PrusaSlicer-NonPlainar/src/libslic3r/LayerRegion.cpp
Vojtech Bubnik b101a8e266 Fixes of the offset curves from Voronoi diagram.
The offset curve extractor is already quite usable,
though singular cases are still not covered yet
when the offset curve intersects or nearly intersects
a Voronoi vertex.

Removal of the PRINTF_ZU "%zu" Visual Studio printf compatibility macro.
Fixes of a contours self intersection test for collinear segments.
SVG exporter now exports white background, so that the GNOME Eye viewer is usable.
2020-06-16 13:15:48 +02:00

478 lines
21 KiB
C++

#include "Layer.hpp"
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "PerimeterGenerator.hpp"
#include "Print.hpp"
#include "Surface.hpp"
#include "BoundingBox.hpp"
#include "SVG.hpp"
#include <string>
#include <map>
#include <boost/log/trivial.hpp>
namespace Slic3r {
Flow LayerRegion::flow(FlowRole role, bool bridge, double width) const
{
return m_region->flow(
role,
m_layer->height,
bridge,
m_layer->id() == 0,
width,
*m_layer->object()
);
}
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
void LayerRegion::slices_to_fill_surfaces_clipped()
{
// Note: this method should be idempotent, but fill_surfaces gets modified
// in place. However we're now only using its boundaries (which are invariant)
// so we're safe. This guarantees idempotence of prepare_infill() also in case
// that combine_infill() turns some fill_surface into VOID surfaces.
// Polygons fill_boundaries = to_polygons(std::move(this->fill_surfaces));
Polygons fill_boundaries = to_polygons(this->fill_expolygons);
// Collect polygons per surface type.
std::vector<Polygons> polygons_by_surface;
polygons_by_surface.assign(size_t(stCount), Polygons());
for (Surface &surface : this->slices.surfaces)
polygons_append(polygons_by_surface[(size_t)surface.surface_type], surface.expolygon);
// Trim surfaces by the fill_boundaries.
this->fill_surfaces.surfaces.clear();
for (size_t surface_type = 0; surface_type < size_t(stCount); ++ surface_type) {
const Polygons &polygons = polygons_by_surface[surface_type];
if (! polygons.empty())
this->fill_surfaces.append(intersection_ex(polygons, fill_boundaries), SurfaceType(surface_type));
}
}
void LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollection* fill_surfaces)
{
this->perimeters.clear();
this->thin_fills.clear();
PerimeterGenerator g(
// input:
&slices,
this->layer()->height,
this->flow(frPerimeter),
&this->region()->config(),
&this->layer()->object()->config(),
&this->layer()->object()->print()->config(),
// output:
&this->perimeters,
&this->thin_fills,
fill_surfaces
);
if (this->layer()->lower_layer != nullptr)
// Cummulative sum of polygons over all the regions.
g.lower_slices = &this->layer()->lower_layer->lslices;
g.layer_id = (int)this->layer()->id();
g.ext_perimeter_flow = this->flow(frExternalPerimeter);
g.overhang_flow = this->region()->flow(frPerimeter, -1, true, false, -1, *this->layer()->object());
g.solid_infill_flow = this->flow(frSolidInfill);
g.process();
}
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Polygons *lower_layer_covered)
{
const bool has_infill = this->region()->config().fill_density.value > 0.;
const float margin = float(scale_(EXTERNAL_INFILL_MARGIN));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// 1) Collect bottom and bridge surfaces, each of them grown by a fixed 3mm offset
// for better anchoring.
// Bottom surfaces, grown.
Surfaces bottom;
// Bridge surfaces, initialy not grown.
Surfaces bridges;
// Top surfaces, grown.
Surfaces top;
// Internal surfaces, not grown.
Surfaces internal;
// Areas, where an infill of various types (top, bottom, bottom bride, sparse, void) could be placed.
Polygons fill_boundaries = to_polygons(this->fill_expolygons);
Polygons lower_layer_covered_tmp;
// Collect top surfaces and internal surfaces.
