PrusaSlicer-NonPlainar/tests/fff_print/test_multi.cpp
Lukas Matena 98fea2f6ee Wipe tower: use GCode::set_extruder, allow ooze prevention:
this removes duplicated code and fixes toolchange retraction
The ooze prevention part needs further work, now it does not
work as advertised (the tall skirt)
2023-01-26 07:28:37 +01:00

269 lines
11 KiB
C++

#include <catch2/catch.hpp>
#include <numeric>
#include <sstream>
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/libslic3r.h"
#include "test_data.hpp"
using namespace Slic3r;
using namespace std::literals;
SCENARIO("Basic tests", "[Multi]")
{
WHEN("Slicing multi-material print with non-consecutive extruders") {
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 },
{
{ "nozzle_diameter", "0.6, 0.6, 0.6, 0.6" },
{ "extruder", 2 },
{ "infill_extruder", 4 },
{ "support_material_extruder", 0 }
});
THEN("Sliced successfully") {
REQUIRE(! gcode.empty());
}
THEN("T3 toolchange command found") {
bool T1_found = gcode.find("\nT3\n") != gcode.npos;
REQUIRE(T1_found);
}
}
WHEN("Slicing with multiple skirts with a single, non-zero extruder") {
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 },
{
{ "nozzle_diameter", "0.6, 0.6, 0.6, 0.6" },
{ "perimeter_extruder", 2 },
{ "infill_extruder", 2 },
{ "support_material_extruder", 2 },
{ "support_material_interface_extruder", 2 },
});
THEN("Sliced successfully") {
REQUIRE(! gcode.empty());
}
}
}
SCENARIO("Ooze prevention", "[Multi]")
{
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "nozzle_diameter", "0.6, 0.6, 0.6, 0.6" },
{ "raft_layers", 2 },
{ "infill_extruder", 2 },
{ "solid_infill_extruder", 3 },
{ "support_material_extruder", 4 },
{ "ooze_prevention", 1 },
{ "extruder_offset", "0x0, 20x0, 0x20, 20x20" },
{ "temperature", "200, 180, 170, 160" },
{ "first_layer_temperature", "206, 186, 166, 156" },
// test that it doesn't crash when this is supplied
{ "toolchange_gcode", "T[next_extruder] ;toolchange" }
});
FullPrintConfig print_config;
print_config.apply(config);
// Since July 2019, PrusaSlicer only emits automatic Tn command in case that the toolchange_gcode is empty
// The "T[next_extruder]" is therefore needed in this test.
std::string gcode = Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config);
GCodeReader parser;
int tool = -1;
int tool_temp[] = { 0, 0, 0, 0};
Points toolchange_points;
Points extrusion_points;
parser.parse_buffer(gcode, [&tool, &tool_temp, &toolchange_points, &extrusion_points, &print_config]
(Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
// if the command is a T command, set the the current tool
if (boost::starts_with(line.cmd(), "T")) {
// Ignore initial toolchange.
if (tool != -1) {
int expected_temp = is_approx<double>(self.z(), print_config.get_abs_value("first_layer_height") + print_config.z_offset) ?
print_config.first_layer_temperature.get_at(tool) :
print_config.temperature.get_at(tool);
if (tool_temp[tool] != expected_temp + print_config.standby_temperature_delta)
throw std::runtime_error("Standby temperature was not set before toolchange.");
toolchange_points.emplace_back(self.xy_scaled());
}
tool = atoi(line.cmd().data() + 1);
} else if (line.cmd_is("M104") || line.cmd_is("M109")) {
// May not be defined on this line.
int t = tool;
line.has_value('T', t);
// Should be available on this line.
