PrusaSlicer-NonPlainar/xs/src/libslic3r/Polygon.cpp

474 lines
14 KiB
C++

#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
namespace Slic3r {
Polygon::operator Polygons() const
{
Polygons pp;
pp.push_back(*this);
return pp;
}
Polygon::operator Polyline() const
{
return this->split_at_first_point();
}
Point&
Polygon::operator[](Points::size_type idx)
{
return this->points[idx];
}
const Point&
Polygon::operator[](Points::size_type idx) const
{
return this->points[idx];
}
Point
Polygon::last_point() const
{
return this->points.front(); // last point == first point for polygons
}
Lines Polygon::lines() const
{
return to_lines(*this);
}
Polyline
Polygon::split_at_vertex(const Point &point) const
{
// find index of point
for (Points::const_iterator it = this->points.begin(); it != this->points.end(); ++it) {
if (it->coincides_with(point)) {
return this->split_at_index(it - this->points.begin());
}
}
CONFESS("Point not found");
return Polyline();
}
// Split a closed polygon into an open polyline, with the split point duplicated at both ends.
Polyline
Polygon::split_at_index(int index) const
{
Polyline polyline;
polyline.points.reserve(this->points.size() + 1);
for (Points::const_iterator it = this->points.begin() + index; it != this->points.end(); ++it)
polyline.points.push_back(*it);
for (Points::const_iterator it = this->points.begin(); it != this->points.begin() + index + 1; ++it)
polyline.points.push_back(*it);
return polyline;
}
// Split a closed polygon into an open polyline, with the split point duplicated at both ends.
Polyline
Polygon::split_at_first_point() const
{
return this->split_at_index(0);
}
Points
Polygon::equally_spaced_points(double distance) const
{
return this->split_at_first_point().equally_spaced_points(distance);
}
/*
int64_t Polygon::area2x() const
{
size_t n = poly.size();
if (n < 3)
return 0;
int64_t a = 0;
for (size_t i = 0, j = n - 1; i < n; ++i)
a += int64_t(poly[j].x + poly[i].x) * int64_t(poly[j].y - poly[i].y);
j = i;
}
return -a * 0.5;
}
*/
double Polygon::area() const
{
size_t n = points.size();
if (n < 3)
return 0.;
double a = 0.;
for (size_t i = 0, j = n - 1; i < n; ++i) {
a += double(points[j].x + points[i].x) * double(points[i].y - points[j].y);
j = i;
}
return 0.5 * a;
}
bool
Polygon::is_counter_clockwise() const
{
return ClipperLib::Orientation(Slic3rMultiPoint_to_ClipperPath(*this));
}
bool
Polygon::is_clockwise() const
{
return !this->is_counter_clockwise();
}
bool
Polygon::make_counter_clockwise()
{
if (!this->is_counter_clockwise()) {
this->reverse();
return true;
}
return false;
}
bool
Polygon::make_clockwise()
{
if (this->is_counter_clockwise()) {
this->reverse();
return true;
}
return false;
}
bool
Polygon::is_valid() const
{
return this->points.size() >= 3;
}
// Does an unoriented polygon contain a point?
// Tested by counting intersections along a horizontal line.
bool
Polygon::contains(const Point &point) const
{
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
bool result = false;
Points::const_iterator i = this->points.begin();
Points::const_iterator j = this->points.end() - 1;
for (; i != this->points.end(); j = i++) {
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y well.
// Does the ray with y == point.y intersect this line segment?
#if 1
if ( ((i->y > point.y) != (j->y > point.y))
&& ((double)point.x < (double)(j->x - i->x) * (double)(point.y - i->y) / (double)(j->y - i->y) + (double)i->x) )
result = !result;
#else
if ((i->y > point.y) != (j->y > point.y)) {
// Orientation predicated relative to i-th point.
double orient = (double)(point.x - i->x) * (double)(j->y - i->y) - (double)(point.y - i->y) * (double)(j->x - i->x);
if ((i->y > j->y) ? (orient > 0.) : (orient < 0.))
