PrusaSlicer-NonPlainar/src/slic3r/GUI/GCodeViewer.cpp

4586 lines
212 KiB
C++

#include "libslic3r/libslic3r.h"
#include "GCodeViewer.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Utils.hpp"
#include "GUI_App.hpp"
#include "MainFrame.hpp"
#include "Plater.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "Camera.hpp"
#include "I18N.hpp"
#include "GUI_Utils.hpp"
#include "GUI.hpp"
#include "DoubleSlider.hpp"
#include "GLCanvas3D.hpp"
#include "GLToolbar.hpp"
#include "GUI_Preview.hpp"
#include <imgui/imgui_internal.h>
#include <GL/glew.h>
#include <boost/log/trivial.hpp>
#include <boost/nowide/cstdio.hpp>
#include <wx/progdlg.h>
#include <wx/numformatter.h>
#include <array>
#include <algorithm>
#include <chrono>
namespace Slic3r {
namespace GUI {
static unsigned char buffer_id(EMoveType type) {
return static_cast<unsigned char>(type) - static_cast<unsigned char>(EMoveType::Retract);
}
static EMoveType buffer_type(unsigned char id) {
return static_cast<EMoveType>(static_cast<unsigned char>(EMoveType::Retract) + id);
}
static std::array<float, 3> decode_color(const std::string& color) {
static const float INV_255 = 1.0f / 255.0f;
std::array<float, 3> ret = { 0.0f, 0.0f, 0.0f };
const char* c = color.data() + 1;
if (color.size() == 7 && color.front() == '#') {
for (size_t j = 0; j < 3; ++j) {
int digit1 = hex_digit_to_int(*c++);
int digit2 = hex_digit_to_int(*c++);
if (digit1 == -1 || digit2 == -1)
break;
ret[j] = float(digit1 * 16 + digit2) * INV_255;
}
}
return ret;
}
static std::vector<std::array<float, 3>> decode_colors(const std::vector<std::string>& colors) {
std::vector<std::array<float, 3>> output(colors.size(), { 0.0f, 0.0f, 0.0f });
for (size_t i = 0; i < colors.size(); ++i) {
output[i] = decode_color(colors[i]);
}
return output;
}
static float round_to_nearest(float value, unsigned int decimals)
{
float res = 0.0f;
if (decimals == 0)
res = std::round(value);
else {
char buf[64];
sprintf(buf, "%.*g", decimals, value);
res = std::stof(buf);
}
return res;
}
#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::VBuffer::reset()
{
// release gpu memory
if (!vbos.empty()) {
glsafe(::glDeleteBuffers(static_cast<GLsizei>(vbos.size()), static_cast<const GLuint*>(vbos.data())));
vbos.clear();
}
sizes.clear();
count = 0;
}
#else
void GCodeViewer::VBuffer::reset()
{
// release gpu memory
if (id > 0) {
glsafe(::glDeleteBuffers(1, &id));
id = 0;
}
count = 0;
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::IBuffer::reset()
{
#if ENABLE_SPLITTED_VERTEX_BUFFER
// release gpu memory
if (ibo > 0) {
glsafe(::glDeleteBuffers(1, &ibo));
ibo = 0;
}
#else
// release gpu memory
if (id > 0) {
glsafe(::glDeleteBuffers(1, &id));
id = 0;
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
#if ENABLE_SPLITTED_VERTEX_BUFFER
vbo = 0;
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
count = 0;
}
bool GCodeViewer::Path::matches(const GCodeProcessor::MoveVertex& move) const
{
auto matches_percent = [](float value1, float value2, float max_percent) {
return std::abs(value2 - value1) / value1 <= max_percent;
};
switch (move.type)
{
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Extrude: {
// use rounding to reduce the number of generated paths
#if ENABLE_SPLITTED_VERTEX_BUFFER
return type == move.type && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id && role == move.extrusion_role &&
move.position[2] <= sub_paths.front().first.position[2] && feedrate == move.feedrate && fan_speed == move.fan_speed &&
height == round_to_nearest(move.height, 2) && width == round_to_nearest(move.width, 2) &&
matches_percent(volumetric_rate, move.volumetric_rate(), 0.05f);
#else
return type == move.type && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id && role == move.extrusion_role &&
move.position[2] <= first.position[2] && feedrate == move.feedrate && fan_speed == move.fan_speed &&
height == round_to_nearest(move.height, 2) && width == round_to_nearest(move.width, 2) &&
matches_percent(volumetric_rate, move.volumetric_rate(), 0.05f);
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
}
case EMoveType::Travel: {
return type == move.type && feedrate == move.feedrate && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id;
}
default: { return false; }
}
}
void GCodeViewer::TBuffer::reset()
{
// release gpu memory
vertices.reset();
for (IBuffer& buffer : indices) {
buffer.reset();
}
// release cpu memory
indices.clear();
paths.clear();
render_paths.clear();
}
void GCodeViewer::TBuffer::add_path(const GCodeProcessor::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id)
{
Path::Endpoint endpoint = { b_id, i_id, s_id, move.position };
// use rounding to reduce the number of generated paths
#if ENABLE_SPLITTED_VERTEX_BUFFER
paths.push_back({ move.type, move.extrusion_role, move.delta_extruder,
round_to_nearest(move.height, 2), round_to_nearest(move.width, 2), move.feedrate, move.fan_speed,
move.volumetric_rate(), move.extruder_id, move.cp_color_id, { { endpoint, endpoint } } });
#else
paths.push_back({ move.type, move.extrusion_role, endpoint, endpoint, move.delta_extruder,
round_to_nearest(move.height, 2), round_to_nearest(move.width, 2), move.feedrate, move.fan_speed,
move.volumetric_rate(), move.extruder_id, move.cp_color_id });
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
}
GCodeViewer::Color GCodeViewer::Extrusions::Range::get_color_at(float value) const
{
// Input value scaled to the colors range
const float step = step_size();
const float global_t = (step != 0.0f) ? std::max(0.0f, value - min) / step : 0.0f; // lower limit of 0.0f
const size_t color_max_idx = Range_Colors.size() - 1;
// Compute the two colors just below (low) and above (high) the input value
const size_t color_low_idx = std::clamp<size_t>(static_cast<size_t>(global_t), 0, color_max_idx);
const size_t color_high_idx = std::clamp<size_t>(color_low_idx + 1, 0, color_max_idx);
// Compute how far the value is between the low and high colors so that they can be interpolated
const float local_t = std::clamp(global_t - static_cast<float>(color_low_idx), 0.0f, 1.0f);
// Interpolate between the low and high colors to find exactly which color the input value should get
Color ret;
for (unsigned int i = 0; i < 3; ++i) {
ret[i] = lerp(Range_Colors[color_low_idx][i], Range_Colors[color_high_idx][i], local_t);
}
return ret;
}
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
GCodeViewer::SequentialRangeCap::~SequentialRangeCap() {
if (ibo > 0)
glsafe(::glDeleteBuffers(1, &ibo));
}
void GCodeViewer::SequentialRangeCap::reset() {
if (ibo > 0)
glsafe(::glDeleteBuffers(1, &ibo));
buffer = nullptr;
ibo = 0;
vbo = 0;
color = { 0.0f, 0.0f, 0.0f };
}
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
void GCodeViewer::SequentialView::Marker::init()
{
m_model.init_from(stilized_arrow(16, 2.0f, 4.0f, 1.0f, 8.0f));
}
void GCodeViewer::SequentialView::Marker::set_world_position(const Vec3f& position)
{
m_world_position = position;
m_world_transform = (Geometry::assemble_transform((position + m_z_offset * Vec3f::UnitZ()).cast<double>()) * Geometry::assemble_transform(m_model.get_bounding_box().size()[2] * Vec3d::UnitZ(), { M_PI, 0.0, 0.0 })).cast<float>();
}
void GCodeViewer::SequentialView::Marker::render() const
{
if (!m_visible)
return;
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
shader->start_using();
shader->set_uniform("uniform_color", m_color);
glsafe(::glPushMatrix());
glsafe(::glMultMatrixf(m_world_transform.data()));
m_model.render();
glsafe(::glPopMatrix());
shader->stop_using();
glsafe(::glDisable(GL_BLEND));
static float last_window_width = 0.0f;
static size_t last_text_length = 0;
ImGuiWrapper& imgui = *wxGetApp().imgui();
Size cnv_size = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size();
imgui.set_next_window_pos(0.5f * static_cast<float>(cnv_size.get_width()), static_cast<float>(cnv_size.get_height()), ImGuiCond_Always, 0.5f, 1.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.25f);
imgui.begin(std::string("ToolPosition"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, _u8L("Tool position") + ":");
ImGui::SameLine();
char buf[1024];
sprintf(buf, "X: %.2f, Y: %.2f, Z: %.2f", m_world_position(0), m_world_position(1), m_world_position(2));
imgui.text(std::string(buf));
// force extra frame to automatically update window size
float width = ImGui::GetWindowWidth();
size_t length = strlen(buf);
if (width != last_window_width || length != last_text_length) {
last_window_width = width;
last_text_length = length;
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
}
imgui.end();
ImGui::PopStyleVar();
}
const std::vector<GCodeViewer::Color> GCodeViewer::Extrusion_Role_Colors {{
{ 0.75f, 0.75f, 0.75f }, // erNone
{ 1.00f, 0.90f, 0.30f }, // erPerimeter
{ 1.00f, 0.49f, 0.22f }, // erExternalPerimeter
{ 0.12f, 0.12f, 1.00f }, // erOverhangPerimeter
{ 0.69f, 0.19f, 0.16f }, // erInternalInfill
{ 0.59f, 0.33f, 0.80f }, // erSolidInfill
{ 0.94f, 0.25f, 0.25f }, // erTopSolidInfill
{ 1.00f, 0.55f, 0.41f }, // erIroning
{ 0.30f, 0.50f, 0.73f }, // erBridgeInfill
{ 1.00f, 1.00f, 1.00f }, // erGapFill
{ 0.00f, 0.53f, 0.43f }, // erSkirt
{ 0.00f, 1.00f, 0.00f }, // erSupportMaterial
{ 0.00f, 0.50f, 0.00f }, // erSupportMaterialInterface
{ 0.70f, 0.89f, 0.67f }, // erWipeTower
{ 0.37f, 0.82f, 0.58f }, // erCustom
{ 0.00f, 0.00f, 0.00f } // erMixed
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Options_Colors {{
{ 0.803f, 0.135f, 0.839f }, // Retractions
{ 0.287f, 0.679f, 0.810f }, // Unretractions
{ 0.758f, 0.744f, 0.389f }, // ToolChanges
{ 0.856f, 0.582f, 0.546f }, // ColorChanges
{ 0.322f, 0.942f, 0.512f }, // PausePrints
{ 0.886f, 0.825f, 0.262f } // CustomGCodes
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Travel_Colors {{
{ 0.219f, 0.282f, 0.609f }, // Move
{ 0.112f, 0.422f, 0.103f }, // Extrude
{ 0.505f, 0.064f, 0.028f } // Retract
}};
const GCodeViewer::Color GCodeViewer::Wipe_Color = { 1.0f, 1.0f, 0.0f };
const std::vector<GCodeViewer::Color> GCodeViewer::Range_Colors {{
{ 0.043f, 0.173f, 0.478f }, // bluish
{ 0.075f, 0.349f, 0.522f },
{ 0.110f, 0.533f, 0.569f },
{ 0.016f, 0.839f, 0.059f },
{ 0.667f, 0.949f, 0.000f },
{ 0.988f, 0.975f, 0.012f },
{ 0.961f, 0.808f, 0.039f },
{ 0.890f, 0.533f, 0.125f },
{ 0.820f, 0.408f, 0.188f },
{ 0.761f, 0.322f, 0.235f },
{ 0.581f, 0.149f, 0.087f } // reddish
}};
GCodeViewer::GCodeViewer()
{
// initializes non OpenGL data of TBuffers
// OpenGL data are initialized into render().init_gl_data()
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
switch (buffer_type(i))
{
default: { break; }
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Point;
buffer.vertices.format = VBuffer::EFormat::Position;
break;
}
case EMoveType::Wipe:
case EMoveType::Extrude: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Triangle;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
break;
}
case EMoveType::Travel: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Line;
buffer.vertices.format = VBuffer::EFormat::PositionNormal1;
break;
}
}
}
set_toolpath_move_type_visible(EMoveType::Extrude, true);
// m_sequential_view.skip_invisible_moves = true;
}
void GCodeViewer::load(const GCodeProcessor::Result& gcode_result, const Print& print, bool initialized)
{
// avoid processing if called with the same gcode_result
if (m_last_result_id == gcode_result.id)
return;
m_last_result_id = gcode_result.id;
// release gpu memory, if used
reset();
load_toolpaths(gcode_result);
if (m_layers.empty())
return;
m_settings_ids = gcode_result.settings_ids;
if (wxGetApp().is_editor())
load_shells(print, initialized);
else {
Pointfs bed_shape;
std::string texture;
std::string model;
if (!gcode_result.bed_shape.empty()) {
// bed shape detected in the gcode
bed_shape = gcode_result.bed_shape;
auto bundle = wxGetApp().preset_bundle;
if (bundle != nullptr && !m_settings_ids.printer.empty()) {
const Preset* preset = bundle->printers.find_preset(m_settings_ids.printer);
if (preset != nullptr) {
model = PresetUtils::system_printer_bed_model(*preset);
texture = PresetUtils::system_printer_bed_texture(*preset);
}
}
}
else {
// adjust printbed size in dependence of toolpaths bbox
const double margin = 10.0;
Vec2d min(m_paths_bounding_box.min(0) - margin, m_paths_bounding_box.min(1) - margin);
Vec2d max(m_paths_bounding_box.max(0) + margin, m_paths_bounding_box.max(1) + margin);
Vec2d size = max - min;
bed_shape = {
{ min(0), min(1) },
{ max(0), min(1) },
{ max(0), min(1) + 0.442265 * size[1]},
{ max(0) - 10.0, min(1) + 0.4711325 * size[1]},
{ max(0) + 10.0, min(1) + 0.5288675 * size[1]},
{ max(0), min(1) + 0.557735 * size[1]},
{ max(0), max(1) },
{ min(0) + 0.557735 * size[0], max(1)},
{ min(0) + 0.5288675 * size[0], max(1) - 10.0},
{ min(0) + 0.4711325 * size[0], max(1) + 10.0},
{ min(0) + 0.442265 * size[0], max(1)},
{ min(0), max(1) } };
}
wxGetApp().plater()->set_bed_shape(bed_shape, texture, model, gcode_result.bed_shape.empty());
}
m_time_statistics = gcode_result.time_statistics;
if (m_time_estimate_mode != PrintEstimatedTimeStatistics::ETimeMode::Normal) {
float time = m_time_statistics.modes[static_cast<size_t>(m_time_estimate_mode)].time;
if (time == 0.0f ||
short_time(get_time_dhms(time)) == short_time(get_time_dhms(m_time_statistics.modes[static_cast<size_t>(PrintEstimatedTimeStatistics::ETimeMode::Normal)].time)))
m_time_estimate_mode = PrintEstimatedTimeStatistics::ETimeMode::Normal;
}
}
void GCodeViewer::refresh(const GCodeProcessor::Result& gcode_result, const std::vector<std::string>& str_tool_colors)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (m_moves_count == 0)
return;
wxBusyCursor busy;
if (m_view_type == EViewType::Tool && !gcode_result.extruder_colors.empty())
// update tool colors from config stored in the gcode
m_tool_colors = decode_colors(gcode_result.extruder_colors);
else
// update tool colors
m_tool_colors = decode_colors(str_tool_colors);
// ensure at least one (default) color is defined
if (m_tool_colors.empty())
m_tool_colors.push_back(decode_color("#FF8000"));
// update ranges for coloring / legend
m_extrusions.reset_ranges();
for (size_t i = 0; i < m_moves_count; ++i) {
// skip first vertex
if (i == 0)
continue;
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
switch (curr.type)
{
case EMoveType::Extrude:
{
m_extrusions.ranges.height.update_from(round_to_nearest(curr.height, 2));
m_extrusions.ranges.width.update_from(round_to_nearest(curr.width, 2));
m_extrusions.ranges.fan_speed.update_from(curr.fan_speed);
m_extrusions.ranges.volumetric_rate.update_from(round_to_nearest(curr.volumetric_rate(), 2));
[[fallthrough]];
}
case EMoveType::Travel:
{
if (m_buffers[buffer_id(curr.type)].visible)
m_extrusions.ranges.feedrate.update_from(curr.feedrate);
break;
}
default: { break; }
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.refresh_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// update buffers' render paths
refresh_render_paths();
log_memory_used("Refreshed G-code extrusion paths, ");
}
void GCodeViewer::refresh_render_paths()
{
refresh_render_paths(false, false);
}
void GCodeViewer::update_shells_color_by_extruder(const DynamicPrintConfig* config)
{
if (config != nullptr)
m_shells.volumes.update_colors_by_extruder(config);
}
void GCodeViewer::reset()
{
m_moves_count = 0;
for (TBuffer& buffer : m_buffers) {
buffer.reset();
}
m_paths_bounding_box = BoundingBoxf3();
m_max_bounding_box = BoundingBoxf3();
m_tool_colors = std::vector<Color>();
m_extruders_count = 0;
m_extruder_ids = std::vector<unsigned char>();
m_extrusions.reset_role_visibility_flags();
m_extrusions.reset_ranges();
m_shells.volumes.clear();
m_layers.reset();
m_layers_z_range = { 0, 0 };
m_roles = std::vector<ExtrusionRole>();
m_time_statistics.reset();
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.reset_all();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
void GCodeViewer::render() const
{
auto init_gl_data = [this]() {
// initializes opengl data of TBuffers
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[i]);
switch (buffer_type(i))
{
default: { break; }
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract: {
buffer.shader = wxGetApp().is_glsl_version_greater_or_equal_to(1, 20) ? "options_120" : "options_110";
break;
}
case EMoveType::Wipe:
case EMoveType::Extrude: {
buffer.shader = "gouraud_light";
break;
}
case EMoveType::Travel: {
buffer.shader = "toolpaths_lines";
break;
}
}
}
// initializes tool marker
const_cast<SequentialView*>(&m_sequential_view)->marker.init();
// initializes point sizes
std::array<int, 2> point_sizes;
::glGetIntegerv(GL_ALIASED_POINT_SIZE_RANGE, point_sizes.data());
*const_cast<std::array<float, 2>*>(&m_detected_point_sizes) = { static_cast<float>(point_sizes[0]), static_cast<float>(point_sizes[1]) };
*const_cast<bool*>(&m_gl_data_initialized) = true;
};
#if ENABLE_GCODE_VIEWER_STATISTICS
const_cast<Statistics*>(&m_statistics)->reset_opengl();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// OpenGL data must be initialized after the glContext has been created.
