454 lines
17 KiB
C++
454 lines
17 KiB
C++
#ifndef slic3r_MutablePriorityQueue_hpp_
|
|
#define slic3r_MutablePriorityQueue_hpp_
|
|
|
|
#include <assert.h>
|
|
#include <type_traits>
|
|
|
|
template<typename T, typename IndexSetter, typename LessPredicate, const bool ResetIndexWhenRemoved = false>
|
|
class MutablePriorityQueue
|
|
{
|
|
public:
|
|
static_assert(std::is_trivially_copyable<T>::value, "Template argument T must be a trivially copiable type in class template MutablePriorityQueue");
|
|
|
|
// It is recommended to use make_mutable_priority_queue() for construction.
|
|
MutablePriorityQueue(IndexSetter &&index_setter, LessPredicate &&less_predicate) :
|
|
m_index_setter(std::forward<IndexSetter>(index_setter)),
|
|
m_less_predicate(std::forward<LessPredicate>(less_predicate))
|
|
{}
|
|
~MutablePriorityQueue() { clear(); }
|
|
|
|
void clear();
|
|
void reserve(size_t cnt) { m_heap.reserve(cnt); }
|
|
void push(const T &item);
|
|
void push(T &&item);
|
|
void pop();
|
|
T& top() { return m_heap.front(); }
|
|
void remove(size_t idx);
|
|
void update(size_t idx) { T item = m_heap[idx]; remove(idx); push(item); }
|
|
|
|
size_t size() const { return m_heap.size(); }
|
|
bool empty() const { return m_heap.empty(); }
|
|
T& operator[](std::size_t idx) noexcept { return m_heap[idx]; }
|
|
const T& operator[](std::size_t idx) const noexcept { return m_heap[idx]; }
|
|
|
|
using iterator = typename std::vector<T>::iterator;
|
|
using const_iterator = typename std::vector<T>::const_iterator;
|
|
iterator begin() { return m_heap.begin(); }
|
|
iterator end() { return m_heap.end(); }
|
|
const_iterator cbegin() const { return m_heap.cbegin(); }
|
|
const_iterator cend() const { return m_heap.cend(); }
|
|
|
|
protected:
|
|
void update_heap_up(size_t top, size_t bottom);
|
|
void update_heap_down(size_t top, size_t bottom);
|
|
|
|
private:
|
|
std::vector<T> m_heap;
|
|
IndexSetter m_index_setter;
|
|
LessPredicate m_less_predicate;
|
|
};
|
|
|
|
template<typename T, const bool ResetIndexWhenRemoved, typename IndexSetter, typename LessPredicate>
|
|
MutablePriorityQueue<T, IndexSetter, LessPredicate, ResetIndexWhenRemoved> make_mutable_priority_queue(IndexSetter &&index_setter, LessPredicate &&less_predicate)
|
|
{
|
|
return MutablePriorityQueue<T, IndexSetter, LessPredicate, ResetIndexWhenRemoved>(
|
|
std::forward<IndexSetter>(index_setter), std::forward<LessPredicate>(less_predicate));
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::clear()
|
|
{
|
|
#ifdef NDEBUG
|
|
// Only mark as removed from the queue in release mode, if configured so.
|
|
if (ResetIndexWhenRemoved)
|
|
#endif /* NDEBUG */
|
|
{
|
|
for (size_t idx = 0; idx < m_heap.size(); ++ idx)
|
|
// Mark as removed from the queue.
|
|
m_index_setter(m_heap[idx], std::numeric_limits<size_t>::max());
|
|
}
|
|
m_heap.clear();
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::push(const T &item)
|
|
{
|
|
size_t idx = m_heap.size();
|
|
m_heap.emplace_back(item);
|
|
m_index_setter(m_heap.back(), idx);
|
|
update_heap_up(0, idx);
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::push(T &&item)
|
|
{
|
|
size_t idx = m_heap.size();
|
|
m_heap.emplace_back(std::move(item));
|
|
m_index_setter(m_heap.back(), idx);
|
|
update_heap_up(0, idx);
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::pop()
|
|
{
|
|
assert(! m_heap.empty());
|
|
#ifdef NDEBUG
|
|
// Only mark as removed from the queue in release mode, if configured so.