result = !result;
}
#endif
}
return result;
}
// this only works on CCW polygons as CW will be ripped out by Clipper's simplify_polygons()
Polygons
Polygon::simplify(double tolerance) const
{
// repeat first point at the end in order to apply Douglas-Peucker
// on the whole polygon
Points points = this->points;
points.push_back(points.front());
Polygon p(MultiPoint::_douglas_peucker(points, tolerance));
p.points.pop_back();
Polygons pp;
pp.push_back(p);
return simplify_polygons(pp);
}
void
Polygon::simplify(double tolerance, Polygons &polygons) const
{
Polygons pp = this->simplify(tolerance);
polygons.reserve(polygons.size() + pp.size());
polygons.insert(polygons.end(), pp.begin(), pp.end());
}
// Only call this on convex polygons or it will return invalid results
void
Polygon::triangulate_convex(Polygons* polygons) const
{
for (Points::const_iterator it = this->points.begin() + 2; it != this->points.end(); ++it) {
Polygon p;
p.points.reserve(3);
p.points.push_back(this->points.front());
p.points.push_back(*(it-1));
p.points.push_back(*it);
// this should be replaced with a more efficient call to a merge_collinear_segments() method
if (p.area() > 0) polygons->push_back(p);
}
}
// center of mass
Point
Polygon::centroid() const
{
double area_temp = this->area();
double x_temp = 0;
double y_temp = 0;
Polyline polyline = this->split_at_first_point();
for (Points::const_iterator point = polyline.points.begin(); point != polyline.points.end() - 1; ++point) {
x_temp += (double)( point->x + (point+1)->x ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
y_temp += (double)( point->y + (point+1)->y ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
}
return Point(x_temp/(6*area_temp), y_temp/(6*area_temp));
}
std::string
Polygon::wkt() const
{
std::ostringstream wkt;
wkt << "POLYGON((";
for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) {
wkt << p->x << " " << p->y;
if (p != this->points.end()-1) wkt << ",";
}
wkt << "))";
return wkt.str();
}
// find all concave vertices (i.e. having an internal angle greater than the supplied angle)
// (external = right side, thus we consider ccw orientation)
Points
Polygon::concave_points(double angle) const
{
Points points;
angle = 2*PI - angle;
// check whether first point forms a concave angle
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle)
points.push_back(this->points.front());
// check whether points 1..(n-1) form concave angles
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
if (p->ccw_angle(*(p-1), *(p+1)) <= angle) points.push_back(*p);
}
// check whether last point forms a concave angle
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle)
points.push_back(this->points.back());
return points;
}
// find all convex vertices (i.e. having an internal angle smaller than the supplied angle)
// (external = right side, thus we consider ccw orientation)
Points
Polygon::convex_points(double angle) const
{
Points points;
angle = 2*PI - angle;
// check whether first point forms a convex angle
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle)
points.push_back(this->points.front());
// check whether points 1..(n-1) form convex angles
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
if (p->ccw_angle(*(p-1), *(p+1)) >= angle) points.push_back(*p);
}
// check whether last point forms a convex angle
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) >= angle)
points.push_back(this->points.back());
return points;
}
// Projection of a point onto the polygon.
Point Polygon::point_projection(const Point &point) const
{
Point proj = point;
double dmin = std::numeric_limits<double>::max();
if (! this->points.empty()) {
for (size_t i = 0; i < this->points.size(); ++ i) {
const Point &pt0 = this->points[i];
const Point &pt1 = this->points[(i + 1 == this->points.size()) ? 0 : i + 1];
double d = pt0.distance_to(point);
if (d < dmin) {
dmin = d;
proj = pt0;
}
d = pt1.distance_to(point);
if (d < dmin) {
dmin = d;
proj = pt1;
}
Pointf v1(coordf_t(pt1.x - pt0.x), coordf_t(pt1.y - pt0.y));
coordf_t div = dot(v1);
if (div > 0.) {
Pointf v2(coordf_t(point.x - pt0.x), coordf_t(point.y - pt0.y));
coordf_t t = dot(v1, v2) / div;
if (t > 0. && t < 1.) {
Point foot(coord_t(floor(coordf_t(pt0.x) + t * v1.x + 0.5)), coord_t(floor(coordf_t(pt0.y) + t * v1.y + 0.5)));
d = foot.distance_to(point);
if (d < dmin) {
dmin = d;
proj = foot;
}
}
}
}
}
return proj;
}
BoundingBox get_extents(const Polygon &poly)
{
return poly.bounding_box();
}
BoundingBox get_extents(const Polygons &polygons)
{
BoundingBox bb;
if (! polygons.empty()) {
bb = get_extents(polygons.front());
for (size_t i = 1; i < polygons.size(); ++ i)
bb.merge(get_extents(polygons[i]));
}
return bb;
}
BoundingBox get_extents_rotated(const Polygon &poly, double angle)
{
return get_extents_rotated(poly.points, angle);
}
BoundingBox get_extents_rotated(const Polygons &polygons, double angle)
{
BoundingBox bb;
if (! polygons.empty()) {
bb = get_extents_rotated(polygons.front().points, angle);
for (size_t i = 1; i < polygons.size(); ++ i)
bb.merge(get_extents_rotated(polygons[i].points, angle));
}
return bb;
}
extern std::vector<BoundingBox> get_extents_vector(const Polygons &polygons)
{
std::vector<BoundingBox> out;
out.reserve(polygons.size());
for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++ it)
out.push_back(get_extents(*it));
return out;
}
static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
{
Point v1 = p2 - p1;
Point v2 = p3 - p2;
int64_t dir = int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y);
if (dir > 0)
// p3 does not turn back to p1. Do not remove p2.