// This is ensured when this method is called by GLCanvas3D::_render_gcode().
if (!m_gl_data_initialized)
init_gl_data();
if (m_roles.empty())
return;
glsafe(::glEnable(GL_DEPTH_TEST));
render_toolpaths();
SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
if (sequential_view->current.last != sequential_view->endpoints.last) {
sequential_view->marker.set_world_position(sequential_view->current_position);
sequential_view->marker.render();
}
render_shells();
render_legend();
#if ENABLE_GCODE_VIEWER_STATISTICS
render_statistics();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
#if ENABLE_SPLITTED_VERTEX_BUFFER
bool GCodeViewer::can_export_toolpaths() const
{
return has_data() && m_buffers[buffer_id(EMoveType::Extrude)].render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle;
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::update_sequential_view_current(unsigned int first, unsigned int last)
{
auto is_visible = [this](unsigned int id) {
for (const TBuffer& buffer : m_buffers) {
if (buffer.visible) {
for (const Path& path : buffer.paths) {
#if ENABLE_SPLITTED_VERTEX_BUFFER
if (path.sub_paths.front().first.s_id <= id && id <= path.sub_paths.back().last.s_id)
#else
if (path.first.s_id <= id && id <= path.last.s_id)
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
return true;
}
}
}
return false;
};
int first_diff = static_cast<int>(first) - static_cast<int>(m_sequential_view.last_current.first);
int last_diff = static_cast<int>(last) - static_cast<int>(m_sequential_view.last_current.last);
unsigned int new_first = first;
unsigned int new_last = last;
if (m_sequential_view.skip_invisible_moves) {
while (!is_visible(new_first)) {
if (first_diff > 0)
++new_first;
else
--new_first;
}
while (!is_visible(new_last)) {
if (last_diff > 0)
++new_last;
else
--new_last;
}
}
m_sequential_view.current.first = new_first;
m_sequential_view.current.last = new_last;
m_sequential_view.last_current = m_sequential_view.current;
refresh_render_paths(true, true);
if (new_first != first || new_last != last)
wxGetApp().plater()->update_preview_moves_slider();
}
bool GCodeViewer::is_toolpath_move_type_visible(EMoveType type) const
{
size_t id = static_cast<size_t>(buffer_id(type));
return (id < m_buffers.size()) ? m_buffers[id].visible : false;
}
void GCodeViewer::set_toolpath_move_type_visible(EMoveType type, bool visible)
{
size_t id = static_cast<size_t>(buffer_id(type));
if (id < m_buffers.size())
m_buffers[id].visible = visible;
}
unsigned int GCodeViewer::get_options_visibility_flags() const
{
auto set_flag = [](unsigned int flags, unsigned int flag, bool active) {
return active ? (flags | (1 << flag)) : flags;
};
unsigned int flags = 0;
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Travel), is_toolpath_move_type_visible(EMoveType::Travel));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Wipe), is_toolpath_move_type_visible(EMoveType::Wipe));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Retractions), is_toolpath_move_type_visible(EMoveType::Retract));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Unretractions), is_toolpath_move_type_visible(EMoveType::Unretract));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolChanges), is_toolpath_move_type_visible(EMoveType::Tool_change));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ColorChanges), is_toolpath_move_type_visible(EMoveType::Color_change));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::PausePrints), is_toolpath_move_type_visible(EMoveType::Pause_Print));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::CustomGCodes), is_toolpath_move_type_visible(EMoveType::Custom_GCode));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Shells), m_shells.visible);
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolMarker), m_sequential_view.marker.is_visible());
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Legend), is_legend_enabled());
return flags;
}
void GCodeViewer::set_options_visibility_from_flags(unsigned int flags)
{
auto is_flag_set = [flags](unsigned int flag) {
return (flags & (1 << flag)) != 0;
};
set_toolpath_move_type_visible(EMoveType::Travel, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Travel)));
set_toolpath_move_type_visible(EMoveType::Wipe, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Wipe)));
set_toolpath_move_type_visible(EMoveType::Retract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Retractions)));
set_toolpath_move_type_visible(EMoveType::Unretract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Unretractions)));
set_toolpath_move_type_visible(EMoveType::Tool_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolChanges)));
set_toolpath_move_type_visible(EMoveType::Color_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ColorChanges)));
set_toolpath_move_type_visible(EMoveType::Pause_Print, is_flag_set(static_cast<unsigned int>(Preview::OptionType::PausePrints)));
set_toolpath_move_type_visible(EMoveType::Custom_GCode, is_flag_set(static_cast<unsigned int>(Preview::OptionType::CustomGCodes)));
m_shells.visible = is_flag_set(static_cast<unsigned int>(Preview::OptionType::Shells));
m_sequential_view.marker.set_visible(is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolMarker)));
enable_legend(is_flag_set(static_cast<unsigned int>(Preview::OptionType::Legend)));
}
void GCodeViewer::set_layers_z_range(const std::array<unsigned int, 2>& layers_z_range)
{
bool keep_sequential_current_first = layers_z_range[0] >= m_layers_z_range[0];
bool keep_sequential_current_last = layers_z_range[1] <= m_layers_z_range[1];
m_layers_z_range = layers_z_range;
refresh_render_paths(keep_sequential_current_first, keep_sequential_current_last);
wxGetApp().plater()->update_preview_moves_slider();
}
void GCodeViewer::export_toolpaths_to_obj(const char* filename) const
{
if (filename == nullptr)
return;
if (!has_data())
return;
wxBusyCursor busy;
// the data needed is contained into the Extrude TBuffer
const TBuffer& t_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
if (!t_buffer.has_data())
return;
#if ENABLE_SPLITTED_VERTEX_BUFFER
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
return;
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
// collect color information to generate materials
std::vector<Color> colors;
for (const RenderPath& path : t_buffer.render_paths) {
colors.push_back(path.color);
}
#if ENABLE_SPLITTED_VERTEX_BUFFER
std::sort(colors.begin(), colors.end());
colors.erase(std::unique(colors.begin(), colors.end()), colors.end());
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
// save materials file
boost::filesystem::path mat_filename(filename);
mat_filename.replace_extension("mtl");
FILE* fp = boost::nowide::fopen(mat_filename.string().c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << mat_filename.string().c_str() << " for writing";
return;
}
fprintf(fp, "# G-Code Toolpaths Materials\n");
fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
unsigned int colors_count = 1;
for (const Color& color : colors) {
fprintf(fp, "\nnewmtl material_%d\n", colors_count++);
fprintf(fp, "Ka 1 1 1\n");
fprintf(fp, "Kd %g %g %g\n", color[0], color[1], color[2]);
fprintf(fp, "Ks 0 0 0\n");
}
fclose(fp);
// save geometry file
fp = boost::nowide::fopen(filename, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << filename << " for writing";
return;
}
fprintf(fp, "# G-Code Toolpaths\n");
fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
fprintf(fp, "\nmtllib ./%s\n", mat_filename.filename().string().c_str());
#if ENABLE_SPLITTED_VERTEX_BUFFER
const size_t floats_per_vertex = t_buffer.vertices.vertex_size_floats();
std::vector<Vec3f> out_vertices;
std::vector<Vec3f> out_normals;
struct VerticesOffset
{
unsigned int vbo;
size_t offset;
};
std::vector<VerticesOffset> vertices_offsets;
vertices_offsets.push_back({ t_buffer.vertices.vbos.front(), 0 });
// get vertices/normals data from vertex buffers on gpu
for (size_t i = 0; i < t_buffer.vertices.vbos.size(); ++i) {
const size_t floats_count = t_buffer.vertices.sizes[i] / sizeof(float);
VertexBuffer vertices(floats_count);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, t_buffer.vertices.vbos[i]));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, 0, static_cast<GLsizeiptr>(t_buffer.vertices.sizes[i]), static_cast<void*>(vertices.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
const size_t vertices_count = floats_count / floats_per_vertex;
for (size_t j = 0; j < vertices_count; ++j) {
const size_t base = j * floats_per_vertex;
out_vertices.push_back({ vertices[base + 0], vertices[base + 1], vertices[base + 2] });
out_normals.push_back({ vertices[base + 3], vertices[base + 4], vertices[base + 5] });
}
if (i < t_buffer.vertices.vbos.size() - 1)
vertices_offsets.push_back({ t_buffer.vertices.vbos[i + 1], vertices_offsets.back().offset + vertices_count });
}
// save vertices to file
fprintf(fp, "\n# vertices\n");
for (const Vec3f& v : out_vertices) {
fprintf(fp, "v %g %g %g\n", v[0], v[1], v[2]);
}
// save normals to file
fprintf(fp, "\n# normals\n");
for (const Vec3f& n : out_normals) {
fprintf(fp, "vn %g %g %g\n", n[0], n[1], n[2]);
}
size_t i = 0;
for (const Color& color : colors) {
// save material triangles to file
fprintf(fp, "\nusemtl material_%zu\n", i + 1);
fprintf(fp, "# triangles material %zu\n", i + 1);
for (const RenderPath& render_path : t_buffer.render_paths) {
if (render_path.color != color)
continue;
const IBuffer& ibuffer = t_buffer.indices[render_path.ibuffer_id];
size_t vertices_offset = 0;
for (size_t j = 0; j < vertices_offsets.size(); ++j) {
const VerticesOffset& offset = vertices_offsets[j];
if (offset.vbo == ibuffer.vbo) {
vertices_offset = offset.offset;
break;
}
}
// get indices data from index buffer on gpu
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuffer.ibo));
for (size_t j = 0; j < render_path.sizes.size(); ++j) {
IndexBuffer indices(render_path.sizes[j]);
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(render_path.offsets[j]),
static_cast<GLsizeiptr>(render_path.sizes[j] * sizeof(IBufferType)), static_cast<void*>(indices.data())));
const size_t triangles_count = render_path.sizes[j] / 3;
for (size_t k = 0; k < triangles_count; ++k) {
const size_t base = k * 3;
const size_t v1 = 1 + static_cast<size_t>(indices[base + 0]) + vertices_offset;
const size_t v2 = 1 + static_cast<size_t>(indices[base + 1]) + vertices_offset;
const size_t v3 = 1 + static_cast<size_t>(indices[base + 2]) + vertices_offset;
if (v1 != v2)
// do not export dummy triangles
fprintf(fp, "f %zu//%zu %zu//%zu %zu//%zu\n", v1, v1, v2, v2, v3, v3);
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
++i;
}
#else
// get vertices data from vertex buffer on gpu
size_t floats_per_vertex = t_buffer.vertices.vertex_size_floats();
VertexBuffer vertices = VertexBuffer(t_buffer.vertices.count * floats_per_vertex);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, t_buffer.vertices.id));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, 0, t_buffer.vertices.data_size_bytes(), vertices.data()));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
// get indices data from index buffer on gpu
MultiIndexBuffer indices;
for (size_t i = 0; i < t_buffer.indices.size(); ++i) {
indices.push_back(IndexBuffer(t_buffer.indices[i].count));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, t_buffer.indices[i].id));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, static_cast<GLsizeiptr>(indices.back().size() * sizeof(unsigned int)), indices.back().data()));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
auto get_vertex = [&vertices, floats_per_vertex](unsigned int id) {
// extract vertex from vector of floats
unsigned int base_id = id * floats_per_vertex;
return Vec3f(vertices[base_id + 0], vertices[base_id + 1], vertices[base_id + 2]);
};
struct Segment
{
Vec3f v1;
Vec3f v2;
Vec3f dir;
Vec3f right;
Vec3f up;
Vec3f rl_displacement;
Vec3f tb_displacement;
float length;
};
auto generate_segment = [get_vertex](unsigned int start_id, unsigned int end_id, float half_width, float half_height) {
auto local_basis = [](const Vec3f& dir) {
// calculate local basis (dir, right, up) on given segment
std::array<Vec3f, 3> ret;
ret[0] = dir.normalized();
if (std::abs(ret[0][2]) < EPSILON) {
// segment parallel to XY plane
ret[1] = { ret[0][1], -ret[0][0], 0.0f };
ret[2] = Vec3f::UnitZ();
}
else if (std::abs(std::abs(ret[0].dot(Vec3f::UnitZ())) - 1.0f) < EPSILON) {
// segment parallel to Z axis
ret[1] = Vec3f::UnitX();
ret[2] = Vec3f::UnitY();
}
else {
ret[0] = dir.normalized();
ret[1] = ret[0].cross(Vec3f::UnitZ()).normalized();
ret[2] = ret[1].cross(ret[0]);
}
return ret;
};
Vec3f v1 = get_vertex(start_id) - half_height * Vec3f::UnitZ();
Vec3f v2 = get_vertex(end_id) - half_height * Vec3f::UnitZ();
float length = (v2 - v1).norm();
const auto&& [dir, right, up] = local_basis(v2 - v1);
return Segment({ v1, v2, dir, right, up, half_width * right, half_height * up, length });
};
size_t out_vertices_count = 0;
unsigned int indices_per_segment = t_buffer.indices_per_segment();
unsigned int start_vertex_offset = t_buffer.start_segment_vertex_offset();
unsigned int end_vertex_offset = t_buffer.end_segment_vertex_offset();
size_t i = 0;
for (const RenderPath& render_path : t_buffer.render_paths) {
// get paths segments from buffer paths
const IndexBuffer& ibuffer = indices[render_path.ibuffer_id];
const Path& path = t_buffer.paths[render_path.path_id];
float half_width = 0.5f * path.width;
// clamp height to avoid artifacts due to z-fighting when importing the obj file into blender and similar
float half_height = std::max(0.5f * path.height, 0.005f);
// generates vertices/normals/triangles
std::vector<Vec3f> out_vertices;
std::vector<Vec3f> out_normals;
using Triangle = std::array<size_t, 3>;
std::vector<Triangle> out_triangles;
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
unsigned int start = static_cast<unsigned int>(render_path.offsets[j] / sizeof(unsigned int));
unsigned int end = start + render_path.sizes[j];
for (size_t k = start; k < end; k += static_cast<size_t>(indices_per_segment)) {
Segment curr = generate_segment(ibuffer[k + start_vertex_offset], ibuffer[k + end_vertex_offset], half_width, half_height);
if (k == start) {
// starting endpoint vertices/normals
out_vertices.push_back(curr.v1 + curr.rl_displacement); out_normals.push_back(curr.right); // right
out_vertices.push_back(curr.v1 + curr.tb_displacement); out_normals.push_back(curr.up); // top
out_vertices.push_back(curr.v1 - curr.rl_displacement); out_normals.push_back(-curr.right); // left
out_vertices.push_back(curr.v1 - curr.tb_displacement); out_normals.push_back(-curr.up); // bottom
out_vertices_count += 4;
// starting cap triangles
size_t base_id = out_vertices_count - 4 + 1;
out_triangles.push_back({ base_id + 0, base_id + 1, base_id + 2 });
out_triangles.push_back({ base_id + 0, base_id + 2, base_id + 3 });
}
else {
// for the endpoint shared by the current and the previous segments
// we keep the top and bottom vertices of the previous vertices
// and add new left/right vertices for the current segment
out_vertices.push_back(curr.v1 + curr.rl_displacement); out_normals.push_back(curr.right); // right
out_vertices.push_back(curr.v1 - curr.rl_displacement); out_normals.push_back(-curr.right); // left
out_vertices_count += 2;
size_t first_vertex_id = k - static_cast<size_t>(indices_per_segment);
Segment prev = generate_segment(ibuffer[first_vertex_id + start_vertex_offset], ibuffer[first_vertex_id + end_vertex_offset], half_width, half_height);
float disp = 0.0f;
float cos_dir = prev.dir.dot(curr.dir);
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
Vec3f med_dir = (prev.dir + curr.dir).normalized();
disp = half_width * ::tan(::acos(std::clamp(curr.dir.dot(med_dir), -1.0f, 1.0f)));
}
Vec3f disp_vec = disp * prev.dir;
bool is_right_turn = prev.up.dot(prev.dir.cross(curr.dir)) <= 0.0f;
if (cos_dir < 0.7071068f) {
// if the angle between two consecutive segments is greater than 45 degrees
// we add a cap in the outside corner
// and displace the vertices in the inside corner to the same position, if possible
if (is_right_turn) {
// corner cap triangles (left)
size_t base_id = out_vertices_count - 6 + 1;
out_triangles.push_back({ base_id + 5, base_id + 2, base_id + 1 });
out_triangles.push_back({ base_id + 5, base_id + 3, base_id + 2 });
// update right vertices
if (disp > 0.0f && disp < prev.length && disp < curr.length) {
base_id = out_vertices.size() - 6;
out_vertices[base_id + 0] -= disp_vec;
out_vertices[base_id + 4] = out_vertices[base_id + 0];
}
}
else {
// corner cap triangles (right)
size_t base_id = out_vertices_count - 6 + 1;
out_triangles.push_back({ base_id + 0, base_id + 4, base_id + 1 });
out_triangles.push_back({ base_id + 0, base_id + 3, base_id + 4 });
// update left vertices
if (disp > 0.0f && disp < prev.length && disp < curr.length) {
base_id = out_vertices.size() - 6;
out_vertices[base_id + 2] -= disp_vec;
out_vertices[base_id + 5] = out_vertices[base_id + 2];
}
}
}
else {
// if the angle between two consecutive segments is lesser than 45 degrees
// displace the vertices to the same position
if (is_right_turn) {
size_t base_id = out_vertices.size() - 6;
// right
out_vertices[base_id + 0] -= disp_vec;
out_vertices[base_id + 4] = out_vertices[base_id + 0];
// left
out_vertices[base_id + 2] += disp_vec;
out_vertices[base_id + 5] = out_vertices[base_id + 2];
}
else {
size_t base_id = out_vertices.size() - 6;
// right
out_vertices[base_id + 0] += disp_vec;
out_vertices[base_id + 4] = out_vertices[base_id + 0];
// left
out_vertices[base_id + 2] -= disp_vec;
out_vertices[base_id + 5] = out_vertices[base_id + 2];
}
}
}
// current second endpoint vertices/normals
out_vertices.push_back(curr.v2 + curr.rl_displacement); out_normals.push_back(curr.right); // right
out_vertices.push_back(curr.v2 + curr.tb_displacement); out_normals.push_back(curr.up); // top
out_vertices.push_back(curr.v2 - curr.rl_displacement); out_normals.push_back(-curr.right); // left
out_vertices.push_back(curr.v2 - curr.tb_displacement); out_normals.push_back(-curr.up); // bottom
out_vertices_count += 4;
// sides triangles
if (k == start) {
size_t base_id = out_vertices_count - 8 + 1;
out_triangles.push_back({ base_id + 0, base_id + 4, base_id + 5 });
out_triangles.push_back({ base_id + 0, base_id + 5, base_id + 1 });
out_triangles.push_back({ base_id + 1, base_id + 5, base_id + 6 });
out_triangles.push_back({ base_id + 1, base_id + 6, base_id + 2 });
out_triangles.push_back({ base_id + 2, base_id + 6, base_id + 7 });
out_triangles.push_back({ base_id + 2, base_id + 7, base_id + 3 });
out_triangles.push_back({ base_id + 3, base_id + 7, base_id + 4 });
out_triangles.push_back({ base_id + 3, base_id + 4, base_id + 0 });
}
else {
size_t base_id = out_vertices_count - 10 + 1;
out_triangles.push_back({ base_id + 4, base_id + 6, base_id + 7 });
out_triangles.push_back({ base_id + 4, base_id + 7, base_id + 1 });
out_triangles.push_back({ base_id + 1, base_id + 7, base_id + 8 });
out_triangles.push_back({ base_id + 1, base_id + 8, base_id + 5 });
out_triangles.push_back({ base_id + 5, base_id + 8, base_id + 9 });
out_triangles.push_back({ base_id + 5, base_id + 9, base_id + 3 });
out_triangles.push_back({ base_id + 3, base_id + 9, base_id + 6 });
out_triangles.push_back({ base_id + 3, base_id + 6, base_id + 4 });
}
if (k + 2 == end) {
// ending cap triangles
size_t base_id = out_vertices_count - 4 + 1;
out_triangles.push_back({ base_id + 0, base_id + 2, base_id + 1 });
out_triangles.push_back({ base_id + 0, base_id + 3, base_id + 2 });
}
}
}
// save to file
fprintf(fp, "\n# vertices path %zu\n", i + 1);
for (const Vec3f& v : out_vertices) {
fprintf(fp, "v %g %g %g\n", v[0], v[1], v[2]);
}
fprintf(fp, "\n# normals path %zu\n", i + 1);
for (const Vec3f& n : out_normals) {
fprintf(fp, "vn %g %g %g\n", n[0], n[1], n[2]);
}
fprintf(fp, "\n# material path %zu\n", i + 1);
fprintf(fp, "usemtl material_%zu\n", i + 1);
fprintf(fp, "\n# triangles path %zu\n", i + 1);
for (const Triangle& t : out_triangles) {
fprintf(fp, "f %zu//%zu %zu//%zu %zu//%zu\n", t[0], t[0], t[1], t[1], t[2], t[2]);
}
++ i;
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
fclose(fp);
}
#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
{
// max index buffer size, in bytes
static const size_t IBUFFER_THRESHOLD_BYTES = 64 * 1024 * 1024;
auto log_memory_usage = [this](const std::string& label, const std::vector<MultiVertexBuffer>& vertices, const std::vector<MultiIndexBuffer>& indices) {
int64_t vertices_size = 0;
for (const MultiVertexBuffer& buffers : vertices) {
for (const VertexBuffer& buffer : buffers) {
vertices_size += SLIC3R_STDVEC_MEMSIZE(buffer, float);
}
}
int64_t indices_size = 0;
for (const MultiIndexBuffer& buffers : indices) {
for (const IndexBuffer& buffer : buffers) {
indices_size += SLIC3R_STDVEC_MEMSIZE(buffer, IBufferType);
}
}
log_memory_used(label, vertices_size + indices_size);
};
// format data into the buffers to be rendered as points
auto add_vertices_as_point = [](const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
vertices.push_back(curr.position[0]);
vertices.push_back(curr.position[1]);
vertices.push_back(curr.position[2]);
};
auto add_indices_as_point = [](const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
indices.push_back(static_cast<IBufferType>(indices.size()));
};
// format data into the buffers to be rendered as lines
auto add_vertices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
// x component of the normal to the current segment (the normal is parallel to the XY plane)
