PrusaSlicer-NonPlainar/src/libslic3r/SLAPrint.hpp

551 lines
20 KiB
C++

#ifndef slic3r_SLAPrint_hpp_
#define slic3r_SLAPrint_hpp_
#include <mutex>
#include "PrintBase.hpp"
#include "SLA/RasterBase.hpp"
#include "SLA/SupportTree.hpp"
#include "Point.hpp"
#include "MTUtils.hpp"
#include "Zipper.hpp"
#include <libnest2d/backends/clipper/clipper_polygon.hpp>
namespace Slic3r {
enum SLAPrintStep : unsigned int {
slapsMergeSlicesAndEval,
slapsRasterize,
slapsCount
};
enum SLAPrintObjectStep : unsigned int {
slaposHollowing,
slaposDrillHoles,
slaposObjectSlice,
slaposSupportPoints,
slaposSupportTree,
slaposPad,
slaposSliceSupports,
slaposCount
};
class SLAPrint;
class GLCanvas;
using _SLAPrintObjectBase =
PrintObjectBaseWithState<SLAPrint, SLAPrintObjectStep, slaposCount>;
// Layers according to quantized height levels. This will be consumed by
// the printer (rasterizer) in the SLAPrint class.
// using coord_t = long long;
enum SliceOrigin { soSupport, soModel };
class SLAPrintObject : public _SLAPrintObjectBase
{
private: // Prevents erroneous use by other classes.
using Inherited = _SLAPrintObjectBase;
public:
// I refuse to grantee copying (Tamas)
SLAPrintObject(const SLAPrintObject&) = delete;
SLAPrintObject& operator=(const SLAPrintObject&) = delete;
const SLAPrintObjectConfig& config() const { return m_config; }
const Transform3d& trafo() const { return m_trafo; }
bool is_left_handed() const { return m_left_handed; }
struct Instance {
Instance(ObjectID inst_id, const Point &shft, float rot) : instance_id(inst_id), shift(shft), rotation(rot) {}
bool operator==(const Instance &rhs) const { return this->instance_id == rhs.instance_id && this->shift == rhs.shift && this->rotation == rhs.rotation; }
// ID of the corresponding ModelInstance.
ObjectID instance_id;
// Slic3r::Point objects in scaled G-code coordinates
Point shift;
// Rotation along the Z axis, in radians.
float rotation;
};
const std::vector<Instance>& instances() const { return m_instances; }
bool has_mesh(SLAPrintObjectStep step) const;
TriangleMesh get_mesh(SLAPrintObjectStep step) const;
// Get a support mesh centered around origin in XY, and with zero rotation around Z applied.
// Support mesh is only valid if this->is_step_done(slaposSupportTree) is true.
const TriangleMesh& support_mesh() const;
// Get a pad mesh centered around origin in XY, and with zero rotation around Z applied.
// Support mesh is only valid if this->is_step_done(slaposPad) is true.
const TriangleMesh& pad_mesh() const;
// Ready after this->is_step_done(slaposDrillHoles) is true
const TriangleMesh& hollowed_interior_mesh() const;
// Get the mesh that is going to be printed with all the modifications
// like hollowing and drilled holes.
const TriangleMesh & get_mesh_to_print() const {
return (m_hollowing_data && is_step_done(slaposDrillHoles)) ? m_hollowing_data->hollow_mesh_with_holes : transformed_mesh();
}
// This will return the transformed mesh which is cached
const TriangleMesh& transformed_mesh() const;
sla::SupportPoints transformed_support_points() const;
sla::DrainHoles transformed_drainhole_points() const;
// Get the needed Z elevation for the model geometry if supports should be
// displayed. This Z offset should also be applied to the support
// geometries. Note that this is not the same as the value stored in config
// as the pad height also needs to be considered.
double get_elevation() const;
// This method returns the needed elevation according to the processing
// status. If the supports are not ready, it is zero, if they are and the
// pad is not, then without the pad, otherwise the full value is returned.
double get_current_elevation() const;
// This method returns the support points of this SLAPrintObject.
const std::vector<sla::SupportPoint>& get_support_points() const;
// The public Slice record structure. It corresponds to one printable layer.
