131 lines
4.6 KiB
GLSL
131 lines
4.6 KiB
GLSL
#version 110
|
|
|
|
#define INTENSITY_CORRECTION 0.6
|
|
|
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
|
#define LIGHT_TOP_SHININESS 20.0
|
|
|
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
|
|
|
#define INTENSITY_AMBIENT 0.3
|
|
|
|
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
|
const vec3 GREEN = vec3(0.0, 0.7, 0.0);
|
|
const vec3 YELLOW = vec3(0.5, 0.7, 0.0);
|
|
const vec3 RED = vec3(0.7, 0.0, 0.0);
|
|
const vec3 WHITE = vec3(1.0, 1.0, 1.0);
|
|
const float EPSILON = 0.0001;
|
|
const float BANDS_WIDTH = 10.0;
|
|
|
|
struct PrintVolumeDetection
|
|
{
|
|
// 0 = rectangle, 1 = circle, 2 = custom, 3 = invalid
|
|
int type;
|
|
// type = 0 (rectangle):
|
|
// x = min.x, y = min.y, z = max.x, w = max.y
|
|
// type = 1 (circle):
|
|
// x = center.x, y = center.y, z = radius
|
|
vec4 xy_data;
|
|
// x = min z, y = max z
|
|
vec2 z_data;
|
|
};
|
|
|
|
struct SlopeDetection
|
|
{
|
|
bool actived;
|
|
float normal_z;
|
|
mat3 volume_world_normal_matrix;
|
|
};
|
|
|
|
uniform vec4 uniform_color;
|
|
uniform SlopeDetection slope;
|
|
|
|
#ifdef ENABLE_ENVIRONMENT_MAP
|
|
uniform sampler2D environment_tex;
|
|
uniform bool use_environment_tex;
|
|
#endif // ENABLE_ENVIRONMENT_MAP
|
|
|
|
varying vec3 clipping_planes_dots;
|
|
|
|
// x = diffuse, y = specular;
|
|
varying vec2 intensity;
|
|
|
|
uniform PrintVolumeDetection print_volume;
|
|
|
|
varying vec4 model_pos;
|
|
varying vec4 world_pos;
|
|
varying float world_normal_z;
|
|
varying vec3 eye_normal;
|
|
|
|
uniform bool compute_triangle_normals_in_fs;
|
|
|
|
void main()
|
|
{
|
|
if (any(lessThan(clipping_planes_dots, ZERO)))
|
|
discard;
|
|
vec3 color = uniform_color.rgb;
|
|
float alpha = uniform_color.a;
|
|
|
|
vec2 intensity_fs = intensity;
|
|
vec3 eye_normal_fs = eye_normal;
|
|
float world_normal_z_fs = world_normal_z;
|
|
if (compute_triangle_normals_in_fs) {
|
|
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
|
#ifdef FLIP_TRIANGLE_NORMALS
|
|
triangle_normal = -triangle_normal;
|
|
#endif
|
|
|
|
// First transform the normal into camera space and normalize the result.
|
|
eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal);
|
|
|
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
|
float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0);
|
|
|
|
intensity_fs = vec2(0.0, 0.0);
|
|
intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
|
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
|
|
intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS);
|
|
|
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
|
NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0);
|
|
intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
|
|
|
// z component of normal vector in world coordinate used for slope shading
|
|
world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0;
|
|
}
|
|
|
|
if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) {
|
|
color = vec3(0.7, 0.7, 1.0);
|
|
alpha = 1.0;
|
|
}
|
|
|
|
// if the fragment is outside the print volume -> use darker color
|
|
vec3 pv_check_min = ZERO;
|
|
vec3 pv_check_max = ZERO;
|
|
if (print_volume.type == 0) {
|
|
// rectangle
|
|
pv_check_min = world_pos.xyz - vec3(print_volume.xy_data.x, print_volume.xy_data.y, print_volume.z_data.x);
|
|
pv_check_max = world_pos.xyz - vec3(print_volume.xy_data.z, print_volume.xy_data.w, print_volume.z_data.y);
|
|
}
|
|
else if (print_volume.type == 1) {
|
|
// circle
|
|
float delta_radius = print_volume.xy_data.z - distance(world_pos.xy, print_volume.xy_data.xy);
|
|
pv_check_min = vec3(delta_radius, 0.0, world_pos.z - print_volume.z_data.x);
|
|
pv_check_max = vec3(0.0, 0.0, world_pos.z - print_volume.z_data.y);
|
|
}
|
|
color = (any(lessThan(pv_check_min, ZERO)) || any(greaterThan(pv_check_max, ZERO))) ? mix(color, ZERO, 0.3333) : color;
|
|
|
|
#ifdef ENABLE_ENVIRONMENT_MAP
|
|
if (use_environment_tex)
|
|
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha);
|
|
else
|
|
#endif
|
|
gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha);
|
|
}
|