float normal_x = (curr.position - prev.position).normalized()[1];
auto add_vertex = [&vertices, normal_x](const GCodeProcessor::MoveVertex& vertex) {
// add position
vertices.push_back(vertex.position[0]);
vertices.push_back(vertex.position[1]);
vertices.push_back(vertex.position[2]);
// add normal x component
vertices.push_back(normal_x);
};
// add previous vertex
add_vertex(prev);
// add current vertex
add_vertex(curr);
};
auto add_indices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
// add starting index
indices.push_back(static_cast<unsigned int>(indices.size()));
buffer.add_path(curr, ibuffer_id, indices.size() - 1, move_id - 1);
buffer.paths.back().sub_paths.front().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
if (last_path.sub_paths.front().first.i_id != last_path.sub_paths.back().last.i_id) {
// add previous index
indices.push_back(static_cast<unsigned int>(indices.size()));
}
// add current index
indices.push_back(static_cast<unsigned int>(indices.size()));
last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
};
// format data into the buffers to be rendered as solid
auto add_vertices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer, unsigned int vbuffer_id, VertexBuffer& vertices, size_t move_id) {
auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
// append position
vertices.push_back(position[0]);
vertices.push_back(position[1]);
vertices.push_back(position[2]);
// append normal
vertices.push_back(normal[0]);
vertices.push_back(normal[1]);
vertices.push_back(normal[2]);
};
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, vbuffer_id, vertices.size(), move_id - 1);
buffer.paths.back().sub_paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
Vec3f dir = (curr.position - prev.position).normalized();
Vec3f right = Vec3f(dir[1], -dir[0], 0.0f).normalized();
Vec3f left = -right;
Vec3f up = right.cross(dir);
Vec3f down = -up;
float half_width = 0.5f * last_path.width;
float half_height = 0.5f * last_path.height;
Vec3f prev_pos = prev.position - half_height * up;
Vec3f curr_pos = curr.position - half_height * up;
Vec3f d_up = half_height * up;
Vec3f d_down = -half_height * up;
Vec3f d_right = half_width * right;
Vec3f d_left = -half_width * right;
// vertices 1st endpoint
if (last_path.vertices_count() == 1 || vertices.empty()) {
// 1st segment or restart into a new vertex buffer
// ===============================================
store_vertex(vertices, prev_pos + d_up, up);
store_vertex(vertices, prev_pos + d_right, right);
store_vertex(vertices, prev_pos + d_down, down);
store_vertex(vertices, prev_pos + d_left, left);
}
else {
// any other segment
// =================
store_vertex(vertices, prev_pos + d_right, right);
store_vertex(vertices, prev_pos + d_left, left);
}
// vertices 2nd endpoint
store_vertex(vertices, curr_pos + d_up, up);
store_vertex(vertices, curr_pos + d_right, right);
store_vertex(vertices, curr_pos + d_down, down);
store_vertex(vertices, curr_pos + d_left, left);
last_path.sub_paths.back().last = { vbuffer_id, vertices.size(), move_id, curr.position };
};
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
auto add_indices_as_solid = [&](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, const GCodeProcessor::MoveVertex* next,
TBuffer& buffer, size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
#else
auto add_indices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
static Vec3f prev_dir;
static Vec3f prev_up;
static float sq_prev_length;
auto store_triangle = [](IndexBuffer& indices, IBufferType i1, IBufferType i2, IBufferType i3) {
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
};
auto append_dummy_cap = [store_triangle](IndexBuffer& indices, IBufferType id) {
store_triangle(indices, id, id, id);
store_triangle(indices, id, id, id);
};
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
auto convert_vertices_offset = [](size_t vbuffer_size, const std::array<int, 8>& v_offsets) {
std::array<IBufferType, 8> ret = {
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[0]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[1]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[2]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[3]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[4]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[5]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[6]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[7])
};
return ret;
};
auto append_starting_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[0], v_offsets[2], v_offsets[1]);
store_triangle(indices, v_offsets[0], v_offsets[3], v_offsets[2]);
};
auto append_stem_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[0], v_offsets[1], v_offsets[4]);
store_triangle(indices, v_offsets[1], v_offsets[5], v_offsets[4]);
store_triangle(indices, v_offsets[1], v_offsets[2], v_offsets[5]);
store_triangle(indices, v_offsets[2], v_offsets[6], v_offsets[5]);
store_triangle(indices, v_offsets[2], v_offsets[3], v_offsets[6]);
store_triangle(indices, v_offsets[3], v_offsets[7], v_offsets[6]);
store_triangle(indices, v_offsets[3], v_offsets[0], v_offsets[7]);
store_triangle(indices, v_offsets[0], v_offsets[4], v_offsets[7]);
};
auto append_ending_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[4], v_offsets[6], v_offsets[7]);
store_triangle(indices, v_offsets[4], v_offsets[5], v_offsets[6]);
};
#else
auto append_stem_triangles = [&](IndexBuffer& indices, size_t vbuffer_size, const std::array<int, 8>& v_offsets) {
std::array<IBufferType, 8> v_ids;
for (size_t i = 0; i < v_ids.size(); ++i) {
v_ids[i] = static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[i]);
}
// triangles starting cap
store_triangle(indices, v_ids[0], v_ids[2], v_ids[1]);
store_triangle(indices, v_ids[0], v_ids[3], v_ids[2]);
// triangles sides
store_triangle(indices, v_ids[0], v_ids[1], v_ids[4]);
store_triangle(indices, v_ids[1], v_ids[5], v_ids[4]);
store_triangle(indices, v_ids[1], v_ids[2], v_ids[5]);
store_triangle(indices, v_ids[2], v_ids[6], v_ids[5]);
store_triangle(indices, v_ids[2], v_ids[3], v_ids[6]);
store_triangle(indices, v_ids[3], v_ids[7], v_ids[6]);
store_triangle(indices, v_ids[3], v_ids[0], v_ids[7]);
store_triangle(indices, v_ids[0], v_ids[4], v_ids[7]);
// triangles ending cap
store_triangle(indices, v_ids[4], v_ids[6], v_ids[7]);
store_triangle(indices, v_ids[4], v_ids[5], v_ids[6]);
};
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id - 1);
buffer.paths.back().sub_paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
Vec3f dir = (curr.position - prev.position).normalized();
Vec3f right = Vec3f(dir[1], -dir[0], 0.0f).normalized();
Vec3f up = right.cross(dir);
float sq_length = (curr.position - prev.position).squaredNorm();
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
const std::array<IBufferType, 8> first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { 0, 1, 2, 3, 4, 5, 6, 7 });
const std::array<IBufferType, 8> non_first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { -4, 0, -2, 1, 2, 3, 4, 5 });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (last_path.vertices_count() == 1 || vbuffer_size == 0) {
// 1st segment or restart into a new vertex buffer
// ===============================================
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (last_path.vertices_count() == 1)
// starting cap triangles
append_starting_cap_triangles(indices, first_seg_v_offsets);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
// dummy triangles outer corner cap
append_dummy_cap(indices, vbuffer_size);
// stem triangles
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
append_stem_triangles(indices, first_seg_v_offsets);
#else
append_stem_triangles(indices, vbuffer_size, { 0, 1, 2, 3, 4, 5, 6, 7 });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
vbuffer_size += 8;
}
else {
// any other segment
// =================
float displacement = 0.0f;
float cos_dir = prev_dir.dot(dir);
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
Vec3f med_dir = (prev_dir + dir).normalized();
float half_width = 0.5f * last_path.width;
displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
}
float sq_displacement = sqr(displacement);
bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_length;
bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
// whether the angle between adjacent segments is greater than 45 degrees
bool is_sharp = cos_dir < 0.7071068f;
bool right_displaced = false;
bool left_displaced = false;
if (!is_sharp && can_displace) {
if (is_right_turn)
left_displaced = true;
else
right_displaced = true;
}
// triangles outer corner cap
if (is_right_turn) {
if (left_displaced)
// dummy triangles
append_dummy_cap(indices, vbuffer_size);
else {
store_triangle(indices, vbuffer_size - 4, vbuffer_size + 1, vbuffer_size - 1);
store_triangle(indices, vbuffer_size + 1, vbuffer_size - 2, vbuffer_size - 1);
}
}
else {
if (right_displaced)
// dummy triangles
append_dummy_cap(indices, vbuffer_size);
else {
store_triangle(indices, vbuffer_size - 4, vbuffer_size - 3, vbuffer_size + 0);
store_triangle(indices, vbuffer_size - 3, vbuffer_size - 2, vbuffer_size + 0);
}
}
// stem triangles
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
append_stem_triangles(indices, non_first_seg_v_offsets);
#else
append_stem_triangles(indices, vbuffer_size, { -4, 0, -2, 1, 2, 3, 4, 5 });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
vbuffer_size += 6;
}
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (next != nullptr && (curr.type != next->type || !last_path.matches(*next)))
// ending cap triangles
append_ending_cap_triangles(indices, non_first_seg_v_offsets);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
prev_dir = dir;
prev_up = up;
sq_prev_length = sq_length;
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessor::MoveVertex);
m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
m_moves_count = gcode_result.moves.size();
if (m_moves_count == 0)
return;
m_extruders_count = gcode_result.extruders_count;
unsigned int progress_count = 0;
static const unsigned int progress_threshold = 1000;
wxProgressDialog* progress_dialog = wxGetApp().is_gcode_viewer() ?
new wxProgressDialog(_L("Generating toolpaths"), "...",
100, wxGetApp().plater(), wxPD_AUTO_HIDE | wxPD_APP_MODAL) : nullptr;
wxBusyCursor busy;
// extract approximate paths bounding box from result
for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
if (wxGetApp().is_gcode_viewer())
// for the gcode viewer we need to take in account all moves to correctly size the printbed
m_paths_bounding_box.merge(move.position.cast<double>());
else {
if (move.type == EMoveType::Extrude && move.width != 0.0f && move.height != 0.0f)
m_paths_bounding_box.merge(move.position.cast<double>());
}
}
// set approximate max bounding box (take in account also the tool marker)
m_max_bounding_box = m_paths_bounding_box;
m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size()[2] * Vec3d::UnitZ());
#if ENABLE_GCODE_LINES_ID_IN_H_SLIDER
m_sequential_view.gcode_ids.clear();
for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
m_sequential_view.gcode_ids.push_back(move.gcode_id);
}
#endif // ENABLE_GCODE_LINES_ID_IN_H_SLIDER
std::vector<MultiVertexBuffer> vertices(m_buffers.size());
std::vector<MultiIndexBuffer> indices(m_buffers.size());
std::vector<float> options_zs;
// toolpaths data -> extract vertices from result
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
// skip first vertex
if (i == 0)
continue;
const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
// update progress dialog
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(i) / (2.0f * float(m_moves_count))),
_L("Generating vertex buffer") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
unsigned char id = buffer_id(curr.type);
TBuffer& t_buffer = m_buffers[id];
MultiVertexBuffer& v_multibuffer = vertices[id];
// ensure there is at least one vertex buffer
if (v_multibuffer.empty())
v_multibuffer.push_back(VertexBuffer());
// if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
// add another vertex buffer
if (v_multibuffer.back().size() * sizeof(float) > t_buffer.vertices.max_size_bytes() - t_buffer.max_vertices_per_segment_size_bytes()) {
v_multibuffer.push_back(VertexBuffer());
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
Path& last_path = t_buffer.paths.back();
if (prev.type == curr.type && last_path.matches(curr))
last_path.add_sub_path(prev, static_cast<unsigned int>(v_multibuffer.size()) - 1, 0, i - 1);
}
}
VertexBuffer& v_buffer = v_multibuffer.back();
switch (t_buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: { add_vertices_as_point(curr, v_buffer); break; }
case TBuffer::ERenderPrimitiveType::Line: { add_vertices_as_line(prev, curr, v_buffer); break; }
case TBuffer::ERenderPrimitiveType::Triangle: { add_vertices_as_solid(prev, curr, t_buffer, static_cast<unsigned int>(v_multibuffer.size()) - 1, v_buffer, i); break; }
}
// collect options zs for later use
if (curr.type == EMoveType::Pause_Print || curr.type == EMoveType::Custom_GCode) {
const float* const last_z = options_zs.empty() ? nullptr : &options_zs.back();
if (last_z == nullptr || curr.position[2] < *last_z - EPSILON || *last_z + EPSILON < curr.position[2])
options_zs.emplace_back(curr.position[2]);
}
}
// smooth toolpaths corners for the given TBuffer using triangles
auto smooth_triangle_toolpaths_corners = [&gcode_result](const TBuffer& t_buffer, MultiVertexBuffer& v_multibuffer) {
auto extract_position_at = [](const VertexBuffer& vertices, size_t offset) {
return Vec3f(vertices[offset + 0], vertices[offset + 1], vertices[offset + 2]);
};
auto update_position_at = [](VertexBuffer& vertices, size_t offset, const Vec3f& position) {
vertices[offset + 0] = position[0];
vertices[offset + 1] = position[1];
vertices[offset + 2] = position[2];
};
auto match_right_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
// offset into the vertex buffer of the next segment 1st vertex
size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
// offset into the vertex buffer of the right vertex of the previous segment
size_t prev_right_offset = prev_sub_path.last.i_id - next_1st_offset - 3 * vertex_size_floats;
// new position of the right vertices
Vec3f shared_vertex = extract_position_at(vbuffer, prev_right_offset) + displacement_vec;
// update previous segment
update_position_at(vbuffer, prev_right_offset, shared_vertex);
// offset into the vertex buffer of the right vertex of the next segment
size_t next_right_offset = next_sub_path.last.i_id - next_1st_offset;
// update next segment
update_position_at(vbuffer, next_right_offset, shared_vertex);
}
else { // previous and next segment are contained into different vertex buffers
VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
// offset into the previous vertex buffer of the right vertex of the previous segment
size_t prev_right_offset = prev_sub_path.last.i_id - 3 * vertex_size_floats;
// new position of the right vertices
Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_right_offset) + displacement_vec;
// update previous segment
update_position_at(prev_vbuffer, prev_right_offset, shared_vertex);
// offset into the next vertex buffer of the right vertex of the next segment
size_t next_right_offset = next_sub_path.first.i_id + 1 * vertex_size_floats;
// update next segment
update_position_at(next_vbuffer, next_right_offset, shared_vertex);
}
};
auto match_left_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
// offset into the vertex buffer of the next segment 1st vertex
size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
// offset into the vertex buffer of the left vertex of the previous segment
size_t prev_left_offset = prev_sub_path.last.i_id - next_1st_offset - 1 * vertex_size_floats;
// new position of the left vertices
Vec3f shared_vertex = extract_position_at(vbuffer, prev_left_offset) + displacement_vec;
// update previous segment
update_position_at(vbuffer, prev_left_offset, shared_vertex);
// offset into the vertex buffer of the left vertex of the next segment
size_t next_left_offset = next_sub_path.last.i_id - next_1st_offset + 1 * vertex_size_floats;
// update next segment
update_position_at(vbuffer, next_left_offset, shared_vertex);
}
else { // previous and next segment are contained into different vertex buffers
VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
// offset into the previous vertex buffer of the left vertex of the previous segment
size_t prev_left_offset = prev_sub_path.last.i_id - 1 * vertex_size_floats;
// new position of the left vertices
Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_left_offset) + displacement_vec;
// update previous segment
update_position_at(prev_vbuffer, prev_left_offset, shared_vertex);
// offset into the next vertex buffer of the left vertex of the next segment
size_t next_left_offset = next_sub_path.first.i_id + 3 * vertex_size_floats;
// update next segment
update_position_at(next_vbuffer, next_left_offset, shared_vertex);
}
};
size_t vertex_size_floats = t_buffer.vertices.vertex_size_floats();
for (const Path& path : t_buffer.paths) {
// the two segments of the path sharing the current vertex may belong
// to two different vertex buffers
size_t prev_sub_path_id = 0;
size_t next_sub_path_id = 0;
size_t path_vertices_count = path.vertices_count();
float half_width = 0.5f * path.width;
for (size_t j = 1; j < path_vertices_count - 1; ++j) {
size_t curr_s_id = path.sub_paths.front().first.s_id + j;
const Vec3f& prev = gcode_result.moves[curr_s_id - 1].position;
const Vec3f& curr = gcode_result.moves[curr_s_id].position;
const Vec3f& next = gcode_result.moves[curr_s_id + 1].position;
// select the subpaths which contains the previous/next segments
if (!path.sub_paths[prev_sub_path_id].contains(curr_s_id))
++prev_sub_path_id;
if (!path.sub_paths[next_sub_path_id].contains(curr_s_id + 1))
++next_sub_path_id;
const Path::Sub_Path& prev_sub_path = path.sub_paths[prev_sub_path_id];
const Path::Sub_Path& next_sub_path = path.sub_paths[next_sub_path_id];
Vec3f prev_dir = (curr - prev).normalized();
Vec3f prev_right = Vec3f(prev_dir[1], -prev_dir[0], 0.0f).normalized();
Vec3f prev_up = prev_right.cross(prev_dir);
Vec3f next_dir = (next - curr).normalized();
bool is_right_turn = prev_up.dot(prev_dir.cross(next_dir)) <= 0.0f;
float cos_dir = prev_dir.dot(next_dir);
// whether the angle between adjacent segments is greater than 45 degrees
bool is_sharp = cos_dir < 0.7071068f;
float displacement = 0.0f;
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
Vec3f med_dir = (prev_dir + next_dir).normalized();
displacement = half_width * ::tan(::acos(std::clamp(next_dir.dot(med_dir), -1.0f, 1.0f)));
}
float sq_prev_length = (curr - prev).squaredNorm();
float sq_next_length = (next - curr).squaredNorm();
float sq_displacement = sqr(displacement);
bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_next_length;
if (can_displace) {
// displacement to apply to the vertices to match
Vec3f displacement_vec = displacement * prev_dir;
// matches inner corner vertices
if (is_right_turn)
match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
else
match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
if (!is_sharp) {
// matches outer corner vertices
if (is_right_turn)
match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
else
match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
}
}
}
}
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto load_vertices_time = std::chrono::high_resolution_clock::now();
m_statistics.load_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// smooth toolpaths corners for TBuffers using triangles
for (size_t i = 0; i < m_buffers.size(); ++i) {
const TBuffer& t_buffer = m_buffers[i];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
smooth_triangle_toolpaths_corners(t_buffer, vertices[i]);
}
}
for (MultiVertexBuffer& v_multibuffer : vertices) {
for (VertexBuffer& v_buffer : v_multibuffer) {
v_buffer.shrink_to_fit();
}
}
// move the wipe toolpaths half height up to render them on proper position
MultiVertexBuffer& wipe_vertices = vertices[buffer_id(EMoveType::Wipe)];
for (VertexBuffer& v_buffer : wipe_vertices) {
for (size_t i = 2; i < v_buffer.size(); i += 3) {
v_buffer[i] += 0.5f * GCodeProcessor::Wipe_Height;
}
}
// send vertices data to gpu
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& t_buffer = m_buffers[i];
const MultiVertexBuffer& v_multibuffer = vertices[i];
for (const VertexBuffer& v_buffer : v_multibuffer) {
size_t size_elements = v_buffer.size();
size_t size_bytes = size_elements * sizeof(float);
size_t vertices_count = size_elements / t_buffer.vertices.vertex_size_floats();
t_buffer.vertices.count += vertices_count;
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_vertices_gpu_size += static_cast<int64_t>(size_bytes);
m_statistics.max_vbuffer_gpu_size = std::max(m_statistics.max_vbuffer_gpu_size, static_cast<int64_t>(size_bytes));
++m_statistics.vbuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
GLuint id = 0;
glsafe(::glGenBuffers(1, &id));
t_buffer.vertices.vbos.push_back(static_cast<unsigned int>(id));
t_buffer.vertices.sizes.push_back(size_bytes);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, size_bytes, v_buffer.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
auto smooth_vertices_time = std::chrono::high_resolution_clock::now();
m_statistics.smooth_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - load_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
log_memory_usage("Loaded G-code generated vertex buffers ", vertices, indices);
// dismiss vertices data, no more needed