return false;
double l2_1 = double(v1.x) * double(v1.x) + double(v1.y) * double(v1.y);
double l2_2 = double(v2.x) * double(v2.x) + double(v2.y) * double(v2.y);
if (dir == 0)
// p1, p2, p3 may make a perpendicular corner, or there is a zero edge length.
// Remove p2 if it is coincident with p1 or p2.
return l2_1 == 0 || l2_2 == 0;
// p3 turns back to p1 after p2. Are p1, p2, p3 collinear?
// Calculate distance from p3 to a segment (p1, p2) or from p1 to a segment(p2, p3),
// whichever segment is longer
double cross = double(v1.x) * double(v2.y) - double(v2.x) * double(v1.y);
double dist2 = cross * cross / std::max(l2_1, l2_2);
return dist2 < EPSILON * EPSILON;
}
bool remove_sticks(Polygon &poly)
{
bool modified = false;
size_t j = 1;
for (size_t i = 1; i + 1 < poly.points.size(); ++ i) {
if (! is_stick(poly[j-1], poly[i], poly[i+1])) {
// Keep the point.
if (j < i)
poly.points[j] = poly.points[i];
++ j;
}
}
if (++ j < poly.points.size()) {
poly.points[j-1] = poly.points.back();
poly.points.erase(poly.points.begin() + j, poly.points.end());
modified = true;
}
while (poly.points.size() >= 3 && is_stick(poly.points[poly.points.size()-2], poly.points.back(), poly.points.front())) {
poly.points.pop_back();
modified = true;
}
while (poly.points.size() >= 3 && is_stick(poly.points.back(), poly.points.front(), poly.points[1]))
poly.points.erase(poly.points.begin());
return modified;
}
bool remove_sticks(Polygons &polys)
{
bool modified = false;
size_t j = 0;
for (size_t i = 0; i < polys.size(); ++ i) {
modified |= remove_sticks(polys[i]);
if (polys[i].points.size() >= 3) {
if (j < i)
std::swap(polys[i].points, polys[j].points);
++ j;
}
}
if (j < polys.size())
polys.erase(polys.begin() + j, polys.end());
return modified;
}
bool remove_degenerate(Polygons &polys)
{
bool modified = false;
size_t j = 0;
for (size_t i = 0; i < polys.size(); ++ i) {
if (polys[i].points.size() >= 3) {
if (j < i)
std::swap(polys[i].points, polys[j].points);
++ j;
} else
modified = true;
}
if (j < polys.size())
polys.erase(polys.begin() + j, polys.end());
return modified;
}
bool remove_small(Polygons &polys, double min_area)
{
bool modified = false;
size_t j = 0;
for (size_t i = 0; i < polys.size(); ++ i) {
if (std::abs(polys[i].area()) >= min_area) {
if (j < i)
std::swap(polys[i].points, polys[j].points);
++ j;
} else
modified = true;
}
if (j < polys.size())
polys.erase(polys.begin() + j, polys.end());
return modified;
}
}