|
|
if (ResetIndexWhenRemoved)
|
|
#endif /* NDEBUG */
|
|
{
|
|
// Mark as removed from the queue.
|
|
m_index_setter(m_heap.front(), std::numeric_limits<size_t>::max());
|
|
}
|
|
if (m_heap.size() > 1) {
|
|
m_heap.front() = m_heap.back();
|
|
m_heap.pop_back();
|
|
m_index_setter(m_heap.front(), 0);
|
|
update_heap_down(0, m_heap.size() - 1);
|
|
} else
|
|
m_heap.clear();
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::remove(size_t idx)
|
|
{
|
|
assert(idx < m_heap.size());
|
|
#ifdef NDEBUG
|
|
// Only mark as removed from the queue in release mode, if configured so.
|
|
if (ResetIndexWhenRemoved)
|
|
#endif /* NDEBUG */
|
|
{
|
|
// Mark as removed from the queue.
|
|
m_index_setter(m_heap[idx], std::numeric_limits<size_t>::max());
|
|
}
|
|
if (idx + 1 == m_heap.size()) {
|
|
m_heap.pop_back();
|
|
return;
|
|
}
|
|
m_heap[idx] = m_heap.back();
|
|
m_index_setter(m_heap[idx], idx);
|
|
m_heap.pop_back();
|
|
update_heap_down(idx, m_heap.size() - 1);
|
|
update_heap_up(0, idx);
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::update_heap_up(size_t top, size_t bottom)
|
|
{
|
|
size_t childIdx = bottom;
|
|
T *child = &m_heap[childIdx];
|
|
for (;;) {
|
|
size_t parentIdx = (childIdx - 1) >> 1;
|
|
if (childIdx == 0 || parentIdx < top)
|
|
break;
|
|
T *parent = &m_heap[parentIdx];
|
|
// switch nodes
|
|
if (! m_less_predicate(*parent, *child)) {
|
|
T tmp = *parent;
|
|
m_index_setter(tmp, childIdx);
|
|
m_index_setter(*child, parentIdx);
|
|
m_heap[parentIdx] = *child;
|
|
m_heap[childIdx] = tmp;
|
|
}
|
|
// shift up
|
|
childIdx = parentIdx;
|
|
child = parent;
|
|
}
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, const bool ResetIndexWhenRemoved>
|
|
inline void MutablePriorityQueue<T, LessPredicate, IndexSetter, ResetIndexWhenRemoved>::update_heap_down(size_t top, size_t bottom)
|
|
{
|
|
size_t parentIdx = top;
|
|
T *parent = &m_heap[parentIdx];
|
|
for (;;) {
|
|
size_t childIdx = (parentIdx << 1) + 1;
|
|
if (childIdx > bottom)
|
|
break;
|
|
T *child = &m_heap[childIdx];
|
|
size_t child2Idx = childIdx + 1;
|
|
if (child2Idx <= bottom) {
|
|
T *child2 = &m_heap[child2Idx];
|
|
if (! m_less_predicate(*child, *child2)) {
|
|
child = child2;
|
|
childIdx = child2Idx;
|
|
}
|
|
}
|
|
if (m_less_predicate(*parent, *child))
|
|
return;
|
|
// switch nodes
|
|
T tmp = *parent;
|
|
m_index_setter(tmp, childIdx);
|
|
m_index_setter(*child, parentIdx);
|
|
m_heap[parentIdx] = *child;
|
|
m_heap[childIdx] = tmp;
|
|
// shift down
|
|
parentIdx = childIdx;
|
|
parent = child;
|
|
}
|
|
}
|
|
|
|
// Binary heap addressing of a hierarchy of binary miniheaps by a higher level binary heap.
|
|
// Conceptually it works the same as a plain binary heap, however it is cache friendly.
|
|
// A binary block of "block_size" implements a binary miniheap of (block_size / 2) leaves and
|
|
// ((block_size / 2) - 1) nodes, thus wasting a single element. To make addressing simpler,
|
|
// the zero'th element inside each miniheap is wasted, thus for example a single element heap is
|
|
// 2 elements long and the 1st element starts at address 1.