std::vector<MultiVertexBuffer>().swap(vertices);
// toolpaths data -> extract indices from result
// paths may have been filled while extracting vertices,
// so reset them, they will be filled again while extracting indices
for (TBuffer& buffer : m_buffers) {
buffer.paths.clear();
}
// variable used to keep track of the current vertex buffers index and size
using CurrVertexBuffer = std::pair<unsigned int, size_t>;
std::vector<CurrVertexBuffer> curr_vertex_buffers(m_buffers.size(), { 0, 0 });
// variable used to keep track of the vertex buffers ids
using VboIndexList = std::vector<unsigned int>;
std::vector<VboIndexList> vbo_indices(m_buffers.size());
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
// skip first vertex
if (i == 0)
continue;
const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
const GCodeProcessor::MoveVertex* next = nullptr;
if (i < m_moves_count - 1)
next = &gcode_result.moves[i + 1];
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(m_moves_count + i) / (2.0f * float(m_moves_count))),
_L("Generating index buffers") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
unsigned char id = buffer_id(curr.type);
TBuffer& t_buffer = m_buffers[id];
MultiIndexBuffer& i_multibuffer = indices[id];
CurrVertexBuffer& curr_vertex_buffer = curr_vertex_buffers[id];
VboIndexList& vbo_index_list = vbo_indices[id];
// ensure there is at least one index buffer
if (i_multibuffer.empty()) {
i_multibuffer.push_back(IndexBuffer());
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
}
// if adding the indices for the current segment exceeds the threshold size of the current index buffer
// create another index buffer
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - t_buffer.max_indices_per_segment_size_bytes()) {
#else
if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - t_buffer.indices_per_segment_size_bytes()) {
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
i_multibuffer.push_back(IndexBuffer());
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
Path& last_path = t_buffer.paths.back();
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, i - 1);
}
}
// if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
// create another index buffer
if (curr_vertex_buffer.second * t_buffer.vertices.vertex_size_bytes() > t_buffer.vertices.max_size_bytes() - t_buffer.max_vertices_per_segment_size_bytes()) {
i_multibuffer.push_back(IndexBuffer());
++curr_vertex_buffer.first;
curr_vertex_buffer.second = 0;
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
Path& last_path = t_buffer.paths.back();
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, i - 1);
}
}
IndexBuffer& i_buffer = i_multibuffer.back();
switch (t_buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
add_indices_as_point(curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
add_indices_as_line(prev, curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
add_indices_as_solid(prev, curr, next, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#else
add_indices_as_solid(prev, curr, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
break;
}
}
}
for (MultiIndexBuffer& i_multibuffer : indices) {
for (IndexBuffer& i_buffer : i_multibuffer) {
i_buffer.shrink_to_fit();
}
}
// toolpaths data -> send indices data to gpu
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& t_buffer = m_buffers[i];
const MultiIndexBuffer& i_multibuffer = indices[i];
for (const IndexBuffer& i_buffer : i_multibuffer) {
size_t size_elements = i_buffer.size();
size_t size_bytes = size_elements * sizeof(IBufferType);
// stores index buffer informations into TBuffer
t_buffer.indices.push_back(IBuffer());
IBuffer& ibuf = t_buffer.indices.back();
ibuf.count = size_elements;
ibuf.vbo = vbo_indices[i][t_buffer.indices.size() - 1];
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_indices_gpu_size += static_cast<int64_t>(size_bytes);
m_statistics.max_ibuffer_gpu_size = std::max(m_statistics.max_ibuffer_gpu_size, static_cast<int64_t>(size_bytes));
++m_statistics.ibuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
glsafe(::glGenBuffers(1, &ibuf.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuf.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, size_bytes, i_buffer.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
}
if (progress_dialog != nullptr) {
progress_dialog->Update(100, "");
progress_dialog->Fit();
}
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
m_statistics.paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
}
auto update_segments_count = [&](EMoveType type, int64_t& count) {
unsigned int id = buffer_id(type);
const MultiIndexBuffer& buffers = indices[id];
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
int64_t indices_count = 0;
for (const IndexBuffer& buffer : buffers) {
indices_count += buffer.size();
}
const TBuffer& t_buffer = m_buffers[id];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
indices_count -= static_cast<int64_t>(12 * t_buffer.paths.size()); // remove the starting + ending caps = 4 triangles
count += indices_count / t_buffer.indices_per_segment();
#else
for (const IndexBuffer& buffer : buffers) {
count += buffer.size() / m_buffers[id].indices_per_segment();
}
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
};
update_segments_count(EMoveType::Travel, m_statistics.travel_segments_count);
update_segments_count(EMoveType::Wipe, m_statistics.wipe_segments_count);
update_segments_count(EMoveType::Extrude, m_statistics.extrude_segments_count);
m_statistics.load_indices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - smooth_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
log_memory_usage("Loaded G-code generated indices buffers ", vertices, indices);
// dismiss indices data, no more needed
std::vector<MultiIndexBuffer>().swap(indices);
// layers zs / roles / extruder ids -> extract from result
size_t last_travel_s_id = 0;
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
if (move.type == EMoveType::Extrude) {
// layers zs
const double* const last_z = m_layers.empty() ? nullptr : &m_layers.get_zs().back();
double z = static_cast<double>(move.position[2]);
if (last_z == nullptr || z < *last_z - EPSILON || *last_z + EPSILON < z)
m_layers.append(z, { last_travel_s_id, i });
else
m_layers.get_endpoints().back().last = i;
// extruder ids
m_extruder_ids.emplace_back(move.extruder_id);
// roles
if (i > 0)
m_roles.emplace_back(move.extrusion_role);
}
else if (move.type == EMoveType::Travel) {
if (i - last_travel_s_id > 1 && !m_layers.empty())
m_layers.get_endpoints().back().last = i;
last_travel_s_id = i;
}
}
// roles -> remove duplicates
std::sort(m_roles.begin(), m_roles.end());
m_roles.erase(std::unique(m_roles.begin(), m_roles.end()), m_roles.end());
m_roles.shrink_to_fit();
// extruder ids -> remove duplicates
std::sort(m_extruder_ids.begin(), m_extruder_ids.end());
m_extruder_ids.erase(std::unique(m_extruder_ids.begin(), m_extruder_ids.end()), m_extruder_ids.end());
m_extruder_ids.shrink_to_fit();
// set layers z range
if (!m_layers.empty())
m_layers_z_range = { 0, static_cast<unsigned int>(m_layers.size() - 1) };
// change color of paths whose layer contains option points
if (!options_zs.empty()) {
TBuffer& extrude_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
for (Path& path : extrude_buffer.paths) {
float z = path.sub_paths.front().first.position[2];
if (std::find_if(options_zs.begin(), options_zs.end(), [z](float f) { return f - EPSILON <= z && z <= f + EPSILON; }) != options_zs.end())
path.cp_color_id = 255 - path.cp_color_id;
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.load_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (progress_dialog != nullptr)
progress_dialog->Destroy();
}
#else
void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessor::MoveVertex);
m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// vertices data
m_moves_count = gcode_result.moves.size();
if (m_moves_count == 0)
return;
unsigned int progress_count = 0;
static const unsigned int progress_threshold = 1000;
wxProgressDialog* progress_dialog = wxGetApp().is_gcode_viewer() ?
new wxProgressDialog(_L("Generating toolpaths"), "...",
100, wxGetApp().plater(), wxPD_AUTO_HIDE | wxPD_APP_MODAL) : nullptr;
m_extruders_count = gcode_result.extruders_count;
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
if (wxGetApp().is_gcode_viewer())
// for the gcode viewer we need all moves to correctly size the printbed
m_paths_bounding_box.merge(move.position.cast<double>());
else {
if (move.type == EMoveType::Extrude && move.width != 0.0f && move.height != 0.0f)
m_paths_bounding_box.merge(move.position.cast<double>());
}
}
// max bounding box (account for tool marker)
m_max_bounding_box = m_paths_bounding_box;
m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size()[2] * Vec3d::UnitZ());
auto log_memory_usage = [this](const std::string& label, const std::vector<VertexBuffer>& vertices, const std::vector<MultiIndexBuffer>& indices) {
int64_t vertices_size = 0;
for (size_t i = 0; i < vertices.size(); ++i) {
vertices_size += SLIC3R_STDVEC_MEMSIZE(vertices[i], float);
}
int64_t indices_size = 0;
for (size_t i = 0; i < indices.size(); ++i) {
for (size_t j = 0; j < indices[i].size(); ++j) {
indices_size += SLIC3R_STDVEC_MEMSIZE(indices[i][j], unsigned int);
}
}
log_memory_used(label, vertices_size + indices_size);
};
// format data into the buffers to be rendered as points
auto add_vertices_as_point = [](const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
vertices.push_back(curr.position[0]);
vertices.push_back(curr.position[1]);
vertices.push_back(curr.position[2]);
};
auto add_indices_as_point = [](const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
indices.push_back(static_cast<unsigned int>(indices.size()));
};
// format data into the buffers to be rendered as lines
auto add_vertices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr,
VertexBuffer& vertices) {
// x component of the normal to the current segment (the normal is parallel to the XY plane)
float normal_x = (curr.position - prev.position).normalized()[1];
auto add_vertex = [&vertices, normal_x](const GCodeProcessor::MoveVertex& vertex) {
// add position
vertices.push_back(vertex.position[0]);
vertices.push_back(vertex.position[1]);
vertices.push_back(vertex.position[2]);
// add normal x component
vertices.push_back(normal_x);
};
// add previous vertex
add_vertex(prev);
// add current vertex
add_vertex(curr);
};
auto add_indices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
// add starting index
indices.push_back(static_cast<unsigned int>(indices.size()));
buffer.add_path(curr, ibuffer_id, indices.size() - 1, move_id - 1);
buffer.paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
if (last_path.first.i_id != last_path.last.i_id) {
// add previous index
indices.push_back(static_cast<unsigned int>(indices.size()));
}
// add current index
indices.push_back(static_cast<unsigned int>(indices.size()));
last_path.last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
};
// format data into the buffers to be rendered as solid
auto add_vertices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
VertexBuffer& vertices, size_t move_id) {
static Vec3f prev_dir;
static Vec3f prev_up;
static float prev_length;
auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
// append position
vertices.push_back(position[0]);
vertices.push_back(position[1]);
vertices.push_back(position[2]);
// append normal
vertices.push_back(normal[0]);
vertices.push_back(normal[1]);
vertices.push_back(normal[2]);
};
auto extract_position_at = [](const VertexBuffer& vertices, size_t id) {
return Vec3f(vertices[id + 0], vertices[id + 1], vertices[id + 2]);
};
auto update_position_at = [](VertexBuffer& vertices, size_t id, const Vec3f& position) {
vertices[id + 0] = position[0];
vertices[id + 1] = position[1];
vertices[id + 2] = position[2];
};
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, 0, 0, move_id - 1);
buffer.paths.back().first.position = prev.position;
}
unsigned int starting_vertices_size = static_cast<unsigned int>(vertices.size() / buffer.vertices.vertex_size_floats());
Vec3f dir = (curr.position - prev.position).normalized();
Vec3f right = (std::abs(std::abs(dir.dot(Vec3f::UnitZ())) - 1.0f) < EPSILON) ? -Vec3f::UnitY() : Vec3f(dir[1], -dir[0], 0.0f).normalized();
Vec3f left = -right;
Vec3f up = right.cross(dir);
Vec3f down = -up;
Path& last_path = buffer.paths.back();
float half_width = 0.5f * last_path.width;
float half_height = 0.5f * last_path.height;
Vec3f prev_pos = prev.position - half_height * up;
Vec3f curr_pos = curr.position - half_height * up;
float length = (curr_pos - prev_pos).norm();
if (last_path.vertices_count() == 1) {
// 1st segment
// vertices 1st endpoint
store_vertex(vertices, prev_pos + half_height * up, up);
store_vertex(vertices, prev_pos + half_width * right, right);
store_vertex(vertices, prev_pos + half_height * down, down);
store_vertex(vertices, prev_pos + half_width * left, left);
// vertices 2nd endpoint
store_vertex(vertices, curr_pos + half_height * up, up);
store_vertex(vertices, curr_pos + half_width * right, right);
store_vertex(vertices, curr_pos + half_height * down, down);
store_vertex(vertices, curr_pos + half_width * left, left);
}
else {
// any other segment
float displacement = 0.0f;
float cos_dir = prev_dir.dot(dir);
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
Vec3f med_dir = (prev_dir + dir).normalized();
displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
}
Vec3f displacement_vec = displacement * prev_dir;
bool can_displace = displacement > 0.0f && displacement < prev_length&& displacement < length;
size_t prev_right_id = (starting_vertices_size - 3) * buffer.vertices.vertex_size_floats();
size_t prev_left_id = (starting_vertices_size - 1) * buffer.vertices.vertex_size_floats();
Vec3f prev_right_pos = extract_position_at(vertices, prev_right_id);
Vec3f prev_left_pos = extract_position_at(vertices, prev_left_id);
bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
// whether the angle between adjacent segments is greater than 45 degrees
bool is_sharp = cos_dir < 0.7071068f;
bool right_displaced = false;
bool left_displaced = false;
// displace the vertex (inner with respect to the corner) of the previous segment 2nd enpoint, if possible
if (can_displace) {
if (is_right_turn) {
prev_right_pos -= displacement_vec;
update_position_at(vertices, prev_right_id, prev_right_pos);
right_displaced = true;
}
else {
prev_left_pos -= displacement_vec;
update_position_at(vertices, prev_left_id, prev_left_pos);
left_displaced = true;
}
}
if (!is_sharp) {
// displace the vertex (outer with respect to the corner) of the previous segment 2nd enpoint, if possible
if (can_displace) {
if (is_right_turn) {
prev_left_pos += displacement_vec;
update_position_at(vertices, prev_left_id, prev_left_pos);
left_displaced = true;
}
else {
prev_right_pos += displacement_vec;
update_position_at(vertices, prev_right_id, prev_right_pos);
right_displaced = true;
}
}
// vertices 1st endpoint (top and bottom are from previous segment 2nd endpoint)
// vertices position matches that of the previous segment 2nd endpoint, if displaced
store_vertex(vertices, right_displaced ? prev_right_pos : prev_pos + half_width * right, right);
store_vertex(vertices, left_displaced ? prev_left_pos : prev_pos + half_width * left, left);
}
else {
// vertices 1st endpoint (top and bottom are from previous segment 2nd endpoint)
// the inner corner vertex position matches that of the previous segment 2nd endpoint, if displaced
if (is_right_turn) {
store_vertex(vertices, right_displaced ? prev_right_pos : prev_pos + half_width * right, right);
store_vertex(vertices, prev_pos + half_width * left, left);
}
else {
store_vertex(vertices, prev_pos + half_width * right, right);
store_vertex(vertices, left_displaced ? prev_left_pos : prev_pos + half_width * left, left);
}
}
// vertices 2nd endpoint
store_vertex(vertices, curr_pos + half_height * up, up);
store_vertex(vertices, curr_pos + half_width * right, right);
store_vertex(vertices, curr_pos + half_height * down, down);
store_vertex(vertices, curr_pos + half_width * left, left);
}
last_path.last = { 0, 0, move_id, curr.position };
prev_dir = dir;
prev_up = up;
prev_length = length;
};
auto add_indices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
size_t& buffer_vertices_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
static Vec3f prev_dir;
static Vec3f prev_up;
static float prev_length;
auto store_triangle = [](IndexBuffer& indices, unsigned int i1, unsigned int i2, unsigned int i3) {
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
};
auto append_dummy_cap = [store_triangle](IndexBuffer& indices, unsigned int id) {
store_triangle(indices, id, id, id);
store_triangle(indices, id, id, id);
};
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id - 1);
buffer.paths.back().first.position = prev.position;
}
Vec3f dir = (curr.position - prev.position).normalized();
Vec3f right = (std::abs(std::abs(dir.dot(Vec3f::UnitZ())) - 1.0f) < EPSILON) ? -Vec3f::UnitY() : Vec3f(dir[1], -dir[0], 0.0f).normalized();
Vec3f up = right.cross(dir);
Path& last_path = buffer.paths.back();
float half_width = 0.5f * last_path.width;
float half_height = 0.5f * last_path.height;
Vec3f prev_pos = prev.position - half_height * up;
Vec3f curr_pos = curr.position - half_height * up;
float length = (curr_pos - prev_pos).norm();
if (last_path.vertices_count() == 1) {
// 1st segment
// triangles starting cap
store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 2, buffer_vertices_size + 1);
store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 3, buffer_vertices_size + 2);
// dummy triangles outer corner cap
append_dummy_cap(indices, buffer_vertices_size);
// triangles sides
store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 1, buffer_vertices_size + 4);
store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size + 5, buffer_vertices_size + 4);
store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size + 2, buffer_vertices_size + 5);
store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 6, buffer_vertices_size + 5);
store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 3, buffer_vertices_size + 6);
store_triangle(indices, buffer_vertices_size + 3, buffer_vertices_size + 7, buffer_vertices_size + 6);
store_triangle(indices, buffer_vertices_size + 3, buffer_vertices_size + 0, buffer_vertices_size + 7);
store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 4, buffer_vertices_size + 7);
// triangles ending cap
store_triangle(indices, buffer_vertices_size + 4, buffer_vertices_size + 6, buffer_vertices_size + 7);
store_triangle(indices, buffer_vertices_size + 4, buffer_vertices_size + 5, buffer_vertices_size + 6);
buffer_vertices_size += 8;
}
else {
// any other segment
float displacement = 0.0f;
float cos_dir = prev_dir.dot(dir);
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
Vec3f med_dir = (prev_dir + dir).normalized();
displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
}
Vec3f displacement_vec = displacement * prev_dir;
bool can_displace = displacement > 0.0f && displacement < prev_length && displacement < length;
bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
// whether the angle between adjacent segments is greater than 45 degrees
bool is_sharp = cos_dir < 0.7071068f;
bool right_displaced = false;
bool left_displaced = false;
if (!is_sharp) {
if (can_displace) {
if (is_right_turn)
left_displaced = true;
else
right_displaced = true;
}
}
// triangles starting cap
store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size - 2, buffer_vertices_size + 0);
store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 1, buffer_vertices_size - 2);
// triangles outer corner cap
if (is_right_turn) {
if (left_displaced)
// dummy triangles
append_dummy_cap(indices, buffer_vertices_size);
else {
store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 1, buffer_vertices_size - 1);
store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size - 2, buffer_vertices_size - 1);
}
}
else {
if (right_displaced)
// dummy triangles
append_dummy_cap(indices, buffer_vertices_size);
else {
store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size - 3, buffer_vertices_size + 0);
store_triangle(indices, buffer_vertices_size - 3, buffer_vertices_size - 2, buffer_vertices_size + 0);
}
}
// triangles sides
store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 0, buffer_vertices_size + 2);
store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 3, buffer_vertices_size + 2);
store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size - 2, buffer_vertices_size + 3);
store_triangle(indices, buffer_vertices_size - 2, buffer_vertices_size + 4, buffer_vertices_size + 3);
store_triangle(indices, buffer_vertices_size - 2, buffer_vertices_size + 1, buffer_vertices_size + 4);
store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size + 5, buffer_vertices_size + 4);
store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size - 4, buffer_vertices_size + 5);
store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 2, buffer_vertices_size + 5);
// triangles ending cap
store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 4, buffer_vertices_size + 5);
store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 3, buffer_vertices_size + 4);
buffer_vertices_size += 6;
}
last_path.last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
prev_dir = dir;
prev_up = up;
prev_length = length;
};
wxBusyCursor busy;
// to reduce the peak in memory usage, we split the generation of the vertex and index buffers in two steps.