// Collect fill_boundaries: If we're slicing with no infill, we can't extend external surfaces over non-existent infill.
// This loop destroys the surfaces (aliasing this->fill_surfaces.surfaces) by moving into top/internal/fill_boundaries!
{
// Voids are sparse infills if infill rate is zero.
Polygons voids;
for (const Surface &surface : this->fill_surfaces.surfaces) {
if (surface.is_top()) {
// Collect the top surfaces, inflate them and trim them by the bottom surfaces.
// This gives the priority to bottom surfaces.
surfaces_append(top, offset_ex(surface.expolygon, margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
} else if (surface.surface_type == stBottom || (surface.surface_type == stBottomBridge && lower_layer == nullptr)) {
// Grown by 3mm.
surfaces_append(bottom, offset_ex(surface.expolygon, margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
} else if (surface.surface_type == stBottomBridge) {
if (! surface.empty())
bridges.emplace_back(surface);
}
if (surface.is_internal()) {
assert(surface.surface_type == stInternal || surface.surface_type == stInternalSolid);
if (! has_infill && lower_layer != nullptr)
polygons_append(voids, surface.expolygon);
internal.emplace_back(std::move(surface));
}
}
if (! has_infill && lower_layer != nullptr && ! voids.empty()) {
// Remove voids from fill_boundaries, that are not supported by the layer below.
if (lower_layer_covered == nullptr) {
lower_layer_covered = &lower_layer_covered_tmp;
lower_layer_covered_tmp = to_polygons(lower_layer->lslices);
}
if (! lower_layer_covered->empty())
voids = diff(voids, *lower_layer_covered);
fill_boundaries = diff(fill_boundaries, voids);
}
}
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-before-grouping-%d.svg", iRun ++), true);
}
#endif
if (bridges.empty())
{
fill_boundaries = union_(fill_boundaries, true);
} else
{
// 1) Calculate the inflated bridge regions, each constrained to its island.
ExPolygons fill_boundaries_ex = union_ex(fill_boundaries, true);
std::vector<Polygons> bridges_grown;
std::vector<BoundingBox> bridge_bboxes;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
SVG svg(debug_out_path("3_process_external_surfaces-fill_regions-%d.svg", iRun ++).c_str(), get_extents(fill_boundaries_ex));
svg.draw(fill_boundaries_ex);
svg.draw_outline(fill_boundaries_ex, "black", "blue", scale_(0.05));
svg.Close();
}
// export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
{
// Bridge expolygons, grown, to be tested for intersection with other bridge regions.
std::vector<BoundingBox> fill_boundaries_ex_bboxes = get_extents_vector(fill_boundaries_ex);
bridges_grown.reserve(bridges.size());
bridge_bboxes.reserve(bridges.size());
for (size_t i = 0; i < bridges.size(); ++ i) {
// Find the island of this bridge.
const Point pt = bridges[i].expolygon.contour.points.front();
int idx_island = -1;
for (int j = 0; j < int(fill_boundaries_ex.size()); ++ j)
if (fill_boundaries_ex_bboxes[j].contains(pt) &&
fill_boundaries_ex[j].contains(pt)) {
idx_island = j;
break;
}
// Grown by 3mm.
Polygons polys = offset(to_polygons(bridges[i].expolygon), margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS);
if (idx_island == -1) {
BOOST_LOG_TRIVIAL(trace) << "Bridge did not fall into the source region!";
} else {
// Found an island, to which this bridge region belongs. Trim it,
polys = intersection(polys, to_polygons(fill_boundaries_ex[idx_island]));
}
bridge_bboxes.push_back(get_extents(polys));
bridges_grown.push_back(std::move(polys));
}
}
// 2) Group the bridge surfaces by overlaps.
std::vector<size_t> bridge_group(bridges.size(), (size_t)-1);
size_t n_groups = 0;
for (size_t i = 0; i < bridges.size(); ++ i) {
// A grup id for this bridge.
