(); ++i) {
|
|
const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
|
|
const Polyline &pl2 = chained[i];
|
|
REQUIRE(pl1.points.back() == pl2.points.front());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SCENARIO("Line distances", "[Geometry]"){
|
|
GIVEN("A line"){
|
|
Line line(Point(0, 0), Point(20, 0));
|
|
THEN("Points on the line segment have 0 distance"){
|
|
REQUIRE(line.distance_to(Point(0, 0)) == 0);
|
|
REQUIRE(line.distance_to(Point(20, 0)) == 0);
|
|
REQUIRE(line.distance_to(Point(10, 0)) == 0);
|
|
|
|
}
|
|
THEN("Points off the line have the appropriate distance"){
|
|
REQUIRE(line.distance_to(Point(10, 10)) == 10);
|
|
REQUIRE(line.distance_to(Point(50, 0)) == 30);
|
|
}
|
|
}
|
|
}
|
|
|
|
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
|
GIVEN(("A Square with dimension 100")){
|
|
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
|
Point(100,100),
|
|
Point(200,100),
|
|
Point(200,200),
|
|
Point(100,200)}));
|
|
THEN("It has 4 convex points counterclockwise"){
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
|
}
|
|
THEN("It has 4 concave points clockwise"){
|
|
square.make_clockwise();
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 4);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 0);
|
|
}
|
|
}
|
|
GIVEN("A Square with an extra colinearvertex"){
|
|
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
|
Point(150,100),
|
|
Point(200,100),
|
|
Point(200,200),
|
|
Point(100,200),
|
|
Point(100,100)}));
|
|
THEN("It has 4 convex points counterclockwise"){
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
|
}
|
|
}
|
|
GIVEN("A Square with an extra collinear vertex in different order"){
|
|
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
|
Point(200,200),
|
|
Point(100,200),
|
|
Point(100,100),
|
|
Point(150,100),
|
|
Point(200,100)}));
|
|
THEN("It has 4 convex points counterclockwise"){
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
|
}
|
|
}
|
|
|
|
GIVEN("A triangle"){
|
|
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
|
Point(16000170,26257364),
|
|
Point(714223,461012),
|
|
Point(31286371,461008)
|
|
}));
|
|
THEN("it has three convex vertices"){
|
|
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
|
}
|
|
}
|
|
|
|
GIVEN("A triangle with an extra collinear point"){
|
|
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
|
Point(16000170,26257364),
|
|
Point(714223,461012),
|
|
Point(20000000,461012),
|
|
Point(31286371,461012)
|
|
}));
|
|
THEN("it has three convex vertices"){
|
|
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
|
}
|
|
}
|
|
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
|
|
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
|
|
// if epsilon is not used.
|
|
auto polygon = Slic3r::Polygon(std::vector<Point>({
|
|
Point(60246458,14802768),Point(64477191,12360001),
|
|
Point(63727343,11060995),Point(64086449,10853608),
|
|
Point(66393722,14850069),Point(66034704,15057334),
|
|
Point(65284646,13758387),Point(61053864,16200839),
|
|
Point(69200258,30310849),Point(62172547,42483120),
|
|
Point(61137680,41850279),Point(67799985,30310848),
|
|
Point(51399866,1905506),Point(38092663,1905506),
|
|
Point(38092663,692699),Point(52100125,692699)
|
|
}));
|
|
THEN("the correct number of points are detected"){
|
|
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
|
|
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
|
|
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
|
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
|
|
}));
|
|
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
|
|
}
|
|
|
|
SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
|
|
GIVEN(("square")){
|
|
Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
|
|
Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
|
|
SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
|
|
}
|
|
SECTION("arrange returns expected number of positions") {
|
|
Pointfs positions;
|
|
Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
|
|
REQUIRE(positions.size() == 4);
|
|
}
|
|
SECTION("directions_parallel") {
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
|
|
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
|
|
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
|
|
}
|
|
}
|