// the data are deleted as soon as they are sent to the gpu.
std::vector<VertexBuffer> vertices(m_buffers.size());
std::vector<MultiIndexBuffer> indices(m_buffers.size());
std::vector<float> options_zs;
// toolpaths data -> extract vertices from result
for (size_t i = 0; i < m_moves_count; ++i) {
// skip first vertex
if (i == 0)
continue;
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(i) / (2.0f * float(m_moves_count))),
_L("Generating vertex buffer") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
unsigned char id = buffer_id(curr.type);
TBuffer& buffer = m_buffers[id];
VertexBuffer& buffer_vertices = vertices[id];
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
add_vertices_as_point(curr, buffer_vertices);
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
add_vertices_as_line(prev, curr, buffer_vertices);
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
add_vertices_as_solid(prev, curr, buffer, buffer_vertices, i);
break;
}
}
if (curr.type == EMoveType::Pause_Print || curr.type == EMoveType::Custom_GCode) {
const float* const last_z = options_zs.empty() ? nullptr : &options_zs.back();
if (last_z == nullptr || curr.position[2] < *last_z - EPSILON || *last_z + EPSILON < curr.position[2])
options_zs.emplace_back(curr.position[2]);
}
}
// move the wipe toolpaths half height up to render them on proper position
VertexBuffer& wipe_vertices = vertices[buffer_id(EMoveType::Wipe)];
for (size_t i = 2; i < wipe_vertices.size(); i += 3) {
wipe_vertices[i] += 0.5f * GCodeProcessor::Wipe_Height;
}
log_memory_usage("Loaded G-code generated vertex buffers, ", vertices, indices);
// toolpaths data -> send vertices data to gpu
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
const VertexBuffer& buffer_vertices = vertices[i];
buffer.vertices.count = buffer_vertices.size() / buffer.vertices.vertex_size_floats();
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_vertices_gpu_size += buffer_vertices.size() * sizeof(float);
m_statistics.max_vbuffer_gpu_size = std::max(m_statistics.max_vbuffer_gpu_size, static_cast<int64_t>(buffer_vertices.size() * sizeof(float)));
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (buffer.vertices.count > 0) {
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.vbuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
glsafe(::glGenBuffers(1, &buffer.vertices.id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, buffer.vertices.id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, buffer_vertices.size() * sizeof(float), buffer_vertices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
}
// dismiss vertices data, no more needed
std::vector<VertexBuffer>().swap(vertices);
// toolpaths data -> extract indices from result
// paths may have been filled while extracting vertices,
// so reset them, they will be filled again while extracting indices
for (TBuffer& buffer : m_buffers) {
buffer.paths.clear();
}
// max index buffer size
const size_t IBUFFER_THRESHOLD = 1024 * 1024 * 32;
// variable used to keep track of the current size (in vertices) of the vertex buffer
std::vector<size_t> curr_buffer_vertices_size(m_buffers.size(), 0);
for (size_t i = 0; i < m_moves_count; ++i) {
// skip first vertex
if (i == 0)
continue;
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(m_moves_count + i) / (2.0f * float(m_moves_count))),
_L("Generating index buffers") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
unsigned char id = buffer_id(curr.type);
TBuffer& buffer = m_buffers[id];
MultiIndexBuffer& buffer_indices = indices[id];
if (buffer_indices.empty())
buffer_indices.push_back(IndexBuffer());
// if adding the indices for the current segment exceeds the threshold size of the current index buffer
// create another index buffer, and move the current path indices into it
if (buffer_indices.back().size() >= IBUFFER_THRESHOLD - static_cast<size_t>(buffer.indices_per_segment())) {
buffer_indices.push_back(IndexBuffer());
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
if (!(prev.type != curr.type || !buffer.paths.back().matches(curr))) {
Path& last_path = buffer.paths.back();
size_t delta_id = last_path.last.i_id - last_path.first.i_id;
// move indices of the last path from the previous into the new index buffer
IndexBuffer& src_buffer = buffer_indices[buffer_indices.size() - 2];
IndexBuffer& dst_buffer = buffer_indices[buffer_indices.size() - 1];
std::move(src_buffer.begin() + last_path.first.i_id, src_buffer.end(), std::back_inserter(dst_buffer));
src_buffer.erase(src_buffer.begin() + last_path.first.i_id, src_buffer.end());
// updates path indices
last_path.first.b_id = buffer_indices.size() - 1;
last_path.first.i_id = 0;
last_path.last.b_id = buffer_indices.size() - 1;
last_path.last.i_id = delta_id;
}
}
}
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
add_indices_as_point(curr, buffer, static_cast<unsigned int>(buffer_indices.size()) - 1, buffer_indices.back(), i);
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
add_indices_as_line(prev, curr, buffer, static_cast<unsigned int>(buffer_indices.size()) - 1, buffer_indices.back(), i);
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
add_indices_as_solid(prev, curr, buffer, curr_buffer_vertices_size[id], static_cast<unsigned int>(buffer_indices.size()) - 1, buffer_indices.back(), i);
break;
}
}
}
if (progress_dialog != nullptr) {
progress_dialog->Update(100, "");
progress_dialog->Fit();
}
log_memory_usage("Loaded G-code generated indices buffers, ", vertices, indices);
// toolpaths data -> send indices data to gpu
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
for (size_t j = 0; j < indices[i].size(); ++j) {
const IndexBuffer& buffer_indices = indices[i][j];
buffer.indices.push_back(IBuffer());
IBuffer& ibuffer = buffer.indices.back();
ibuffer.count = buffer_indices.size();
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_indices_gpu_size += ibuffer.count * sizeof(unsigned int);
m_statistics.max_ibuffer_gpu_size = std::max(m_statistics.max_ibuffer_gpu_size, static_cast<int64_t>(ibuffer.count * sizeof(unsigned int)));
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (ibuffer.count > 0) {
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.ibuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
glsafe(::glGenBuffers(1, &ibuffer.id));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuffer.id));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, buffer_indices.size() * sizeof(unsigned int), buffer_indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
m_statistics.paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
}
unsigned int travel_buffer_id = buffer_id(EMoveType::Travel);
const MultiIndexBuffer& travel_buffer_indices = indices[travel_buffer_id];
for (size_t i = 0; i < travel_buffer_indices.size(); ++i) {
m_statistics.travel_segments_count += travel_buffer_indices[i].size() / m_buffers[travel_buffer_id].indices_per_segment();
}
unsigned int wipe_buffer_id = buffer_id(EMoveType::Wipe);
const MultiIndexBuffer& wipe_buffer_indices = indices[wipe_buffer_id];
for (size_t i = 0; i < wipe_buffer_indices.size(); ++i) {
m_statistics.wipe_segments_count += wipe_buffer_indices[i].size() / m_buffers[wipe_buffer_id].indices_per_segment();
}
unsigned int extrude_buffer_id = buffer_id(EMoveType::Extrude);
const MultiIndexBuffer& extrude_buffer_indices = indices[extrude_buffer_id];
for (size_t i = 0; i < extrude_buffer_indices.size(); ++i) {
m_statistics.extrude_segments_count += extrude_buffer_indices[i].size() / m_buffers[extrude_buffer_id].indices_per_segment();
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// dismiss indices data, no more needed
std::vector<MultiIndexBuffer>().swap(indices);
// layers zs / roles / extruder ids / cp color ids -> extract from result
size_t last_travel_s_id = 0;
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
if (move.type == EMoveType::Extrude) {
// layers zs
const double* const last_z = m_layers.empty() ? nullptr : &m_layers.get_zs().back();
double z = static_cast<double>(move.position[2]);
if (last_z == nullptr || z < *last_z - EPSILON || *last_z + EPSILON < z)
m_layers.append(z, { last_travel_s_id, i });
else
m_layers.get_endpoints().back().last = i;
// extruder ids
m_extruder_ids.emplace_back(move.extruder_id);
// roles
if (i > 0)
m_roles.emplace_back(move.extrusion_role);
}
else if (move.type == EMoveType::Travel) {
if (i - last_travel_s_id > 1 && !m_layers.empty())
m_layers.get_endpoints().back().last = i;
last_travel_s_id = i;
}
}
// set layers z range
if (!m_layers.empty())
m_layers_z_range = { 0, static_cast<unsigned int>(m_layers.size() - 1) };
// change color of paths whose layer contains option points
if (!options_zs.empty()) {
TBuffer& extrude_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
for (Path& path : extrude_buffer.paths) {
float z = path.first.position[2];
if (std::find_if(options_zs.begin(), options_zs.end(), [z](float f) { return f - EPSILON <= z && z <= f + EPSILON; }) != options_zs.end())
path.cp_color_id = 255 - path.cp_color_id;
}
}
// roles -> remove duplicates
std::sort(m_roles.begin(), m_roles.end());
m_roles.erase(std::unique(m_roles.begin(), m_roles.end()), m_roles.end());
m_roles.shrink_to_fit();
// extruder ids -> remove duplicates
std::sort(m_extruder_ids.begin(), m_extruder_ids.end());
m_extruder_ids.erase(std::unique(m_extruder_ids.begin(), m_extruder_ids.end()), m_extruder_ids.end());
m_extruder_ids.shrink_to_fit();
log_memory_usage("Loaded G-code generated extrusion paths, ", vertices, indices);
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.load_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (progress_dialog != nullptr)
progress_dialog->Destroy();
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::load_shells(const Print& print, bool initialized)
{
if (print.objects().empty())
// no shells, return
return;
// adds objects' volumes
int object_id = 0;
for (const PrintObject* obj : print.objects()) {
const ModelObject* model_obj = obj->model_object();
std::vector<int> instance_ids(model_obj->instances.size());
for (int i = 0; i < (int)model_obj->instances.size(); ++i) {
instance_ids[i] = i;
}
m_shells.volumes.load_object(model_obj, object_id, instance_ids, "object", initialized);
++object_id;
}
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) {
// adds wipe tower's volume
double max_z = print.objects()[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = print.config();
size_t extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.wipe_tower && !config.complete_objects) {
const DynamicPrintConfig& print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config;
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
double nozzle_diameter = print.config().nozzle_diameter.values[0];
float depth = print.wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).depth;
float brim_width = print.wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).brim_width;
m_shells.volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width, initialized);
}
}
// remove modifiers
while (true) {
GLVolumePtrs::iterator it = std::find_if(m_shells.volumes.volumes.begin(), m_shells.volumes.volumes.end(), [](GLVolume* volume) { return volume->is_modifier; });
if (it != m_shells.volumes.volumes.end()) {
delete (*it);
m_shells.volumes.volumes.erase(it);
}
else
break;
}
for (GLVolume* volume : m_shells.volumes.volumes) {
volume->zoom_to_volumes = false;
volume->color[3] = 0.25f;
volume->force_native_color = true;
volume->set_render_color();
}
}
#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
auto extrusion_color = [this](const Path& path) {
Color color;
switch (m_view_type)
{
case EViewType::FeatureType: { color = Extrusion_Role_Colors[static_cast<unsigned int>(path.role)]; break; }
case EViewType::Height: { color = m_extrusions.ranges.height.get_color_at(path.height); break; }
case EViewType::Width: { color = m_extrusions.ranges.width.get_color_at(path.width); break; }
case EViewType::Feedrate: { color = m_extrusions.ranges.feedrate.get_color_at(path.feedrate); break; }
case EViewType::FanSpeed: { color = m_extrusions.ranges.fan_speed.get_color_at(path.fan_speed); break; }
case EViewType::VolumetricRate: { color = m_extrusions.ranges.volumetric_rate.get_color_at(path.volumetric_rate); break; }
case EViewType::Tool: { color = m_tool_colors[path.extruder_id]; break; }
case EViewType::ColorPrint: {
if (path.cp_color_id >= static_cast<unsigned char>(m_tool_colors.size())) {
color = { 0.5f, 0.5f, 0.5f };
// // complementary color
// color = m_tool_colors[255 - path.cp_color_id];
// color = { 1.0f - color[0], 1.0f - color[1], 1.0f - color[2] };
}
else
color = m_tool_colors[path.cp_color_id];
break;
}
default: { color = { 1.0f, 1.0f, 1.0f }; break; }
}
return color;
};
auto travel_color = [](const Path& path) {
return (path.delta_extruder < 0.0f) ? Travel_Colors[2] /* Retract */ :
((path.delta_extruder > 0.0f) ? Travel_Colors[1] /* Extrude */ :
Travel_Colors[0] /* Move */);
};
auto is_in_layers_range = [this](const Path& path, size_t min_id, size_t max_id) {
auto in_layers_range = [this, min_id, max_id](size_t id) {
return m_layers.get_endpoints_at(min_id).first <= id && id <= m_layers.get_endpoints_at(max_id).last;
};
return in_layers_range(path.sub_paths.front().first.s_id) || in_layers_range(path.sub_paths.back().last.s_id);
};
auto is_travel_in_layers_range = [this](size_t path_id, size_t min_id, size_t max_id) {
const TBuffer& buffer = m_buffers[buffer_id(EMoveType::Travel)];
if (path_id >= buffer.paths.size())
return false;
Path path = buffer.paths[path_id];
size_t first = path_id;
size_t last = path_id;
// check adjacent paths
while (first > 0 && path.sub_paths.front().first.position.isApprox(buffer.paths[first - 1].sub_paths.back().last.position)) {
--first;
path.sub_paths.front().first = buffer.paths[first].sub_paths.front().first;
}
while (last < buffer.paths.size() - 1 && path.sub_paths.back().last.position.isApprox(buffer.paths[last + 1].sub_paths.front().first.position)) {
++last;
path.sub_paths.back().last = buffer.paths[last].sub_paths.back().last;
}
size_t min_s_id = m_layers.get_endpoints_at(min_id).first;
size_t max_s_id = m_layers.get_endpoints_at(max_id).last;
return (min_s_id <= path.sub_paths.front().first.s_id && path.sub_paths.front().first.s_id <= max_s_id) ||
(min_s_id <= path.sub_paths.back().last.s_id && path.sub_paths.back().last.s_id <= max_s_id);
};
#if ENABLE_GCODE_VIEWER_STATISTICS
Statistics* statistics = const_cast<Statistics*>(&m_statistics);
statistics->render_paths_size = 0;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
bool top_layer_only = get_app_config()->get("seq_top_layer_only") == "1";
SequentialView::Endpoints global_endpoints = { m_moves_count , 0 };
SequentialView::Endpoints top_layer_endpoints = global_endpoints;
SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
if (top_layer_only || !keep_sequential_current_first) sequential_view->current.first = 0;
if (!keep_sequential_current_last) sequential_view->current.last = m_moves_count;
// first pass: collect visible paths and update sequential view data
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
std::vector<std::tuple<unsigned char, unsigned int, unsigned int, unsigned int>> paths;
#else
std::vector<std::tuple<TBuffer*, unsigned int, unsigned int, unsigned int>> paths;
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
// reset render paths
buffer.render_paths.clear();
if (!buffer.visible)
continue;
for (size_t i = 0; i < buffer.paths.size(); ++i) {
const Path& path = buffer.paths[i];
if (path.type == EMoveType::Travel) {
if (!is_travel_in_layers_range(i, m_layers_z_range[0], m_layers_z_range[1]))
continue;
}
else if (!is_in_layers_range(path, m_layers_z_range[0], m_layers_z_range[1]))
continue;
if (path.type == EMoveType::Extrude && !is_visible(path))
continue;
// store valid path
for (size_t j = 0; j < path.sub_paths.size(); ++j) {
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
paths.push_back({ static_cast<unsigned char>(b), path.sub_paths[j].first.b_id, static_cast<unsigned int>(i), static_cast<unsigned int>(j) });
#else
paths.push_back({ &buffer, path.sub_paths[j].first.b_id, static_cast<unsigned int>(i), static_cast<unsigned int>(j) });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
}
global_endpoints.first = std::min(global_endpoints.first, path.sub_paths.front().first.s_id);
global_endpoints.last = std::max(global_endpoints.last, path.sub_paths.back().last.s_id);
if (top_layer_only) {
if (path.type == EMoveType::Travel) {
if (is_travel_in_layers_range(i, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
}
}
else if (is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
}
}
}
}
// update current sequential position
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, global_endpoints.first, global_endpoints.last) : global_endpoints.first;
sequential_view->current.last = keep_sequential_current_last ? std::clamp(sequential_view->current.last, global_endpoints.first, global_endpoints.last) : global_endpoints.last;
// get the world position from gpu
bool found = false;
for (const TBuffer& buffer : m_buffers) {
// searches the path containing the current position
for (const Path& path : buffer.paths) {
if (path.contains(m_sequential_view.current.last)) {
int sub_path_id = path.get_id_of_sub_path_containing(m_sequential_view.current.last);
if (sub_path_id != -1) {
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
unsigned int offset = static_cast<unsigned int>(m_sequential_view.current.last - sub_path.first.s_id);
if (offset > 0) {
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Line)
offset = 2 * offset - 1;
else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
unsigned int indices_count = buffer.indices_per_segment();
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
offset = indices_count * (offset - 1) + (indices_count - 2);
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
#else
offset = indices_count * (offset - 1) + (indices_count - 6);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
}
}
offset += static_cast<unsigned int>(sub_path.first.i_id);
// gets the vertex index from the index buffer on gpu
const IBuffer& i_buffer = buffer.indices[sub_path.first.b_id];
unsigned int index = 0;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(offset * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&index)));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// gets the position from the vertices buffer on gpu
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, static_cast<GLintptr>(index * buffer.vertices.vertex_size_bytes()), static_cast<GLsizeiptr>(3 * sizeof(float)), static_cast<void*>(sequential_view->current_position.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