int s;
if (! line.has_value('S', s))
throw std::runtime_error("M104 or M109 without S");
if (tool_temp[t] == 0 && s != print_config.first_layer_temperature.get_at(t) + print_config.standby_temperature_delta)
throw std::runtime_error("initial temperature is not equal to first layer temperature + standby delta");
tool_temp[t] = s;
} else if (line.cmd_is("G1") && line.extruding(self) && line.dist_XY(self) > 0) {
extrusion_points.emplace_back(line.new_XY_scaled(self) + scaled<coord_t>(print_config.extruder_offset.get_at(tool)));
}
});
Polygon convex_hull = Geometry::convex_hull(extrusion_points);
// THEN("all nozzles are outside skirt at toolchange") {
// Points t;
// sort_remove_duplicates(toolchange_points);
// size_t inside = 0;
// for (const auto &point : toolchange_points)
// for (const Vec2d &offset : print_config.extruder_offset.values) {
// Point p = point + scaled<coord_t>(offset);
// if (convex_hull.contains(p))
// ++ inside;
// }
// REQUIRE(inside == 0);
// }
#if 0
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"ooze_prevention_test.svg",
no_arrows => 1,
polygons => [$convex_hull],
red_points => \@t,
points => \@toolchange_points,
);
#endif
THEN("all toolchanges happen within expected area") {
// offset the skirt by the maximum displacement between extruders plus a safety extra margin
const float delta = scaled<float>(20. * sqrt(2.) + 1.);
Polygon outer_convex_hull = expand(convex_hull, delta).front();
size_t inside = std::count_if(toolchange_points.begin(), toolchange_points.end(), [&outer_convex_hull](const Point &p){ return outer_convex_hull.contains(p); });
REQUIRE(inside == toolchange_points.size());
}
}
std::string slice_stacked_cubes(const DynamicPrintConfig &config, const DynamicPrintConfig &volume1config, const DynamicPrintConfig &volume2config)
{
Model model;
ModelObject *object = model.add_object();
object->name = "object.stl";
ModelVolume *v1 = object->add_volume(Test::mesh(Test::TestMesh::cube_20x20x20));
v1->set_material_id("lower_material");
v1->config.assign_config(volume1config);
ModelVolume *v2 = object->add_volume(Test::mesh(Test::TestMesh::cube_20x20x20));
v2->set_material_id("upper_material");
v2->translate(0., 0., 20.);
v2->config.assign_config(volume2config);
object->add_instance();
object->ensure_on_bed();
Print print;
print.auto_assign_extruders(object);
THEN("auto_assign_extruders() assigned correct extruder to first volume") {
REQUIRE(v1->config.extruder() == 1);
}
THEN("auto_assign_extruders() assigned correct extruder to second volume") {
REQUIRE(v2->config.extruder() == 2);
}
print.apply(model, config);
print.validate();
return Test::gcode(print);
}
SCENARIO("Stacked cubes", "[Multi]")
{
DynamicPrintConfig lower_config;
lower_config.set_deserialize_strict({
{ "extruder", 1 },
{ "bottom_solid_layers", 0 },
{ "top_solid_layers", 1 },
});
DynamicPrintConfig upper_config;
upper_config.set_deserialize_strict({
{ "extruder", 2 },
{ "bottom_solid_layers", 1 },
{ "top_solid_layers", 0 }
});
static constexpr const double solid_infill_speed = 99;
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "nozzle_diameter", "0.6, 0.6, 0.6, 0.6" },
{ "fill_density", 0 },
{ "solid_infill_speed", solid_infill_speed },
{ "top_solid_infill_speed", solid_infill_speed },
// for preventing speeds from being altered
{ "cooling", "0, 0, 0, 0" },
// for preventing speeds from being altered
{ "first_layer_speed", "100%" }
});
auto test_shells = [](const std::string &gcode) {
GCodeReader parser;
int tool = -1;
// Scaled Z heights.
std::set<coord_t> T0_shells, T1_shells;
parser.parse_buffer(gcode, [&tool, &T0_shells, &T1_shells]
(Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1);
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
if (is_approx<double>(line.new_F(self), solid_infill_speed * 60.) && (tool == 0 || tool == 1))
(tool == 0 ? T0_shells : T1_shells).insert(scaled<coord_t>(self.z()));
}
});
return std::make_pair(T0_shells, T1_shells);
};
WHEN("Interface shells disabled") {
std::string gcode = slice_stacked_cubes(config, lower_config, upper_config);
auto [t0, t1] = test_shells(gcode);
THEN("no interface shells") {
REQUIRE(t0.empty());
REQUIRE(t1.empty());
}
}
WHEN("Interface shells enabled") {
config.set_deserialize_strict("interface_shells", "1");
std::string gcode = slice_stacked_cubes(config, lower_config, upper_config);
auto [t0, t1] = test_shells(gcode);
THEN("top interface shells") {
REQUIRE(t0.size() == lower_config.opt_int("top_solid_layers"));
}
THEN("bottom interface shells") {
REQUIRE(t1.size() == upper_config.opt_int("bottom_solid_layers"));
}
}
WHEN("Slicing with auto-assigned extruders") {
auto config = Slic3r::DynamicPrintConfig::full_print_config_with({
{ "nozzle_diameter", "0.6,0.6,0.6,0.6" },
{ "layer_height", 0.4 },
{ "first_layer_height", 0.4 },
{ "skirts", 0 }
});
std::string gcode = slice_stacked_cubes(config, DynamicPrintConfig{}, DynamicPrintConfig{});
GCodeReader parser;
int tool = -1;
// Scaled Z heights.
std::set<coord_t> T0_shells, T1_shells;
parser.parse_buffer(gcode, [&tool, &T0_shells, &T1_shells](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1);
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
if (tool == 0 && self.z() > 20)
// Layers incorrectly extruded with T0 at the top object.
T0_shells.insert(scaled<coord_t>(self.z()));
else if (tool == 1 && self.z() < 20)
// Layers incorrectly extruded with T1 at the bottom object.
T1_shells.insert(scaled<coord_t>(self.z()));
}
});
THEN("T0 is never used for upper object") {
REQUIRE(T0_shells.empty());
}
THEN("T0 is never used for lower object") {
REQUIRE(T1_shells.empty());
}
}
}