size_t group_id = (bridge_group[i] == size_t(-1)) ? (n_groups ++) : bridge_group[i];
bridge_group[i] = group_id;
// For all possibly overlaping bridges:
for (size_t j = i + 1; j < bridges.size(); ++ j) {
if (! bridge_bboxes[i].overlap(bridge_bboxes[j]))
continue;
if (intersection(bridges_grown[i], bridges_grown[j], false).empty())
continue;
// The two bridge regions intersect. Give them the same group id.
if (bridge_group[j] != size_t(-1)) {
// The j'th bridge has been merged with some other bridge before.
size_t group_id_new = bridge_group[j];
for (size_t k = 0; k < j; ++ k)
if (bridge_group[k] == group_id)
bridge_group[k] = group_id_new;
group_id = group_id_new;
}
bridge_group[j] = group_id;
}
}
// 3) Merge the groups with the same group id, detect bridges.
{
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges. layer" << this->layer()->print_z << ", bridge groups: " << n_groups;
for (size_t group_id = 0; group_id < n_groups; ++ group_id) {
size_t n_bridges_merged = 0;
size_t idx_last = (size_t)-1;
for (size_t i = 0; i < bridges.size(); ++ i) {
if (bridge_group[i] == group_id) {
++ n_bridges_merged;
idx_last = i;
}
}
if (n_bridges_merged == 0)
// This group has no regions assigned as these were moved into another group.
continue;
// Collect the initial ungrown regions and the grown polygons.
ExPolygons initial;
Polygons grown;
for (size_t i = 0; i < bridges.size(); ++ i) {
if (bridge_group[i] != group_id)
continue;
initial.push_back(std::move(bridges[i].expolygon));
polygons_append(grown, bridges_grown[i]);
}
// detect bridge direction before merging grown surfaces otherwise adjacent bridges
// would get merged into a single one while they need different directions
// also, supply the original expolygon instead of the grown one, because in case
// of very thin (but still working) anchors, the grown expolygon would go beyond them
BridgeDetector bd(
initial,
lower_layer->lslices,
this->flow(frInfill, true).scaled_width()
);
#ifdef SLIC3R_DEBUG
printf("Processing bridge at layer %zu:\n", this->layer()->id());
#endif
double custom_angle = Geometry::deg2rad(this->region()->config().bridge_angle.value);
if (bd.detect_angle(custom_angle)) {
bridges[idx_last].bridge_angle = bd.angle;
if (this->layer()->object()->config().support_material) {
polygons_append(this->bridged, bd.coverage());
append(this->unsupported_bridge_edges, bd.unsupported_edges());
}
} else if (custom_angle > 0) {
// Bridge was not detected (likely it is only supported at one side). Still it is a surface filled in
// using a bridging flow, therefore it makes sense to respect the custom bridging direction.
bridges[idx_last].bridge_angle = custom_angle;
}
// without safety offset, artifacts are generated (GH #2494)
surfaces_append(bottom, union_ex(grown, true), bridges[idx_last]);
}
fill_boundaries = std::move(to_polygons(fill_boundaries_ex));
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges - done";
}
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-after-grouping-%d.svg", iRun ++), true);
}
#endif
}
Surfaces new_surfaces;
{
// Merge top and bottom in a single collection.
surfaces_append(top, std::move(bottom));
// Intersect the grown surfaces with the actual fill boundaries.
Polygons bottom_polygons = to_polygons(bottom);
for (size_t i = 0; i < top.size(); ++ i) {
Surface &s1 = top[i];
if (s1.empty())
continue;
Polygons polys;
polygons_append(polys, std::move(s1));
for (size_t j = i + 1; j < top.size(); ++ j) {
Surface &s2 = top[j];
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
polygons_append(polys, std::move(s2));
s2.clear();
}
}
if (s1.is_top())
// Trim the top surfaces by the bottom surfaces. This gives the priority to the bottom surfaces.
polys = diff(polys, bottom_polygons);
surfaces_append(
new_surfaces,
// Don't use a safety offset as fill_boundaries were already united using the safety offset.
std::move(intersection_ex(polys, fill_boundaries, false)),
s1);
}
}
// Subtract the new top surfaces from the other non-top surfaces and re-add them.