found = true;
break;
}
}
}
if (found)
break;
}
// second pass: filter paths by sequential data and collect them by color
RenderPath* render_path = nullptr;
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
const Path& path = buffer.paths[path_id];
#else
for (const auto& [buffer, ibuffer_id, path_id, sub_path_id] : paths) {
const Path& path = buffer->paths[path_id];
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
if (m_sequential_view.current.last <= sub_path.first.s_id || sub_path.last.s_id <= m_sequential_view.current.first)
continue;
Color color;
switch (path.type)
{
case EMoveType::Tool_change: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::ToolChanges)]; break; }
case EMoveType::Color_change: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::ColorChanges)]; break; }
case EMoveType::Pause_Print: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::PausePrints)]; break; }
case EMoveType::Custom_GCode: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::CustomGCodes)]; break; }
case EMoveType::Retract: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::Retractions)]; break; }
case EMoveType::Unretract: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::Unretractions)]; break; }
case EMoveType::Extrude: {
if (!top_layer_only ||
m_sequential_view.current.last == global_endpoints.last ||
is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1]))
color = extrusion_color(path);
else
color = { 0.25f, 0.25f, 0.25f };
break;
}
case EMoveType::Travel: {
if (!top_layer_only || m_sequential_view.current.last == global_endpoints.last || is_travel_in_layers_range(path_id, m_layers_z_range[1], m_layers_z_range[1]))
color = (m_view_type == EViewType::Feedrate || m_view_type == EViewType::Tool || m_view_type == EViewType::ColorPrint) ? extrusion_color(path) : travel_color(path);
else
color = { 0.25f, 0.25f, 0.25f };
break;
}
case EMoveType::Wipe: { color = Wipe_Color; break; }
default: { color = { 0.0f, 0.0f, 0.0f }; break; }
}
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
RenderPath key{ tbuffer_id, color, static_cast<unsigned int>(ibuffer_id), path_id };
if (render_path == nullptr || !RenderPathPropertyEqual()(*render_path, key))
render_path = const_cast<RenderPath*>(&(*buffer.render_paths.emplace(key).first));
unsigned int delta_1st = 0;
if (sub_path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= sub_path.last.s_id)
delta_1st = static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id);
#else
RenderPath key{ color, static_cast<unsigned int>(ibuffer_id), path_id };
if (render_path == nullptr || !RenderPathPropertyEqual()(*render_path, key))
render_path = const_cast<RenderPath*>(&(*buffer->render_paths.emplace(key).first));
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
unsigned int size_in_indices = 0;
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
switch (buffer.render_primitive_type)
#else
switch (buffer->render_primitive_type)
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
{
case TBuffer::ERenderPrimitiveType::Point: {
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
size_in_indices = buffer.indices_per_segment();
#else
size_in_indices = buffer->indices_per_segment();
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
break;
}
case TBuffer::ERenderPrimitiveType::Line:
case TBuffer::ERenderPrimitiveType::Triangle: {
unsigned int segments_count = std::min(m_sequential_view.current.last, sub_path.last.s_id) - std::max(m_sequential_view.current.first, sub_path.first.s_id);
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
size_in_indices = buffer.indices_per_segment() * segments_count;
#else
size_in_indices = buffer->indices_per_segment() * segments_count;
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
break;
}
}
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (size_in_indices == 0)
continue;
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
if (sub_path_id == 0 && delta_1st == 0)
size_in_indices += 6; // add 2 triangles for starting cap
if (sub_path_id == path.sub_paths.size() - 1 && path.sub_paths.back().last.s_id <= m_sequential_view.current.last)
size_in_indices += 6; // add 2 triangles for ending cap
if (delta_1st > 0)
size_in_indices -= 6; // remove 2 triangles for corner cap
}
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
render_path->sizes.push_back(size_in_indices);
#if !ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
unsigned int delta_1st = 0;
if (sub_path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= sub_path.last.s_id)
delta_1st = m_sequential_view.current.first - sub_path.first.s_id;
#endif // !ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
delta_1st *= buffer.indices_per_segment();
if (delta_1st > 0) {
delta_1st += 6; // skip 2 triangles for corner cap
if (sub_path_id == 0)
delta_1st += 6; // skip 2 triangles for starting cap
}
}
#else
if (buffer->render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
delta_1st *= buffer->indices_per_segment();
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
render_path->offsets.push_back(static_cast<size_t>((sub_path.first.i_id + delta_1st) * sizeof(IBufferType)));
#if 0
// check sizes and offsets against index buffer size on gpu
GLint buffer_size;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer->indices[render_path->ibuffer_id].ibo));
glsafe(::glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &buffer_size));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (render_path->offsets.back() + render_path->sizes.back() * sizeof(IBufferType) > buffer_size)
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::refresh_render_paths: Invalid render path data";
#endif
}
// set sequential data to their final value
sequential_view->endpoints = top_layer_only ? top_layer_endpoints : global_endpoints;
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, sequential_view->endpoints.first, sequential_view->endpoints.last) : sequential_view->endpoints.first;
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
// updates sequential range caps
std::array<SequentialRangeCap, 2>* sequential_range_caps = const_cast<std::array<SequentialRangeCap, 2>*>(&m_sequential_range_caps);
(*sequential_range_caps)[0].reset();
(*sequential_range_caps)[1].reset();
if (m_sequential_view.current.first != m_sequential_view.current.last) {
for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
continue;
const Path& path = buffer.paths[path_id];
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
if (m_sequential_view.current.last <= sub_path.first.s_id || sub_path.last.s_id <= m_sequential_view.current.first)
continue;
// update cap for first endpoint of current range
if (m_sequential_view.current.first > sub_path.first.s_id) {
SequentialRangeCap& cap = (*sequential_range_caps)[0];
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
cap.buffer = &buffer;
cap.vbo = i_buffer.vbo;
// calculate offset into the index buffer
unsigned int offset = sub_path.first.i_id;
offset += 6; // add 2 triangles for corner cap
offset += static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id) * buffer.indices_per_segment();
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
// extract indices from index buffer
std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 0) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 7) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 1) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 13) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[4])));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
indices[3] = indices[0];
indices[5] = indices[1];
// send indices to gpu
glsafe(::glGenBuffers(1, &cap.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// extract color from render path
size_t offset_bytes = offset * sizeof(IBufferType);
for (const RenderPath& render_path : buffer.render_paths) {
if (render_path.ibuffer_id == ibuffer_id) {
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
if (render_path.contains(offset_bytes)) {
cap.color = render_path.color;
break;
}
}
}
}
}
// update cap for last endpoint of current range
if (m_sequential_view.current.last < sub_path.last.s_id) {
SequentialRangeCap& cap = (*sequential_range_caps)[1];
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
cap.buffer = &buffer;
cap.vbo = i_buffer.vbo;
// calculate offset into the index buffer
unsigned int offset = sub_path.first.i_id;
offset += 6; // add 2 triangles for corner cap
offset += static_cast<unsigned int>(m_sequential_view.current.last - 1 - sub_path.first.s_id) * buffer.indices_per_segment();
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
// extract indices from index buffer
std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 2) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 4) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 10) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 16) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[5])));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
indices[3] = indices[0];
indices[4] = indices[2];
// send indices to gpu
glsafe(::glGenBuffers(1, &cap.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6 * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// extract color from render path
size_t offset_bytes = offset * sizeof(IBufferType);
for (const RenderPath& render_path : buffer.render_paths) {
if (render_path.ibuffer_id == ibuffer_id) {
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
if (render_path.contains(offset_bytes)) {
cap.color = render_path.color;
break;
}
}
}
}
}
if ((*sequential_range_caps)[0].is_renderable() && (*sequential_range_caps)[1].is_renderable())
break;
}
}
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
wxGetApp().plater()->enable_preview_moves_slider(!paths.empty());
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
statistics->render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
}
statistics->refresh_paths_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
#else
void GCodeViewer::refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
auto extrusion_color = [this](const Path& path) {
Color color;
switch (m_view_type)
{
case EViewType::FeatureType: { color = Extrusion_Role_Colors[static_cast<unsigned int>(path.role)]; break; }
case EViewType::Height: { color = m_extrusions.ranges.height.get_color_at(path.height); break; }
case EViewType::Width: { color = m_extrusions.ranges.width.get_color_at(path.width); break; }
case EViewType::Feedrate: { color = m_extrusions.ranges.feedrate.get_color_at(path.feedrate); break; }
case EViewType::FanSpeed: { color = m_extrusions.ranges.fan_speed.get_color_at(path.fan_speed); break; }
case EViewType::VolumetricRate: { color = m_extrusions.ranges.volumetric_rate.get_color_at(path.volumetric_rate); break; }
case EViewType::Tool: { color = m_tool_colors[path.extruder_id]; break; }
case EViewType::ColorPrint: {
if (path.cp_color_id >= static_cast<unsigned char>(m_tool_colors.size())) {
color = { 0.5f, 0.5f, 0.5f };
// // complementary color
// color = m_tool_colors[255 - path.cp_color_id];
// color = { 1.0f - color[0], 1.0f - color[1], 1.0f - color[2] };
}
else
color = m_tool_colors[path.cp_color_id];
break;
}
default: { color = { 1.0f, 1.0f, 1.0f }; break; }
}
return color;
};
auto travel_color = [this](const Path& path) {
return (path.delta_extruder < 0.0f) ? Travel_Colors[2] /* Retract */ :
((path.delta_extruder > 0.0f) ? Travel_Colors[1] /* Extrude */ :
Travel_Colors[0] /* Move */);
};
auto is_in_layers_range = [this](const Path& path, size_t min_id, size_t max_id) {
auto in_layers_range = [this, min_id, max_id](size_t id) {
return m_layers.get_endpoints_at(min_id).first <= id && id <= m_layers.get_endpoints_at(max_id).last;
};
return in_layers_range(path.first.s_id) || in_layers_range(path.last.s_id);
};
auto is_travel_in_layers_range = [this](size_t path_id, size_t min_id, size_t max_id) {
auto is_in_z_range = [](const Path& path, double min_z, double max_z) {
auto in_z_range = [min_z, max_z](double z) {
return min_z - EPSILON < z&& z < max_z + EPSILON;
};
return in_z_range(path.first.position[2]) || in_z_range(path.last.position[2]);
};
const TBuffer& buffer = m_buffers[buffer_id(EMoveType::Travel)];
if (path_id >= buffer.paths.size())
return false;
Path path = buffer.paths[path_id];
size_t first = path_id;
size_t last = path_id;
// check adjacent paths
while (first > 0 && path.first.position.isApprox(buffer.paths[first - 1].last.position)) {
--first;
path.first = buffer.paths[first].first;
}
while (last < buffer.paths.size() - 1 && path.last.position.isApprox(buffer.paths[last + 1].first.position)) {
++last;
path.last = buffer.paths[last].last;
}
size_t min_s_id = m_layers.get_endpoints_at(min_id).first;
size_t max_s_id = m_layers.get_endpoints_at(max_id).last;
return (min_s_id <= path.first.s_id && path.first.s_id <= max_s_id) ||
(min_s_id <= path.last.s_id && path.last.s_id <= max_s_id);
};
#if ENABLE_GCODE_VIEWER_STATISTICS
Statistics* statistics = const_cast<Statistics*>(&m_statistics);
statistics->render_paths_size = 0;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
bool top_layer_only = get_app_config()->get("seq_top_layer_only") == "1";
SequentialView::Endpoints global_endpoints = { m_moves_count , 0 };
SequentialView::Endpoints top_layer_endpoints = global_endpoints;
SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
if (top_layer_only || !keep_sequential_current_first) sequential_view->current.first = 0;
if (!keep_sequential_current_last) sequential_view->current.last = m_moves_count;
// first pass: collect visible paths and update sequential view data
std::vector<std::tuple<TBuffer*, unsigned int, unsigned int>> paths;
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
// reset render paths
buffer.render_paths.clear();
if (!buffer.visible)
continue;
for (size_t i = 0; i < buffer.paths.size(); ++i) {
const Path& path = buffer.paths[i];
if (path.type == EMoveType::Travel) {
if (!is_travel_in_layers_range(i, m_layers_z_range[0], m_layers_z_range[1]))
continue;
}
else if (!is_in_layers_range(path, m_layers_z_range[0], m_layers_z_range[1]))
continue;
if (path.type == EMoveType::Extrude && !is_visible(path))
continue;
// store valid path
paths.push_back({ &buffer, path.first.b_id, static_cast<unsigned int>(i) });
global_endpoints.first = std::min(global_endpoints.first, path.first.s_id);
global_endpoints.last = std::max(global_endpoints.last, path.last.s_id);
if (top_layer_only) {
if (path.type == EMoveType::Travel) {
if (is_travel_in_layers_range(i, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.last.s_id);
}
}
else if (is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.last.s_id);
}
}
}
}
// update current sequential position
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, global_endpoints.first, global_endpoints.last) : global_endpoints.first;
sequential_view->current.last = keep_sequential_current_last ? std::clamp(sequential_view->current.last, global_endpoints.first, global_endpoints.last) : global_endpoints.last;
// get the world position from gpu
bool found = false;
for (const TBuffer& buffer : m_buffers) {
// searches the path containing the current position
for (const Path& path : buffer.paths) {
if (path.contains(m_sequential_view.current.last)) {
unsigned int offset = static_cast<unsigned int>(m_sequential_view.current.last - path.first.s_id);
if (offset > 0) {
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Line)
offset = 2 * offset - 1;
else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
unsigned int indices_count = buffer.indices_per_segment();
offset = indices_count * (offset - 1) + (indices_count - 6);
}
}
offset += static_cast<unsigned int>(path.first.i_id);
// gets the index from the index buffer on gpu
unsigned int index = 0;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.indices[path.first.b_id].id));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(offset * sizeof(unsigned int)), static_cast<GLsizeiptr>(sizeof(unsigned int)), static_cast<void*>(&index)));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// gets the position from the vertices buffer on gpu
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, buffer.vertices.id));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, static_cast<GLintptr>(index * buffer.vertices.vertex_size_bytes()), static_cast<GLsizeiptr>(3 * sizeof(float)), static_cast<void*>(sequential_view->current_position.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
found = true;
break;
}
}
if (found)
break;
}
// second pass: filter paths by sequential data and collect them by color
RenderPath *render_path = nullptr;
for (const auto& [buffer, ibuffer_id, path_id] : paths) {
const Path& path = buffer->paths[path_id];
if (m_sequential_view.current.last <= path.first.s_id || path.last.s_id <= m_sequential_view.current.first)
continue;
Color color;
switch (path.type)
{
case EMoveType::Extrude: {
if (!top_layer_only ||
m_sequential_view.current.last == global_endpoints.last ||
is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1]))
color = extrusion_color(path);
else
color = { 0.25f, 0.25f, 0.25f };
break;
}
case EMoveType::Travel: {
if (!top_layer_only || m_sequential_view.current.last == global_endpoints.last || is_travel_in_layers_range(path_id, m_layers_z_range[1], m_layers_z_range[1]))
color = (m_view_type == EViewType::Feedrate || m_view_type == EViewType::Tool || m_view_type == EViewType::ColorPrint) ? extrusion_color(path) : travel_color(path);
else
color = { 0.25f, 0.25f, 0.25f };
break;
}
case EMoveType::Wipe: { color = Wipe_Color; break; }
default: { color = { 0.0f, 0.0f, 0.0f }; break; }
}
RenderPath key{ color, static_cast<unsigned int>(ibuffer_id), path_id };
if (render_path == nullptr || ! RenderPathPropertyEqual()(*render_path, key))
render_path = const_cast<RenderPath*>(&(*buffer->render_paths.emplace(key).first));
unsigned int segments_count = std::min(m_sequential_view.current.last, path.last.s_id) - std::max(m_sequential_view.current.first, path.first.s_id) + 1;
unsigned int size_in_indices = 0;
switch (buffer->render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: { size_in_indices = segments_count; break; }
case TBuffer::ERenderPrimitiveType::Line:
case TBuffer::ERenderPrimitiveType::Triangle: { size_in_indices = buffer->indices_per_segment() * (segments_count - 1); break; }
}
render_path->sizes.push_back(size_in_indices);
unsigned int delta_1st = 0;
if (path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= path.last.s_id)
delta_1st = m_sequential_view.current.first - path.first.s_id;
if (buffer->render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
delta_1st *= buffer->indices_per_segment();