|
|
//
|
|
// Mostly copied from the following great source:
|
|
// https://playfulprogramming.blogspot.com/2015/08/cache-optimizing-priority-queue.html
|
|
// https://github.com/rollbear/prio_queue/blob/master/prio_queue.hpp
|
|
// original source Copyright Björn Fahller 2015, Boost Software License, Version 1.0, http://www.boost.org/LICENSE_1_0.txt
|
|
template <std::size_t blocking>
|
|
struct SkipHeapAddressing
|
|
{
|
|
public:
|
|
static const constexpr std::size_t block_size = blocking;
|
|
static const constexpr std::size_t block_mask = block_size - 1;
|
|
static_assert((block_size & block_mask) == 0U, "block size must be 2^n for some integer n");
|
|
|
|
static inline std::size_t child_of(std::size_t node_no) noexcept {
|
|
if (! is_block_leaf(node_no))
|
|
// If not a leaf, then it is sufficient to just traverse down inside a miniheap.
|
|
// The following line is equivalent to, but quicker than
|
|
// return block_base(node_no) + 2 * block_offset(node_no);
|
|
return node_no + block_offset(node_no);
|
|
// Otherwise skip to a root of a child miniheap.
|
|
return (block_base(node_no) + 1 + child_no(node_no) * 2) * block_size + 1;
|
|
}
|
|
|
|
static inline std::size_t parent_of(std::size_t node_no) noexcept {
|
|
auto const node_root = block_base(node_no); // 16
|
|
if (! is_block_root(node_no))
|
|
// If not a block (miniheap) root, then it is sufficient to just traverse up inside a miniheap.
|
|
return node_root + block_offset(node_no) / 2;
|
|
// Otherwise skipping from a root of one miniheap into leaf of another miniheap.
|
|
// Address of a parent miniheap block. One miniheap branches at (block_size / 2) leaves to (block_size) miniheaps.
|
|
auto const parent_base = block_base(node_root / block_size - 1); // 0
|
|
// Index of a leaf of a parent miniheap, which is a parent of node_no.
|
|
auto const child = ((node_no - block_size) / block_size - parent_base) / 2;
|
|
return
|
|
// Address of a parent miniheap
|
|
parent_base +
|
|
// Address of a leaf of a parent miniheap
|
|
block_size / 2 + child; // 30
|
|
}
|
|
|
|
// Leafs are stored inside the second half of a block.
|
|
static inline bool is_block_leaf(std::size_t node_no) noexcept { return (node_no & (block_size >> 1)) != 0U; }
|
|
// Unused space aka padding to facilitate quick addressing.
|
|
static inline bool is_padding (std::size_t node_no) noexcept { return block_offset(node_no) == 0U; }
|
|
// Following methods are internal, but made public for unit tests.
|
|
//private:
|
|
// Address is a root of a block (of a miniheap).
|
|
static inline bool is_block_root(std::size_t node_no) noexcept { return block_offset(node_no) == 1U; }
|
|
// Offset inside a block (inside a miniheap).
|
|
static inline std::size_t block_offset (std::size_t node_no) noexcept { return node_no & block_mask; }
|
|
// Base address of a block (a miniheap).
|
|
static inline std::size_t block_base (std::size_t node_no) noexcept { return node_no & ~block_mask; }
|
|
// Index of a leaf.
|
|
static inline std::size_t child_no (std::size_t node_no) noexcept { assert(is_block_leaf(node_no)); return node_no & (block_mask >> 1); }
|
|
};
|
|
|
|
// Cache friendly variant of MutablePriorityQueue, implemented as a binary heap of binary miniheaps,
|
|
// building upon SkipHeapAddressing.
|
|
template<typename T, typename IndexSetter, typename LessPredicate, std::size_t blocking = 32, const bool ResetIndexWhenRemoved = false>
|
|
class MutableSkipHeapPriorityQueue
|
|
{
|
|
public:
|
|
static_assert(std::is_trivially_copyable<T>::value, "Template argument T must be a trivially copiable type in class template MutableSkipHeapPriorityQueue");
|
|
using address = SkipHeapAddressing<blocking>;
|
|
|
|
// It is recommended to use make_miniheap_mutable_priority_queue() for construction.