class SliceRecord {
public:
// this will be the max limit of size_t
static const size_t NONE = size_t(-1);
static const SliceRecord EMPTY;
private:
coord_t m_print_z = 0; // Top of the layer
float m_slice_z = 0.f; // Exact level of the slice
float m_height = 0.f; // Height of the sliced layer
size_t m_model_slices_idx = NONE;
size_t m_support_slices_idx = NONE;
const SLAPrintObject *m_po = nullptr;
public:
SliceRecord(coord_t key, float slicez, float height):
m_print_z(key), m_slice_z(slicez), m_height(height) {}
// The key will be the integer height level of the top of the layer.
coord_t print_level() const { return m_print_z; }
// Returns the exact floating point Z coordinate of the slice
float slice_level() const { return m_slice_z; }
// Returns the current layer height
float layer_height() const { return m_height; }
bool is_valid() const { return m_po && ! std::isnan(m_slice_z); }
const SLAPrintObject* print_obj() const { return m_po; }
// Methods for setting the indices into the slice vectors.
void set_model_slice_idx(const SLAPrintObject &po, size_t id) {
m_po = &po; m_model_slices_idx = id;
}
void set_support_slice_idx(const SLAPrintObject& po, size_t id) {
m_po = &po; m_support_slices_idx = id;
}
const ExPolygons& get_slice(SliceOrigin o) const;
size_t get_slice_idx(SliceOrigin o) const
{
return o == soModel ? m_model_slices_idx : m_support_slices_idx;
}
};
private:
template<class T> inline static T level(const SliceRecord &sr)
{
static_assert(std::is_arithmetic<T>::value, "Arithmetic only!");
return std::is_integral<T>::value ? T(sr.print_level())
: T(sr.slice_level());
}
template<class T> inline static SliceRecord create_slice_record(T val)
{
static_assert(std::is_arithmetic<T>::value, "Arithmetic only!");
return std::is_integral<T>::value
? SliceRecord{coord_t(val), 0.f, 0.f}
: SliceRecord{0, float(val), 0.f};
}
// This is a template method for searching the slice index either by
// an integer key: print_level or a floating point key: slice_level.
// The eps parameter gives the max deviation in + or - direction.
//
// This method can be used in const or non-const contexts as well.
template<class Container, class T>
static auto closest_slice_record(
Container& cont,
T lvl,
T eps = std::numeric_limits<T>::max()) -> decltype (cont.begin())
{
if(cont.empty()) return cont.end();
if(cont.size() == 1 && std::abs(level<T>(cont.front()) - lvl) > eps)
return cont.end();
SliceRecord query = create_slice_record(lvl);
auto it = std::lower_bound(cont.begin(), cont.end(), query,
[](const SliceRecord& r1,
const SliceRecord& r2)
{
return level<T>(r1) < level<T>(r2);
});
if(it == cont.end()) return it;
T diff = std::abs(level<T>(*it) - lvl);
if(it != cont.begin()) {
auto it_prev = std::prev(it);
T diff_prev = std::abs(level<T>(*it_prev) - lvl);
if(diff_prev < diff) { diff = diff_prev; it = it_prev; }
}
if(diff > eps) it = cont.end();
return it;
}
const std::vector<ExPolygons>& get_model_slices() const { return m_model_slices; }
const std::vector<ExPolygons>& get_support_slices() const;
public:
// /////////////////////////////////////////////////////////////////////////
//
// These methods should be callable on the client side (e.g. UI thread)
// when the appropriate steps slaposObjectSlice and slaposSliceSupports
// are ready. All the print objects are processed before slapsRasterize so
// it is safe to call them during and/or after slapsRasterize.
//
// /////////////////////////////////////////////////////////////////////////
// Retrieve the slice index.
const std::vector<SliceRecord>& get_slice_index() const {
return m_slice_index;
}
// Search slice index for the closest slice to given print_level.
// max_epsilon gives the allowable deviation of the returned slice record's
// level.
const SliceRecord& closest_slice_to_print_level(
coord_t print_level,
coord_t max_epsilon = std::numeric_limits<coord_t>::max()) const
{
auto it = closest_slice_record(m_slice_index, print_level, max_epsilon);
return it == m_slice_index.end() ? SliceRecord::EMPTY : *it;
}
// Search slice index for the closest slice to given slice_level.