render_path->offsets.push_back(static_cast<size_t>((path.first.i_id + delta_1st) * sizeof(unsigned int)));
}
// set sequential data to their final value
sequential_view->endpoints = top_layer_only ? top_layer_endpoints : global_endpoints;
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, sequential_view->endpoints.first, sequential_view->endpoints.last) : sequential_view->endpoints.first;
wxGetApp().plater()->enable_preview_moves_slider(!paths.empty());
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
statistics->render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
}
statistics->refresh_paths_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::render_toolpaths() const
{
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
float point_size = 20.0f;
#else
float point_size = 0.8f;
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
std::array<float, 4> light_intensity = { 0.25f, 0.70f, 0.75f, 0.75f };
const Camera& camera = wxGetApp().plater()->get_camera();
double zoom = camera.get_zoom();
const std::array<int, 4>& viewport = camera.get_viewport();
float near_plane_height = camera.get_type() == Camera::Perspective ? static_cast<float>(viewport[3]) / (2.0f * static_cast<float>(2.0 * std::tan(0.5 * Geometry::deg2rad(camera.get_fov())))) :
static_cast<float>(viewport[3]) * 0.0005;
auto set_uniform_color = [](const std::array<float, 3>& color, GLShaderProgram& shader) {
std::array<float, 4> color4 = { color[0], color[1], color[2], 1.0f };
shader.set_uniform("uniform_color", color4);
};
auto render_as_points = [zoom, point_size, near_plane_height, set_uniform_color]
(const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("use_fixed_screen_size", 1);
#else
shader.set_uniform("use_fixed_screen_size", 0);
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("zoom", zoom);
shader.set_uniform("percent_outline_radius", 0.0f);
shader.set_uniform("percent_center_radius", 0.33f);
shader.set_uniform("point_size", point_size);
shader.set_uniform("near_plane_height", near_plane_height);
glsafe(::glEnable(GL_VERTEX_PROGRAM_POINT_SIZE));
glsafe(::glEnable(GL_POINT_SPRITE));
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
set_uniform_color(path.color, shader);
glsafe(::glMultiDrawElements(GL_POINTS, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_multi_points_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
glsafe(::glDisable(GL_POINT_SPRITE));
glsafe(::glDisable(GL_VERTEX_PROGRAM_POINT_SIZE));
};
auto render_as_lines = [light_intensity, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
shader.set_uniform("light_intensity", light_intensity);
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
set_uniform_color(path.color, shader);
glsafe(::glMultiDrawElements(GL_LINES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_multi_lines_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
auto render_as_triangles = [set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
set_uniform_color(path.color, shader);
glsafe(::glMultiDrawElements(GL_TRIANGLES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_multi_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
auto line_width = [](double zoom) {
return (zoom < 5.0) ? 1.0 : (1.0 + 5.0 * (zoom - 5.0) / (100.0 - 5.0));
};
glsafe(::glLineWidth(static_cast<GLfloat>(line_width(zoom))));
unsigned char begin_id = buffer_id(EMoveType::Retract);
unsigned char end_id = buffer_id(EMoveType::Count);
for (unsigned char i = begin_id; i < end_id; ++i) {
const TBuffer& buffer = m_buffers[i];
if (!buffer.visible || !buffer.has_data())
continue;
GLShaderProgram* shader = wxGetApp().get_shader(buffer.shader.c_str());
if (shader != nullptr) {
shader->start_using();
for (size_t j = 0; j < buffer.indices.size(); ++j) {
const IBuffer& i_buffer = buffer.indices[j];
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_size()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = buffer.vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_size()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
render_as_points(buffer, static_cast<unsigned int>(j), *shader);
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
render_as_lines(buffer, static_cast<unsigned int>(j), *shader);
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
render_as_triangles(buffer, static_cast<unsigned int>(j), *shader);
break;
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
shader->stop_using();
}
}
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
auto render_sequential_range_cap = [set_uniform_color](const SequentialRangeCap& cap) {
GLShaderProgram* shader = wxGetApp().get_shader(cap.buffer->shader.c_str());
if (shader != nullptr) {
shader->start_using();
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, cap.vbo));
glsafe(::glVertexPointer(cap.buffer->vertices.position_size_floats(), GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.position_offset_size()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = cap.buffer->vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.normal_offset_size()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
set_uniform_color(cap.color, *shader);
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glDrawElements(GL_TRIANGLES, (GLsizei)cap.indices_count(), GL_UNSIGNED_SHORT, nullptr));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
shader->stop_using();
}
};
for (unsigned int i = 0; i < 2; ++i) {
if (m_sequential_range_caps[i].is_renderable())
render_sequential_range_cap(m_sequential_range_caps[i]);
}
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
}
#else
void GCodeViewer::render_toolpaths() const
{
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
float point_size = 20.0f;
#else
float point_size = 0.8f;
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
std::array<float, 4> light_intensity = { 0.25f, 0.70f, 0.75f, 0.75f };
const Camera& camera = wxGetApp().plater()->get_camera();
double zoom = camera.get_zoom();
const std::array<int, 4>& viewport = camera.get_viewport();
float near_plane_height = camera.get_type() == Camera::Perspective ? static_cast<float>(viewport[3]) / (2.0f * static_cast<float>(2.0 * std::tan(0.5 * Geometry::deg2rad(camera.get_fov())))) :
static_cast<float>(viewport[3]) * 0.0005;
auto set_uniform_color = [](const std::array<float, 3>& color, GLShaderProgram& shader) {
std::array<float, 4> color4 = { color[0], color[1], color[2], 1.0f };
shader.set_uniform("uniform_color", color4);
};
auto render_as_points = [this, zoom, point_size, near_plane_height, set_uniform_color]
(const TBuffer& buffer, unsigned int ibuffer_id, EOptionsColors color_id, GLShaderProgram& shader) {
set_uniform_color(Options_Colors[static_cast<unsigned int>(color_id)], shader);
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("use_fixed_screen_size", 1);
#else
shader.set_uniform("use_fixed_screen_size", 0);
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("zoom", zoom);
shader.set_uniform("percent_outline_radius", 0.0f);
shader.set_uniform("percent_center_radius", 0.33f);
shader.set_uniform("point_size", point_size);
shader.set_uniform("near_plane_height", near_plane_height);
glsafe(::glEnable(GL_VERTEX_PROGRAM_POINT_SIZE));
glsafe(::glEnable(GL_POINT_SPRITE));
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
glsafe(::glMultiDrawElements(GL_POINTS, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_INT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_multi_points_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
glsafe(::glDisable(GL_POINT_SPRITE));
glsafe(::glDisable(GL_VERTEX_PROGRAM_POINT_SIZE));
};
auto render_as_lines = [this, light_intensity, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
shader.set_uniform("light_intensity", light_intensity);
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
set_uniform_color(path.color, shader);
glsafe(::glMultiDrawElements(GL_LINES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_INT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_multi_lines_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
auto render_as_triangles = [this, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
set_uniform_color(path.color, shader);
glsafe(::glMultiDrawElements(GL_TRIANGLES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_INT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++const_cast<Statistics*>(&m_statistics)->gl_multi_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
auto line_width = [](double zoom) {
return (zoom < 5.0) ? 1.0 : (1.0 + 5.0 * (zoom - 5.0) / (100.0 - 5.0));
};
glsafe(::glLineWidth(static_cast<GLfloat>(line_width(zoom))));
unsigned char begin_id = buffer_id(EMoveType::Retract);
unsigned char end_id = buffer_id(EMoveType::Count);
for (unsigned char i = begin_id; i < end_id; ++i) {
const TBuffer& buffer = m_buffers[i];
if (!buffer.visible || !buffer.has_data())
continue;
GLShaderProgram* shader = wxGetApp().get_shader(buffer.shader.c_str());
if (shader != nullptr) {
shader->start_using();
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, buffer.vertices.id));
glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_size()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = buffer.vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_size()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
for (size_t j = 0; j < buffer.indices.size(); ++j) {
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.indices[j].id));
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point:
{
EOptionsColors color = EOptionsColors(0);
switch (buffer_type(i))
{
case EMoveType::Tool_change: { color = EOptionsColors::ToolChanges; break; }
case EMoveType::Color_change: { color = EOptionsColors::ColorChanges; break; }
case EMoveType::Pause_Print: { color = EOptionsColors::PausePrints; break; }
case EMoveType::Custom_GCode: { color = EOptionsColors::CustomGCodes; break; }
case EMoveType::Retract: { color = EOptionsColors::Retractions; break; }
case EMoveType::Unretract: { color = EOptionsColors::Unretractions; break; }
default: { assert(false); break; }
}
render_as_points(buffer, static_cast<unsigned int>(j), color, *shader);
break;
}
case TBuffer::ERenderPrimitiveType::Line:
{
render_as_lines(buffer, static_cast<unsigned int>(j), *shader);
break;
}
case TBuffer::ERenderPrimitiveType::Triangle:
{
render_as_triangles(buffer, static_cast<unsigned int>(j), *shader);
break;
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
shader->stop_using();
}
}
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::render_shells() const
{
if (!m_shells.visible || m_shells.volumes.empty())
return;
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
// glsafe(::glDepthMask(GL_FALSE));
shader->start_using();
m_shells.volumes.render(GLVolumeCollection::Transparent, true, wxGetApp().plater()->get_camera().get_view_matrix());
shader->stop_using();
// glsafe(::glDepthMask(GL_TRUE));
}
void GCodeViewer::render_legend() const
{
if (!m_legend_enabled)
return;
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_pos(0.0f, 0.0f, ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.6f);
imgui.begin(std::string("Legend"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
ImDrawList* draw_list = ImGui::GetWindowDrawList();
enum class EItemType : unsigned char
{
Rect,
Circle,
Hexagon,
Line
};
const PrintEstimatedTimeStatistics::Mode& time_mode = m_time_statistics.modes[static_cast<size_t>(m_time_estimate_mode)];
float icon_size = ImGui::GetTextLineHeight();
float percent_bar_size = 2.0f * ImGui::GetTextLineHeight();
auto append_item = [this, draw_list, icon_size, percent_bar_size, &imgui](EItemType type, const Color& color, const std::string& label,
bool visible = true, const std::string& time = "", float percent = 0.0f, float max_percent = 0.0f, const std::array<float, 2>& offsets = { 0.0f, 0.0f },
std::function<void()> callback = nullptr) {
if (!visible)
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
ImVec2 pos = ImGui::GetCursorScreenPos();
switch (type) {
default:
case EItemType::Rect: {
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
break;
}
case EItemType::Circle: {
ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
if (m_buffers[buffer_id(EMoveType::Retract)].shader == "options_120") {
draw_list->AddCircleFilled(center, 0.5f * icon_size,
ImGui::GetColorU32({ 0.5f * color[0], 0.5f * color[1], 0.5f * color[2], 1.0f }), 16);
float radius = 0.5f * icon_size;
draw_list->AddCircleFilled(center, radius, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);
radius = 0.5f * icon_size * 0.01f * 33.0f;
draw_list->AddCircleFilled(center, radius, ImGui::GetColorU32({ 0.5f * color[0], 0.5f * color[1], 0.5f * color[2], 1.0f }), 16);
}
else
draw_list->AddCircleFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);
break;
}
case EItemType::Hexagon: {
ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
draw_list->AddNgonFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 6);
break;
}
case EItemType::Line: {
draw_list->AddLine({ pos.x + 1, pos.y + icon_size - 1 }, { pos.x + icon_size - 1, pos.y + 1 }, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 3.0f);
break;
}
}
// draw text
ImGui::Dummy({ icon_size, icon_size });
ImGui::SameLine();
if (callback != nullptr) {
if (ImGui::MenuItem(label.c_str()))
callback();
else {
// show tooltip
if (ImGui::IsItemHovered()) {
if (!visible)
ImGui::PopStyleVar();
ImGui::PushStyleColor(ImGuiCol_PopupBg, ImGuiWrapper::COL_WINDOW_BACKGROUND);
ImGui::BeginTooltip();
imgui.text(visible ? _u8L("Click to hide") : _u8L("Click to show"));
ImGui::EndTooltip();
ImGui::PopStyleColor();
if (!visible)
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
// to avoid the tooltip to change size when moving the mouse
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
}
}
if (!time.empty()) {
ImGui::SameLine(offsets[0]);
imgui.text(time);
ImGui::SameLine(offsets[1]);
pos = ImGui::GetCursorScreenPos();
float width = std::max(1.0f, percent_bar_size * percent / max_percent);
draw_list->AddRectFilled({ pos.x, pos.y + 2.0f }, { pos.x + width, pos.y + icon_size - 2.0f },
ImGui::GetColorU32(ImGuiWrapper::COL_ORANGE_LIGHT));
ImGui::Dummy({ percent_bar_size, icon_size });
ImGui::SameLine();
char buf[64];
::sprintf(buf, "%.1f%%", 100.0f * percent);
ImGui::TextUnformatted((percent > 0.0f) ? buf : "");
}
}
else
imgui.text(label);
if (!visible)
ImGui::PopStyleVar();
};
auto append_range = [append_item](const Extrusions::Range& range, unsigned int decimals) {
auto append_range_item = [append_item](int i, float value, unsigned int decimals) {
char buf[1024];
::sprintf(buf, "%.*f", decimals, value);
append_item(EItemType::Rect, Range_Colors[i], buf);
};
if (range.count == 1)
// single item use case
append_range_item(0, range.min, decimals);
else if (range.count == 2) {
append_range_item(static_cast<int>(Range_Colors.size()) - 1, range.max, decimals);
append_range_item(0, range.min, decimals);
}
else {
float step_size = range.step_size();
for (int i = static_cast<int>(Range_Colors.size()) - 1; i >= 0; --i) {
append_range_item(i, range.min + static_cast<float>(i) * step_size, decimals);
}
}
};
auto append_headers = [&imgui](const std::array<std::string, 3>& texts, const std::array<float, 2>& offsets) {
imgui.text(texts[0]);
ImGui::SameLine(offsets[0]);
imgui.text(texts[1]);
ImGui::SameLine(offsets[1]);
imgui.text(texts[2]);
ImGui::Separator();
};
auto max_width = [](const std::vector<std::string>& items, const std::string& title, float extra_size = 0.0f) {
float ret = ImGui::CalcTextSize(title.c_str()).x;
for (const std::string& item : items) {
ret = std::max(ret, extra_size + ImGui::CalcTextSize(item.c_str()).x);
}
return ret;
};
auto calculate_offsets = [max_width](const std::vector<std::string>& labels, const std::vector<std::string>& times,
const std::array<std::string, 2>& titles, float extra_size = 0.0f) {
const ImGuiStyle& style = ImGui::GetStyle();
std::array<float, 2> ret = { 0.0f, 0.0f };
ret[0] = max_width(labels, titles[0], extra_size) + 3.0f * style.ItemSpacing.x;
ret[1] = ret[0] + max_width(times, titles[1]) + style.ItemSpacing.x;
return ret;
};
auto color_print_ranges = [this](unsigned char extruder_id, const std::vector<CustomGCode::Item>& custom_gcode_per_print_z) {
std::vector<std::pair<Color, std::pair<double, double>>> ret;
ret.reserve(custom_gcode_per_print_z.size());
for (const auto& item : custom_gcode_per_print_z) {
if (extruder_id + 1 != static_cast<unsigned char>(item.extruder))
continue;
if (item.type != ColorChange)
continue;
const std::vector<double> zs = m_layers.get_zs();
auto lower_b = std::lower_bound(zs.begin(), zs.end(), item.print_z - Slic3r::DoubleSlider::epsilon());
if (lower_b == zs.end())
continue;
double current_z = *lower_b;
double previous_z = (lower_b == zs.begin()) ? 0.0 : *(--lower_b);
// to avoid duplicate values, check adding values
if (ret.empty() || !(ret.back().second.first == previous_z && ret.back().second.second == current_z))
ret.push_back({ decode_color(item.color), { previous_z, current_z } });
}
return ret;
};
auto upto_label = [](double z) {
char buf[64];
::sprintf(buf, "%.2f", z);
return _u8L("up to") + " " + std::string(buf) + " " + _u8L("mm");
};
auto above_label = [](double z) {
char buf[64];
::sprintf(buf, "%.2f", z);
return _u8L("above") + " " + std::string(buf) + " " + _u8L("mm");
};
auto fromto_label = [](double z1, double z2) {
char buf1[64];
::sprintf(buf1, "%.2f", z1);
char buf2[64];
::sprintf(buf2, "%.2f", z2);
return _u8L("from") + " " + std::string(buf1) + " " + _u8L("to") + " " + std::string(buf2) + " " + _u8L("mm");
};
auto role_time_and_percent = [ time_mode](ExtrusionRole role) {
auto it = std::find_if(time_mode.roles_times.begin(), time_mode.roles_times.end(), [role](const std::pair<ExtrusionRole, float>& item) { return role == item.first; });
return (it != time_mode.roles_times.end()) ? std::make_pair(it->second, it->second / time_mode.time) : std::make_pair(0.0f, 0.0f);
};
// data used to properly align items in columns when showing time
std::array<float, 2> offsets = { 0.0f, 0.0f };
std::vector<std::string> labels;
std::vector<std::string> times;
std::vector<float> percents;
float max_percent = 0.0f;
if (m_view_type == EViewType::FeatureType) {
// calculate offsets to align time/percentage data
for (size_t i = 0; i < m_roles.size(); ++i) {
ExtrusionRole role = m_roles[i];
if (role < erCount) {
labels.push_back(_u8L(ExtrusionEntity::role_to_string(role)));
auto [time, percent] = role_time_and_percent(role);
times.push_back((time > 0.0f) ? short_time(get_time_dhms(time)) : "");
percents.push_back(percent);
max_percent = std::max(max_percent, percent);
}
}
offsets = calculate_offsets(labels, times, { _u8L("Feature type"), _u8L("Time") }, icon_size);
}
// extrusion paths section -> title
switch (m_view_type)
{
case EViewType::FeatureType:
{