|
|
MutableSkipHeapPriorityQueue(IndexSetter &&index_setter, LessPredicate &&less_predicate) :
|
|
m_index_setter(std::forward<IndexSetter>(index_setter)),
|
|
m_less_predicate(std::forward<LessPredicate>(less_predicate))
|
|
{}
|
|
~MutableSkipHeapPriorityQueue() { clear(); }
|
|
|
|
void clear();
|
|
// Reserve one unused element per miniheap.
|
|
void reserve(size_t cnt) { m_heap.reserve(cnt + ((cnt + (address::block_size - 1)) / (address::block_size - 1))); }
|
|
void push(const T &item);
|
|
void push(T &&item);
|
|
void pop();
|
|
T& top() { return m_heap[1]; }
|
|
void remove(size_t idx);
|
|
void update(size_t idx) { assert(! address::is_padding(idx)); T item = m_heap[idx]; remove(idx); push(item); }
|
|
// There is one padding element storead at each miniheap, thus lower the number of elements by the number of miniheaps.
|
|
size_t size() const noexcept { return m_heap.size() - (m_heap.size() + address::block_size - 1) / address::block_size; }
|
|
bool empty() const { return m_heap.empty(); }
|
|
T& operator[](std::size_t idx) noexcept { assert(! address::is_padding(idx)); return m_heap[idx]; }
|
|
const T& operator[](std::size_t idx) const noexcept { assert(! address::is_padding(idx)); return m_heap[idx]; }
|
|
|
|
protected:
|
|
void update_heap_up(size_t top, size_t bottom);
|
|
void update_heap_down(size_t top, size_t bottom);
|
|
void pop_back() noexcept {
|
|
assert(m_heap.size() > 1);
|
|
assert(! address::is_padding(m_heap.size() - 1));
|
|
m_heap.pop_back();
|
|
if (address::is_padding(m_heap.size() - 1))
|
|
m_heap.pop_back();
|
|
}
|
|
|
|
private:
|
|
std::vector<T> m_heap;
|
|
IndexSetter m_index_setter;
|
|
LessPredicate m_less_predicate;
|
|
};
|
|
|
|
template<typename T, std::size_t BlockSize, const bool ResetIndexWhenRemoved, typename IndexSetter, typename LessPredicate>
|
|
MutableSkipHeapPriorityQueue<T, IndexSetter, LessPredicate, BlockSize, ResetIndexWhenRemoved>
|
|
make_miniheap_mutable_priority_queue(IndexSetter &&index_setter, LessPredicate &&less_predicate)
|
|
{
|
|
return MutableSkipHeapPriorityQueue<T, IndexSetter, LessPredicate, BlockSize, ResetIndexWhenRemoved>(
|
|
std::forward<IndexSetter>(index_setter), std::forward<LessPredicate>(less_predicate));
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::clear()
|
|
{
|
|
#ifdef NDEBUG
|
|
// Only mark as removed from the queue in release mode, if configured so.
|
|
if (ResetIndexWhenRemoved)
|
|
#endif /* NDEBUG */
|
|
{
|
|
for (size_t idx = 0; idx < m_heap.size(); ++ idx)
|
|
// Mark as removed from the queue.
|
|
if (! address::is_padding(idx))
|
|
m_index_setter(m_heap[idx], std::numeric_limits<size_t>::max());
|
|
}
|
|
m_heap.clear();
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::push(const T &item)
|
|
{
|
|
if (address::is_padding(m_heap.size()))
|
|
m_heap.emplace_back(T());
|
|
size_t idx = m_heap.size();
|
|
m_heap.emplace_back(item);
|
|
m_index_setter(m_heap.back(), idx);
|
|
update_heap_up(1, idx);
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::push(T &&item)
|
|
{
|
|
if (address::is_padding(m_heap.size()))
|
|
m_heap.emplace_back(T());
|
|
size_t idx = m_heap.size();
|
|
m_heap.emplace_back(std::move(item));
|
|
m_index_setter(m_heap.back(), idx);
|
|
update_heap_up(1, idx);
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::pop()
|
|
{
|
|
assert(! m_heap.empty());
|
|
#ifdef NDEBUG
|
|
// Only mark as removed from the queue in release mode, if configured so.