// max_epsilon gives the allowable deviation of the returned slice record's
// level. Use SliceRecord::is_valid() to check the result.
const SliceRecord& closest_slice_to_slice_level(
float slice_level,
float max_epsilon = std::numeric_limits<float>::max()) const
{
auto it = closest_slice_record(m_slice_index, slice_level, max_epsilon);
return it == m_slice_index.end() ? SliceRecord::EMPTY : *it;
}
protected:
// to be called from SLAPrint only.
friend class SLAPrint;
SLAPrintObject(SLAPrint* print, ModelObject* model_object);
~SLAPrintObject();
void config_apply(const ConfigBase &other, bool ignore_nonexistent = false) { this->m_config.apply(other, ignore_nonexistent); }
void config_apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false)
{ this->m_config.apply_only(other, keys, ignore_nonexistent); }
void set_trafo(const Transform3d& trafo, bool left_handed) {
m_transformed_rmesh.invalidate([this, &trafo, left_handed](){ m_trafo = trafo; m_left_handed = left_handed; });
}
template<class InstVec> inline void set_instances(InstVec&& instances) { m_instances = std::forward<InstVec>(instances); }
// Invalidates the step, and its depending steps in SLAPrintObject and SLAPrint.
bool invalidate_step(SLAPrintObjectStep step);
bool invalidate_all_steps();
// Invalidate steps based on a set of parameters changed.
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
// Which steps have to be performed. Implicitly: all
// to be accessible from SLAPrint
std::vector<bool> m_stepmask;
private:
// Object specific configuration, pulled from the configuration layer.
SLAPrintObjectConfig m_config;
// Translation in Z + Rotation by Y and Z + Scaling / Mirroring.
Transform3d m_trafo = Transform3d::Identity();
// m_trafo is left handed -> 3x3 affine transformation has negative determinant.
bool m_left_handed = false;
std::vector<Instance> m_instances;
// Individual 2d slice polygons from lower z to higher z levels
std::vector<ExPolygons> m_model_slices;
// Exact (float) height levels mapped to the slices. Each record contains
// the index to the model and the support slice vectors.
std::vector<SliceRecord> m_slice_index;
std::vector<float> m_model_height_levels;
// Caching the transformed (m_trafo) raw mesh of the object
mutable CachedObject<TriangleMesh> m_transformed_rmesh;
class SupportData : public sla::SupportableMesh
{
public:
sla::SupportTree::UPtr support_tree_ptr; // the supports
std::vector<ExPolygons> support_slices; // sliced supports
inline SupportData(const TriangleMesh &t)
: sla::SupportableMesh{t, {}, {}}
{}
sla::SupportTree::UPtr &create_support_tree(const sla::JobController &ctl)
{
support_tree_ptr = sla::SupportTree::create(*this, ctl);
return support_tree_ptr;
}
};
std::unique_ptr<SupportData> m_supportdata;
class HollowingData
{
public:
TriangleMesh interior;
mutable TriangleMesh hollow_mesh_with_holes; // caching the complete hollowed mesh
};
std::unique_ptr<HollowingData> m_hollowing_data;
};
using PrintObjects = std::vector<SLAPrintObject*>;
using SliceRecord = SLAPrintObject::SliceRecord;
class TriangleMesh;
struct SLAPrintStatistics
{
SLAPrintStatistics() { clear(); }
double estimated_print_time;
double objects_used_material;
double support_used_material;
size_t slow_layers_count;
size_t fast_layers_count;
double total_cost;
double total_weight;
// Config with the filled in print statistics.
DynamicConfig config() const;
// Config with the statistics keys populated with placeholder strings.
static DynamicConfig placeholders();
// Replace the print statistics placeholders in the path.
std::string finalize_output_path(const std::string &path_in) const;
void clear() {
estimated_print_time = 0.;
objects_used_material = 0.;
support_used_material = 0.;
slow_layers_count = 0;
fast_layers_count = 0;
total_cost = 0.;
total_weight = 0.;
}
};
class SLAPrinter {
protected:
std::vector<sla::EncodedRaster> m_layers;
virtual uqptr<sla::RasterBase> create_raster() const = 0;
virtual sla::EncodedRaster encode_raster(const sla::RasterBase &rst) const = 0;
public:
virtual ~SLAPrinter() = default;
virtual void apply(const SLAPrinterConfig &cfg) = 0;
// Fn have to be thread safe: void(sla::RasterBase& raster, size_t lyrid);
template<class Fn> void draw_layers(size_t layer_num, Fn &&drawfn)
{
m_layers.resize(layer_num);
sla::ccr::enumerate(m_layers.begin(), m_layers.end(),
[this, &drawfn](sla::EncodedRaster& enc, size_t idx) {
auto rst = create_raster();
drawfn(*rst, idx);
enc = encode_raster(*rst);
});
}
};
/**
* @brief This class is the high level FSM for the SLA printing process.