append_headers({ _u8L("Feature type"), _u8L("Time"), _u8L("Percentage") }, offsets);
break;
}
case EViewType::Height: { imgui.title(_u8L("Height (mm)")); break; }
case EViewType::Width: { imgui.title(_u8L("Width (mm)")); break; }
case EViewType::Feedrate: { imgui.title(_u8L("Speed (mm/s)")); break; }
case EViewType::FanSpeed: { imgui.title(_u8L("Fan Speed (%)")); break; }
case EViewType::VolumetricRate: { imgui.title(_u8L("Volumetric flow rate (mm³/s)")); break; }
case EViewType::Tool: { imgui.title(_u8L("Tool")); break; }
case EViewType::ColorPrint: { imgui.title(_u8L("Color Print")); break; }
default: { break; }
}
// extrusion paths section -> items
switch (m_view_type)
{
case EViewType::FeatureType:
{
for (size_t i = 0; i < m_roles.size(); ++i) {
ExtrusionRole role = m_roles[i];
if (role >= erCount)
continue;
bool visible = is_visible(role);
append_item(EItemType::Rect, Extrusion_Role_Colors[static_cast<unsigned int>(role)], labels[i],
visible, times[i], percents[i], max_percent, offsets, [this, role, visible]() {
Extrusions* extrusions = const_cast<Extrusions*>(&m_extrusions);
extrusions->role_visibility_flags = visible ? extrusions->role_visibility_flags & ~(1 << role) : extrusions->role_visibility_flags | (1 << role);
// update buffers' render paths
refresh_render_paths(false, false);
wxGetApp().plater()->update_preview_moves_slider();
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->update_preview_bottom_toolbar();
}
);
}
break;
}
case EViewType::Height: { append_range(m_extrusions.ranges.height, 3); break; }
case EViewType::Width: { append_range(m_extrusions.ranges.width, 3); break; }
case EViewType::Feedrate: { append_range(m_extrusions.ranges.feedrate, 1); break; }
case EViewType::FanSpeed: { append_range(m_extrusions.ranges.fan_speed, 0); break; }
case EViewType::VolumetricRate: { append_range(m_extrusions.ranges.volumetric_rate, 3); break; }
case EViewType::Tool:
{
// shows only extruders actually used
for (unsigned char i : m_extruder_ids) {
append_item(EItemType::Rect, m_tool_colors[i], _u8L("Extruder") + " " + std::to_string(i + 1));
}
break;
}
case EViewType::ColorPrint:
{
const std::vector<CustomGCode::Item>& custom_gcode_per_print_z = wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes;
if (m_extruders_count == 1) { // single extruder use case
std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(0, custom_gcode_per_print_z);
const int items_cnt = static_cast<int>(cp_values.size());
if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
append_item(EItemType::Rect, m_tool_colors.front(), _u8L("Default color"));
}
else {
for (int i = items_cnt; i >= 0; --i) {
// create label for color change item
if (i == 0) {
append_item(EItemType::Rect, m_tool_colors[0], upto_label(cp_values.front().second.first));
break;
}
else if (i == items_cnt) {
append_item(EItemType::Rect, cp_values[i - 1].first, above_label(cp_values[i - 1].second.second));
continue;
}
append_item(EItemType::Rect, cp_values[i - 1].first, fromto_label(cp_values[i - 1].second.second, cp_values[i].second.first));
}
}
}
else { // multi extruder use case
// shows only extruders actually used
for (unsigned char i : m_extruder_ids) {
std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(i, custom_gcode_per_print_z);
const int items_cnt = static_cast<int>(cp_values.size());
if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
append_item(EItemType::Rect, m_tool_colors[i], _u8L("Extruder") + " " + std::to_string(i + 1) + " " + _u8L("default color"));
}
else {
for (int j = items_cnt; j >= 0; --j) {
// create label for color change item
std::string label = _u8L("Extruder") + " " + std::to_string(i + 1);
if (j == 0) {
label += " " + upto_label(cp_values.front().second.first);
append_item(EItemType::Rect, m_tool_colors[i], label);
break;
}
else if (j == items_cnt) {
label += " " + above_label(cp_values[j - 1].second.second);
append_item(EItemType::Rect, cp_values[j - 1].first, label);
continue;
}
label += " " + fromto_label(cp_values[j - 1].second.second, cp_values[j].second.first);
append_item(EItemType::Rect, cp_values[j - 1].first, label);
}
}
}
}
break;
}
default: { break; }
}
// partial estimated printing time section
if (m_view_type == EViewType::ColorPrint) {
using Times = std::pair<float, float>;
using TimesList = std::vector<std::pair<CustomGCode::Type, Times>>;
// helper structure containig the data needed to render the time items
struct PartialTime
{
enum class EType : unsigned char
{
Print,
ColorChange,
Pause
};
EType type;
int extruder_id;
Color color1;
Color color2;
Times times;
};
using PartialTimes = std::vector<PartialTime>;
auto generate_partial_times = [this](const TimesList& times) {
PartialTimes items;
std::vector<CustomGCode::Item> custom_gcode_per_print_z = wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes;
int extruders_count = wxGetApp().extruders_edited_cnt();
std::vector<Color> last_color(extruders_count);
for (int i = 0; i < extruders_count; ++i) {
last_color[i] = m_tool_colors[i];
}
int last_extruder_id = 1;
for (const auto& time_rec : times) {
switch (time_rec.first)
{
case CustomGCode::PausePrint: {
auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
if (it != custom_gcode_per_print_z.end()) {
items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second });
items.push_back({ PartialTime::EType::Pause, it->extruder, Color(), Color(), time_rec.second });
custom_gcode_per_print_z.erase(it);
}
break;
}
case CustomGCode::ColorChange: {
auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
if (it != custom_gcode_per_print_z.end()) {
items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second });
items.push_back({ PartialTime::EType::ColorChange, it->extruder, last_color[it->extruder - 1], decode_color(it->color), time_rec.second });
last_color[it->extruder - 1] = decode_color(it->color);
last_extruder_id = it->extruder;
custom_gcode_per_print_z.erase(it);
}
else
items.push_back({ PartialTime::EType::Print, last_extruder_id, last_color[last_extruder_id - 1], Color(), time_rec.second });
break;
}
default: { break; }
}
}
return items;
};
auto append_color_change = [&imgui](const Color& color1, const Color& color2, const std::array<float, 2>& offsets, const Times& times) {
imgui.text(_u8L("Color change"));
ImGui::SameLine();
float icon_size = ImGui::GetTextLineHeight();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color1[0], color1[1], color1[2], 1.0f }));
pos.x += icon_size;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color2[0], color2[1], color2[2], 1.0f }));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(times.second - times.first)));
};
auto append_print = [&imgui](const Color& color, const std::array<float, 2>& offsets, const Times& times) {
imgui.text(_u8L("Print"));
ImGui::SameLine();
float icon_size = ImGui::GetTextLineHeight();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(times.second)));
ImGui::SameLine(offsets[1]);
imgui.text(short_time(get_time_dhms(times.first)));
};
PartialTimes partial_times = generate_partial_times(time_mode.custom_gcode_times);
if (!partial_times.empty()) {
labels.clear();
times.clear();
for (const PartialTime& item : partial_times) {
switch (item.type)
{
case PartialTime::EType::Print: { labels.push_back(_u8L("Print")); break; }
case PartialTime::EType::Pause: { labels.push_back(_u8L("Pause")); break; }
case PartialTime::EType::ColorChange: { labels.push_back(_u8L("Color change")); break; }
}
times.push_back(short_time(get_time_dhms(item.times.second)));
}
offsets = calculate_offsets(labels, times, { _u8L("Event"), _u8L("Remaining time") }, 2.0f * icon_size);
ImGui::Spacing();
append_headers({ _u8L("Event"), _u8L("Remaining time"), _u8L("Duration") }, offsets);
for (const PartialTime& item : partial_times) {
switch (item.type)
{
case PartialTime::EType::Print: {
append_print(item.color1, offsets, item.times);
break;
}
case PartialTime::EType::Pause: {
imgui.text(_u8L("Pause"));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(item.times.second - item.times.first)));
break;
}
case PartialTime::EType::ColorChange: {
append_color_change(item.color1, item.color2, offsets, item.times);
break;
}
}
}
}
}
// travel paths section
if (m_buffers[buffer_id(EMoveType::Travel)].visible) {
switch (m_view_type)
{
case EViewType::Feedrate:
case EViewType::Tool:
case EViewType::ColorPrint: {
break;
}
default: {
// title
ImGui::Spacing();
imgui.title(_u8L("Travel"));
// items
append_item(EItemType::Line, Travel_Colors[0], _u8L("Movement"));
append_item(EItemType::Line, Travel_Colors[1], _u8L("Extrusion"));
append_item(EItemType::Line, Travel_Colors[2], _u8L("Retraction"));
break;
}
}
}
// wipe paths section
if (m_buffers[buffer_id(EMoveType::Wipe)].visible) {
switch (m_view_type)
{
case EViewType::Feedrate:
case EViewType::Tool:
case EViewType::ColorPrint: { break; }
default: {
// title
ImGui::Spacing();
imgui.title(_u8L("Wipe"));
// items
append_item(EItemType::Line, Wipe_Color, _u8L("Wipe"));
break;
}
}
}
auto any_option_available = [this]() {
auto available = [this](EMoveType type) {
const TBuffer& buffer = m_buffers[buffer_id(type)];
return buffer.visible && buffer.has_data();
};
return available(EMoveType::Color_change) ||
available(EMoveType::Custom_GCode) ||
available(EMoveType::Pause_Print) ||
available(EMoveType::Retract) ||
available(EMoveType::Tool_change) ||
available(EMoveType::Unretract);
};
auto add_option = [this, append_item](EMoveType move_type, EOptionsColors color, const std::string& text) {
const TBuffer& buffer = m_buffers[buffer_id(move_type)];
if (buffer.visible && buffer.has_data())
append_item((buffer.shader == "options_110") ? EItemType::Rect : EItemType::Circle, Options_Colors[static_cast<unsigned int>(color)], text);
};
// options section
if (any_option_available()) {
// title
ImGui::Spacing();
imgui.title(_u8L("Options"));
// items
add_option(EMoveType::Retract, EOptionsColors::Retractions, _u8L("Retractions"));
add_option(EMoveType::Unretract, EOptionsColors::Unretractions, _u8L("Deretractions"));
add_option(EMoveType::Tool_change, EOptionsColors::ToolChanges, _u8L("Tool changes"));
add_option(EMoveType::Color_change, EOptionsColors::ColorChanges, _u8L("Color changes"));
add_option(EMoveType::Pause_Print, EOptionsColors::PausePrints, _u8L("Print pauses"));
add_option(EMoveType::Custom_GCode, EOptionsColors::CustomGCodes, _u8L("Custom G-codes"));
}
// settings section
if (wxGetApp().is_gcode_viewer() &&
(m_view_type == EViewType::FeatureType || m_view_type == EViewType::Tool) &&
(!m_settings_ids.print.empty() || !m_settings_ids.filament.empty() || !m_settings_ids.printer.empty())) {
auto calc_offset = [this]() {
float ret = 0.0f;
if (!m_settings_ids.printer.empty())
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Printer") + std::string(":")).c_str()).x);
if (!m_settings_ids.print.empty())
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Print settings") + std::string(":")).c_str()).x);
if (!m_settings_ids.filament.empty()) {
for (unsigned char i : m_extruder_ids) {
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Filament") + " " + std::to_string(i + 1) + ":").c_str()).x);
}
}
if (ret > 0.0f)
ret += 2.0f * ImGui::GetStyle().ItemSpacing.x;
return ret;
};
ImGui::Spacing();
ImGui::Spacing();
ImGui::PushStyleColor(ImGuiCol_Separator, { 1.0f, 1.0f, 1.0f, 1.0f });
ImGui::Separator();
ImGui::PopStyleColor();
ImGui::Spacing();
float offset = calc_offset();
if (!m_settings_ids.printer.empty()) {
imgui.text(_u8L("Printer") + ":");
ImGui::SameLine(offset);
imgui.text(m_settings_ids.printer);
}
if (!m_settings_ids.print.empty()) {
imgui.text(_u8L("Print settings") + ":");
ImGui::SameLine(offset);
imgui.text(m_settings_ids.print);
}
if (!m_settings_ids.filament.empty()) {
for (unsigned char i : m_extruder_ids) {
std::string txt = _u8L("Filament");
txt += (m_extruder_ids.size() == 1) ? ":" : " " + std::to_string(i + 1);
imgui.text(txt);
ImGui::SameLine(offset);
imgui.text(m_settings_ids.filament[i]);
}
}
}
// total estimated printing time section
if (time_mode.time > 0.0f && (m_view_type == EViewType::FeatureType ||
(m_view_type == EViewType::ColorPrint && !time_mode.custom_gcode_times.empty()))) {
ImGui::Spacing();
ImGui::Spacing();
ImGui::PushStyleColor(ImGuiCol_Separator, { 1.0f, 1.0f, 1.0f, 1.0f });
ImGui::Separator();
ImGui::PopStyleColor();
ImGui::Spacing();
ImGui::AlignTextToFramePadding();
switch (m_time_estimate_mode)
{
case PrintEstimatedTimeStatistics::ETimeMode::Normal:
{
imgui.text(_u8L("Estimated printing time") + " [" + _u8L("Normal mode") + "]:");
break;
}
case PrintEstimatedTimeStatistics::ETimeMode::Stealth:
{
imgui.text(_u8L("Estimated printing time") + " [" + _u8L("Stealth mode") + "]:");
break;
}
default : { assert(false); break; }
}
ImGui::SameLine();
imgui.text(short_time(get_time_dhms(time_mode.time)));
auto show_mode_button = [this, &imgui](const wxString& label, PrintEstimatedTimeStatistics::ETimeMode mode) {
bool show = false;
for (size_t i = 0; i < m_time_statistics.modes.size(); ++i) {
if (i != static_cast<size_t>(mode) &&
short_time(get_time_dhms(m_time_statistics.modes[static_cast<size_t>(mode)].time)) != short_time(get_time_dhms(m_time_statistics.modes[i].time))) {
show = true;
break;
}
}
if (show && m_time_statistics.modes[static_cast<size_t>(mode)].roles_times.size() > 0) {
if (imgui.button(label)) {
*const_cast<PrintEstimatedTimeStatistics::ETimeMode*>(&m_time_estimate_mode) = mode;
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
}
}
};
switch (m_time_estimate_mode) {
case PrintEstimatedTimeStatistics::ETimeMode::Normal: {
show_mode_button(_L("Show stealth mode"), PrintEstimatedTimeStatistics::ETimeMode::Stealth);
break;
}
case PrintEstimatedTimeStatistics::ETimeMode::Stealth: {
show_mode_button(_L("Show normal mode"), PrintEstimatedTimeStatistics::ETimeMode::Normal);
break;
}
default : { assert(false); break; }
}
}
imgui.end();
ImGui::PopStyleVar();
}
#if ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::render_statistics() const
{
static const float offset = 275.0f;
ImGuiWrapper& imgui = *wxGetApp().imgui();
auto add_time = [this, &imgui](const std::string& label, int64_t time) {
char buf[1024];
sprintf(buf, "%lld ms (%s)", time, get_time_dhms(static_cast<float>(time) * 0.001f).c_str());
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
imgui.text(buf);
};
auto add_memory = [this, &imgui](const std::string& label, int64_t memory) {
auto format_string = [memory](const std::string& units, float value) {
char buf[1024];
sprintf(buf, "%lld bytes (%.3f %s)", memory, static_cast<float>(memory) * value, units.c_str());
return std::string(buf);
};
static const float kb = 1024.0f;
static const float inv_kb = 1.0f / kb;
static const float mb = 1024.0f * kb;
static const float inv_mb = 1.0f / mb;
static const float gb = 1024.0f * mb;
static const float inv_gb = 1.0f / gb;
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
if (static_cast<float>(memory) < mb)
imgui.text(format_string("KB", inv_kb));
else if (static_cast<float>(memory) < gb)
imgui.text(format_string("MB", inv_mb));
else
imgui.text(format_string("GB", inv_gb));
};
auto add_counter = [this, &imgui](const std::string& label, int64_t counter) {
char buf[1024];
sprintf(buf, "%lld", counter);
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
imgui.text(buf);
};
imgui.set_next_window_pos(0.5f * wxGetApp().plater()->get_current_canvas3D()->get_canvas_size().get_width(), 0.0f, ImGuiCond_Once, 0.5f, 0.0f);
ImGui::SetNextWindowSizeConstraints({ 300.0f, 100.0f }, { 600.0f, 900.0f });
imgui.begin(std::string("GCodeViewer Statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize);
ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow());
if (ImGui::CollapsingHeader("Time")) {
add_time(std::string("GCodeProcessor:"), m_statistics.results_time);
ImGui::Separator();
add_time(std::string("Load:"), m_statistics.load_time);
add_time(std::string(" Load vertices:"), m_statistics.load_vertices);
add_time(std::string(" Smooth vertices:"), m_statistics.smooth_vertices);
add_time(std::string(" Load indices:"), m_statistics.load_indices);
add_time(std::string("Refresh:"), m_statistics.refresh_time);
add_time(std::string("Refresh paths:"), m_statistics.refresh_paths_time);
}
if (ImGui::CollapsingHeader("OpenGL calls")) {
add_counter(std::string("Multi GL_POINTS:"), m_statistics.gl_multi_points_calls_count);
add_counter(std::string("Multi GL_LINES:"), m_statistics.gl_multi_lines_calls_count);
add_counter(std::string("Multi GL_TRIANGLES:"), m_statistics.gl_multi_triangles_calls_count);
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
add_counter(std::string("GL_TRIANGLES:"), m_statistics.gl_triangles_calls_count);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
}
if (ImGui::CollapsingHeader("CPU memory")) {
add_memory(std::string("GCodeProcessor results:"), m_statistics.results_size);
ImGui::Separator();
add_memory(std::string("Paths:"), m_statistics.paths_size);
add_memory(std::string("Render paths:"), m_statistics.render_paths_size);
}
if (ImGui::CollapsingHeader("GPU memory")) {
add_memory(std::string("Vertices:"), m_statistics.total_vertices_gpu_size);
add_memory(std::string("Indices:"), m_statistics.total_indices_gpu_size);
ImGui::Separator();
add_memory(std::string("Max VBuffer:"), m_statistics.max_vbuffer_gpu_size);
add_memory(std::string("Max IBuffer:"), m_statistics.max_ibuffer_gpu_size);
}
if (ImGui::CollapsingHeader("Other")) {
add_counter(std::string("Travel segments count:"), m_statistics.travel_segments_count);
add_counter(std::string("Wipe segments count:"), m_statistics.wipe_segments_count);
add_counter(std::string("Extrude segments count:"), m_statistics.extrude_segments_count);
ImGui::Separator();
add_counter(std::string("VBuffers count:"), m_statistics.vbuffers_count);
add_counter(std::string("IBuffers count:"), m_statistics.ibuffers_count);
}
imgui.end();
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::log_memory_used(const std::string& label, int64_t additional) const
{
if (Slic3r::get_logging_level() >= 5) {
int64_t paths_size = 0;
int64_t render_paths_size = 0;
for (const TBuffer& buffer : m_buffers) {
paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
}
int64_t layers_size = SLIC3R_STDVEC_MEMSIZE(m_layers.get_zs(), double);
layers_size += SLIC3R_STDVEC_MEMSIZE(m_layers.get_endpoints(), Layers::Endpoints);
#if ENABLE_SPLITTED_VERTEX_BUFFER
BOOST_LOG_TRIVIAL(trace) << label
<< "(" << format_memsize_MB(additional + paths_size + render_paths_size + layers_size) << ");"
<< log_memory_info();
#else
BOOST_LOG_TRIVIAL(trace) << label
<< format_memsize_MB(additional + paths_size + render_paths_size + layers_size)
<< log_memory_info();
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
}
}
} // namespace GUI
} // namespace Slic3r