|
|
if (ResetIndexWhenRemoved)
|
|
#endif /* NDEBUG */
|
|
{
|
|
// Mark as removed from the queue.
|
|
m_index_setter(m_heap[1], std::numeric_limits<size_t>::max());
|
|
}
|
|
// Zero'th element is padding, thus non-empty queue must have at least two elements.
|
|
if (m_heap.size() > 2) {
|
|
m_heap[1] = m_heap.back();
|
|
this->pop_back();
|
|
m_index_setter(m_heap[1], 1);
|
|
update_heap_down(1, m_heap.size() - 1);
|
|
} else
|
|
m_heap.clear();
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::remove(size_t idx)
|
|
{
|
|
assert(idx < m_heap.size());
|
|
assert(! address::is_padding(idx));
|
|
#ifdef NDEBUG
|
|
// Only mark as removed from the queue in release mode, if configured so.
|
|
if (ResetIndexWhenRemoved)
|
|
#endif /* NDEBUG */
|
|
{
|
|
// Mark as removed from the queue.
|
|
m_index_setter(m_heap[idx], std::numeric_limits<size_t>::max());
|
|
}
|
|
if (idx + 1 == m_heap.size()) {
|
|
this->pop_back();
|
|
return;
|
|
}
|
|
m_heap[idx] = m_heap.back();
|
|
m_index_setter(m_heap[idx], idx);
|
|
this->pop_back();
|
|
update_heap_down(idx, m_heap.size() - 1);
|
|
update_heap_up(1, idx);
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::update_heap_up(size_t top, size_t bottom)
|
|
{
|
|
assert(! address::is_padding(top));
|
|
assert(! address::is_padding(bottom));
|
|
size_t childIdx = bottom;
|
|
T *child = &m_heap[childIdx];
|
|
for (;;) {
|
|
size_t parentIdx = address::parent_of(childIdx);
|
|
if (childIdx == 1 || parentIdx < top)
|
|
break;
|
|
T *parent = &m_heap[parentIdx];
|
|
// switch nodes
|
|
if (! m_less_predicate(*parent, *child)) {
|
|
T tmp = *parent;
|
|
m_index_setter(tmp, childIdx);
|
|
m_index_setter(*child, parentIdx);
|
|
m_heap[parentIdx] = *child;
|
|
m_heap[childIdx] = tmp;
|
|
}
|
|
// shift up
|
|
childIdx = parentIdx;
|
|
child = parent;
|
|
}
|
|
}
|
|
|
|
template<class T, class LessPredicate, class IndexSetter, std::size_t blocking, const bool ResetIndexWhenRemoved>
|
|
inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking, ResetIndexWhenRemoved>::update_heap_down(size_t top, size_t bottom)
|
|
{
|
|
assert(! address::is_padding(top));
|
|
assert(! address::is_padding(bottom));
|
|
size_t parentIdx = top;
|
|
T *parent = &m_heap[parentIdx];
|
|
for (;;) {
|
|
size_t childIdx = address::child_of(parentIdx);
|
|
if (childIdx > bottom)
|
|
break;
|
|
T *child = &m_heap[childIdx];
|
|
size_t child2Idx = childIdx + (address::is_block_leaf(parentIdx) ? address::block_size : 1);
|
|
if (child2Idx <= bottom) {
|
|
T *child2 = &m_heap[child2Idx];
|
|
if (! m_less_predicate(*child, *child2)) {
|
|
child = child2;
|
|
childIdx = child2Idx;
|
|
}
|
|
}
|
|
if (m_less_predicate(*parent, *child))
|
|
return;
|
|
// switch nodes
|
|
T tmp = *parent;
|
|
m_index_setter(tmp, childIdx);
|
|
m_index_setter(*child, parentIdx);
|
|
m_heap[parentIdx] = *child;
|
|
m_heap[childIdx] = tmp;
|
|
// shift down
|
|
parentIdx = childIdx;
|
|
parent = child;
|
|
}
|
|
}
|
|
|
|
#endif /* slic3r_MutablePriorityQueue_hpp_ */
|