*
* It should support the background processing framework and contain the
* metadata for the support geometries and their slicing. It should also
* dispatch the SLA printing configuration values to the appropriate calculation
* steps.
*/
class SLAPrint : public PrintBaseWithState<SLAPrintStep, slapsCount>
{
private: // Prevents erroneous use by other classes.
typedef PrintBaseWithState<SLAPrintStep, slapsCount> Inherited;
class Steps; // See SLAPrintSteps.cpp
public:
SLAPrint(): m_stepmask(slapsCount, true) {}
virtual ~SLAPrint() override { this->clear(); }
PrinterTechnology technology() const noexcept override { return ptSLA; }
void clear() override;
bool empty() const override { return m_objects.empty(); }
ApplyStatus apply(const Model &model, DynamicPrintConfig config) override;
void set_task(const TaskParams &params) override;
void process() override;
void finalize() override;
// Returns true if an object step is done on all objects and there's at least one object.
bool is_step_done(SLAPrintObjectStep step) const;
// Returns true if the last step was finished with success.
bool finished() const override { return this->is_step_done(slaposSliceSupports) && this->Inherited::is_step_done(slapsRasterize); }
const PrintObjects& objects() const { return m_objects; }
const SLAPrintConfig& print_config() const { return m_print_config; }
const SLAPrinterConfig& printer_config() const { return m_printer_config; }
const SLAMaterialConfig& material_config() const { return m_material_config; }
const SLAPrintObjectConfig& default_object_config() const { return m_default_object_config; }
// Extracted value from the configuration objects
Vec3d relative_correction() const;
// Return sla tansformation for a given model_object
Transform3d sla_trafo(const ModelObject &model_object) const;
std::string output_filename(const std::string &filename_base = std::string()) const override;
const SLAPrintStatistics& print_statistics() const { return m_print_statistics; }
std::string validate() const override;
// An aggregation of SliceRecord-s from all the print objects for each
// occupied layer. Slice record levels dont have to match exactly.
// They are unified if the level difference is within +/- SCALED_EPSILON
class PrintLayer {
coord_t m_level;
// The collection of slice records for the current level.
std::vector<std::reference_wrapper<const SliceRecord>> m_slices;
std::vector<ClipperLib::Polygon> m_transformed_slices;
template<class Container> void transformed_slices(Container&& c)
{
m_transformed_slices = std::forward<Container>(c);
}
friend class SLAPrint::Steps;
public:
explicit PrintLayer(coord_t lvl) : m_level(lvl) {}
// for being sorted in their container (see m_printer_input)
bool operator<(const PrintLayer& other) const {
return m_level < other.m_level;
}
void add(const SliceRecord& sr) { m_slices.emplace_back(sr); }
coord_t level() const { return m_level; }
auto slices() const -> const decltype (m_slices)& { return m_slices; }
const std::vector<ClipperLib::Polygon> & transformed_slices() const {
return m_transformed_slices;
}
};
// The aggregated and leveled print records from various objects.
// TODO: use this structure for the preview in the future.
const std::vector<PrintLayer>& print_layers() const { return m_printer_input; }
void set_printer(SLAPrinter *archiver);
private:
// Implement same logic as in SLAPrintObject
bool invalidate_step(SLAPrintStep st);
// Invalidate steps based on a set of parameters changed.
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys, bool &invalidate_all_model_objects);
SLAPrintConfig m_print_config;
SLAPrinterConfig m_printer_config;
SLAMaterialConfig m_material_config;
SLAPrintObjectConfig m_default_object_config;
PrintObjects m_objects;
std::vector<bool> m_stepmask;
// Ready-made data for rasterization.
std::vector<PrintLayer> m_printer_input;
// The archive object which collects the raster images after slicing
SLAPrinter *m_printer = nullptr;
// Estimated print time, material consumed.
SLAPrintStatistics m_print_statistics;
class StatusReporter
{
double m_st = 0;
public:
void operator()(SLAPrint & p,
double st,
const std::string &msg,
unsigned flags = SlicingStatus::DEFAULT,
const std::string &logmsg = "");
double status() const { return m_st; }
} m_report_status;
friend SLAPrintObject;
};
// Helper functions:
bool is_zero_elevation(const SLAPrintObjectConfig &c);
sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c);
sla::PadConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c);
sla::PadConfig make_pad_cfg(const SLAPrintObjectConfig& c);
bool validate_pad(const TriangleMesh &pad, const sla::PadConfig &pcfg);
} // namespace Slic3r
#endif /* slic3r_SLAPrint_hpp_ */