Polygons new_polygons = to_polygons(new_surfaces);
for (size_t i = 0; i < internal.size(); ++ i) {
Surface &s1 = internal[i];
if (s1.empty())
continue;
Polygons polys;
polygons_append(polys, std::move(s1));
for (size_t j = i + 1; j < internal.size(); ++ j) {
Surface &s2 = internal[j];
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
polygons_append(polys, std::move(s2));
s2.clear();
}
}
ExPolygons new_expolys = diff_ex(polys, new_polygons);
polygons_append(new_polygons, to_polygons(new_expolys));
surfaces_append(new_surfaces, std::move(new_expolys), s1);
}
this->fill_surfaces.surfaces = std::move(new_surfaces);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
void LayerRegion::prepare_fill_surfaces()
{
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-initial");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
/* Note: in order to make the psPrepareInfill step idempotent, we should never
alter fill_surfaces boundaries on which our idempotency relies since that's
the only meaningful information returned by psPerimeters. */
bool spiral_vase = this->layer()->object()->print()->config().spiral_vase;
// if no solid layers are requested, turn top/bottom surfaces to internal
if (! spiral_vase && this->region()->config().top_solid_layers == 0) {
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.is_top())
surface.surface_type = this->layer()->object()->config().infill_only_where_needed ? stInternalVoid : stInternal;
}
if (this->region()->config().bottom_solid_layers == 0) {
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.is_bottom()) // (surface.surface_type == stBottom)
surface.surface_type = stInternal;
}
// turn too small internal regions into solid regions according to the user setting
if (! spiral_vase && this->region()->config().fill_density.value > 0) {
// scaling an area requires two calls!
double min_area = scale_(scale_(this->region()->config().solid_infill_below_area.value));
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.surface_type == stInternal && surface.area() <= min_area)
surface.surface_type = stInternalSolid;
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-final");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
double LayerRegion::infill_area_threshold() const
{
double ss = this->flow(frSolidInfill).scaled_spacing();
return ss*ss;
}
void LayerRegion::trim_surfaces(const Polygons &trimming_polygons)
{
#ifndef NDEBUG
for (const Surface &surface : this->slices.surfaces)
assert(surface.surface_type == stInternal);
#endif /* NDEBUG */
this->slices.set(intersection_ex(to_polygons(std::move(this->slices.surfaces)), trimming_polygons, false), stInternal);
}
void LayerRegion::elephant_foot_compensation_step(const float elephant_foot_compensation_perimeter_step, const Polygons &trimming_polygons)
{
#ifndef NDEBUG
for (const Surface &surface : this->slices.surfaces)
assert(surface.surface_type == stInternal);
#endif /* NDEBUG */
ExPolygons slices_expolygons = to_expolygons(std::move(this->slices.surfaces));
Polygons slices_polygons = to_polygons(slices_expolygons);
Polygons tmp = intersection(slices_polygons, trimming_polygons, false);
append(tmp, diff(slices_polygons, offset(offset_ex(slices_expolygons, -elephant_foot_compensation_perimeter_step), elephant_foot_compensation_perimeter_step)));
this->slices.set(std::move(union_ex(tmp)), stInternal);
}
void LayerRegion::export_region_slices_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
svg.draw(surface->expolygon, surface_type_to_color_name(surface->surface_type), transparency);
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
svg.draw(surface->expolygon.lines(), surface_type_to_color_name(surface->surface_type));
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_slices_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_slices_to_svg(debug_out_path("LayerRegion-slices-%s-%d.svg", name, idx ++).c_str());
}
void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const Surface &surface : this->fill_surfaces.surfaces) {
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
svg.draw_outline(surface.expolygon, "black", "blue", scale_(0.05));
}
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_fill_surfaces_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_fill_surfaces_to_svg(debug_out_path("LayerRegion-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
}
}