PrusaSlicer-NonPlainar/src/slic3r/GUI/3DScene.cpp
2018-11-21 12:27:20 +01:00

2131 lines
79 KiB
C++

#include <GL/glew.h>
#include "3DScene.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/ExtrusionEntityCollection.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/GCode/PreviewData.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/Slicing.hpp"
#include "slic3r/GUI/PresetBundle.hpp"
#include "GCode/Analyzer.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <utility>
#include <assert.h>
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <Eigen/Dense>
#include "GUI.hpp"
namespace Slic3r {
void GLIndexedVertexArray::load_mesh_flat_shading(const TriangleMesh &mesh)
{
assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
assert(quad_indices.empty() && triangle_indices_size == 0);
assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());
this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count());
for (int i = 0; i < (int)mesh.stl.stats.number_of_facets; ++i) {
const stl_facet &facet = mesh.stl.facet_start[i];
for (int j = 0; j < 3; ++ j)
this->push_geometry(facet.vertex[j](0), facet.vertex[j](1), facet.vertex[j](2), facet.normal(0), facet.normal(1), facet.normal(2));
}
}
void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh &mesh)
{
assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
assert(quad_indices.empty() && triangle_indices_size == 0);
assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());
this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count());
unsigned int vertices_count = 0;
for (int i = 0; i < (int)mesh.stl.stats.number_of_facets; ++i) {
const stl_facet &facet = mesh.stl.facet_start[i];
for (int j = 0; j < 3; ++j)
this->push_geometry(facet.vertex[j](0), facet.vertex[j](1), facet.vertex[j](2), facet.normal(0), facet.normal(1), facet.normal(2));
this->push_triangle(vertices_count, vertices_count + 1, vertices_count + 2);
vertices_count += 3;
}
}
void GLIndexedVertexArray::finalize_geometry(bool use_VBOs)
{
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
assert(this->triangle_indices_VBO_id == 0);
assert(this->quad_indices_VBO_id == 0);
this->setup_sizes();
if (use_VBOs) {
if (! empty()) {
glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id);
glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
this->vertices_and_normals_interleaved.clear();
}
if (! this->triangle_indices.empty()) {
glGenBuffers(1, &this->triangle_indices_VBO_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW);
this->triangle_indices.clear();
}
if (! this->quad_indices.empty()) {
glGenBuffers(1, &this->quad_indices_VBO_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW);
this->quad_indices.clear();
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
this->shrink_to_fit();
}
void GLIndexedVertexArray::release_geometry()
{
if (this->vertices_and_normals_interleaved_VBO_id) {
glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id);
this->vertices_and_normals_interleaved_VBO_id = 0;
}
if (this->triangle_indices_VBO_id) {
glDeleteBuffers(1, &this->triangle_indices_VBO_id);
this->triangle_indices_VBO_id = 0;
}
if (this->quad_indices_VBO_id) {
glDeleteBuffers(1, &this->quad_indices_VBO_id);
this->quad_indices_VBO_id = 0;
}
this->clear();
this->shrink_to_fit();
}
void GLIndexedVertexArray::render() const
{
if (this->vertices_and_normals_interleaved_VBO_id) {
glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
} else {
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3);
glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data());
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (this->indexed()) {
if (this->vertices_and_normals_interleaved_VBO_id) {
// Render using the Vertex Buffer Objects.
if (this->triangle_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr);
}
if (this->quad_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
// Render in an immediate mode.
if (! this->triangle_indices.empty())
glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, this->triangle_indices.data());
if (! this->quad_indices.empty())
glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, this->quad_indices.data());
}
} else
glDrawArrays(GL_TRIANGLES, 0, GLsizei(this->vertices_and_normals_interleaved_size / 6));
if (this->vertices_and_normals_interleaved_VBO_id)
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
void GLIndexedVertexArray::render(
const std::pair<size_t, size_t> &tverts_range,
const std::pair<size_t, size_t> &qverts_range) const
{
assert(this->indexed());
if (! this->indexed())
return;
if (this->vertices_and_normals_interleaved_VBO_id) {
// Render using the Vertex Buffer Objects.
glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (this->triangle_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4));
}
if (this->quad_indices_size > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4));
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
// Render in an immediate mode.
glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3);
glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data());
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (! this->triangle_indices.empty())
glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->triangle_indices.data() + tverts_range.first));
if (! this->quad_indices.empty())
glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->quad_indices.data() + qverts_range.first));
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
}
const float GLVolume::SELECTED_COLOR[4] = { 0.0f, 1.0f, 0.0f, 1.0f };
const float GLVolume::HOVER_COLOR[4] = { 0.4f, 0.9f, 0.1f, 1.0f };
const float GLVolume::OUTSIDE_COLOR[4] = { 0.0f, 0.38f, 0.8f, 1.0f };
const float GLVolume::SELECTED_OUTSIDE_COLOR[4] = { 0.19f, 0.58f, 1.0f, 1.0f };
const float GLVolume::DISABLED_COLOR[4] = { 0.25f, 0.25f, 0.25f, 1.0f };
GLVolume::GLVolume(float r, float g, float b, float a)
#if ENABLE_MODELVOLUME_TRANSFORM
: m_transformed_bounding_box_dirty(true)
#else
: m_offset(Vec3d::Zero())
, m_rotation(Vec3d::Zero())
, m_scaling_factor(Vec3d::Ones())
, m_mirror(Vec3d::Ones())
, m_world_matrix(Transform3f::Identity())
, m_world_matrix_dirty(true)
, m_transformed_bounding_box_dirty(true)
#endif // ENABLE_MODELVOLUME_TRANSFORM
, m_transformed_convex_hull_bounding_box_dirty(true)
, m_convex_hull(nullptr)
, m_convex_hull_owned(false)
// geometry_id == 0 -> invalid
, geometry_id(std::pair<size_t, size_t>(0, 0))
, extruder_id(0)
, selected(false)
, disabled(false)
, is_active(true)
, zoom_to_volumes(true)
, shader_outside_printer_detection_enabled(false)
, is_outside(false)
, hover(false)
, is_modifier(false)
, is_wipe_tower(false)
, is_extrusion_path(false)
, tverts_range(0, size_t(-1))
, qverts_range(0, size_t(-1))
{
color[0] = r;
color[1] = g;
color[2] = b;
color[3] = a;
set_render_color(r, g, b, a);
}
GLVolume::~GLVolume()
{
if (m_convex_hull_owned)
delete m_convex_hull;
}
void GLVolume::set_render_color(float r, float g, float b, float a)
{
render_color[0] = r;
render_color[1] = g;
render_color[2] = b;
render_color[3] = a;
}
void GLVolume::set_render_color(const float* rgba, unsigned int size)
{
size = std::min((unsigned int)4, size);
for (unsigned int i = 0; i < size; ++i)
{
render_color[i] = rgba[i];
}
}
void GLVolume::set_render_color()
{
if (selected)
set_render_color(is_outside ? SELECTED_OUTSIDE_COLOR : SELECTED_COLOR, 4);
else if (hover)
set_render_color(HOVER_COLOR, 4);
else if (disabled)
set_render_color(DISABLED_COLOR, 4);
else if (is_outside && shader_outside_printer_detection_enabled)
set_render_color(OUTSIDE_COLOR, 4);
else
set_render_color(color, 4);
}
#if !ENABLE_MODELVOLUME_TRANSFORM
const Vec3d& GLVolume::get_rotation() const
{
return m_rotation;
}
void GLVolume::set_rotation(const Vec3d& rotation)
{
static const double TWO_PI = 2.0 * (double)PI;
if (m_rotation != rotation)
{
m_rotation = rotation;
for (int i = 0; i < 3; ++i)
{
while (m_rotation(i) < 0.0)
{
m_rotation(i) += TWO_PI;
}
while (TWO_PI < m_rotation(i))
{
m_rotation(i) -= TWO_PI;
}
}
m_world_matrix_dirty = true;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
const Vec3d& GLVolume::get_offset() const
{
return m_offset;
}
void GLVolume::set_offset(const Vec3d& offset)
{
if (m_offset != offset)
{
m_offset = offset;
m_world_matrix_dirty = true;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
const Vec3d& GLVolume::get_scaling_factor() const
{
return m_scaling_factor;
}
void GLVolume::set_scaling_factor(const Vec3d& scaling_factor)
{
if (m_scaling_factor != scaling_factor)
{
m_scaling_factor = scaling_factor;
m_world_matrix_dirty = true;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
const Vec3d& GLVolume::get_mirror() const
{
return m_mirror;
}
double GLVolume::get_mirror(Axis axis) const
{
return m_mirror(axis);
}
void GLVolume::set_mirror(const Vec3d& mirror)
{
if (m_mirror != mirror)
{
m_mirror = mirror;
m_world_matrix_dirty = true;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
void GLVolume::set_mirror(Axis axis, double mirror)
{
if (m_mirror(axis) != mirror)
{
m_mirror(axis) = mirror;
m_world_matrix_dirty = true;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
#endif // !ENABLE_MODELVOLUME_TRANSFORM
void GLVolume::set_convex_hull(const TriangleMesh *convex_hull, bool owned)
{
m_convex_hull = convex_hull;
m_convex_hull_owned = owned;
}
#if !ENABLE_MODELVOLUME_TRANSFORM
const Transform3f& GLVolume::world_matrix() const
{
if (m_world_matrix_dirty)
{
m_world_matrix = Geometry::assemble_transform(m_offset, m_rotation, m_scaling_factor, m_mirror).cast<float>();
m_world_matrix_dirty = false;
}
return m_world_matrix;
}
#endif // !ENABLE_MODELVOLUME_TRANSFORM
const BoundingBoxf3& GLVolume::transformed_bounding_box() const
{
if (m_transformed_bounding_box_dirty)
{
#if ENABLE_MODELVOLUME_TRANSFORM
m_transformed_bounding_box = bounding_box.transformed(world_matrix());
#else
m_transformed_bounding_box = bounding_box.transformed(world_matrix().cast<double>());
#endif // ENABLE_MODELVOLUME_TRANSFORM
m_transformed_bounding_box_dirty = false;
}
return m_transformed_bounding_box;
}
const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const
{
if (m_transformed_convex_hull_bounding_box_dirty)
{
#if ENABLE_MODELVOLUME_TRANSFORM
if ((m_convex_hull != nullptr) && (m_convex_hull->stl.stats.number_of_facets > 0))
m_transformed_convex_hull_bounding_box = m_convex_hull->transformed_bounding_box(world_matrix());
else
m_transformed_convex_hull_bounding_box = bounding_box.transformed(world_matrix());
#else
if ((m_convex_hull != nullptr) && (m_convex_hull->stl.stats.number_of_facets > 0))
m_transformed_convex_hull_bounding_box = m_convex_hull->transformed_bounding_box(world_matrix().cast<double>());
else
m_transformed_convex_hull_bounding_box = bounding_box.transformed(world_matrix().cast<double>());
#endif // ENABLE_MODELVOLUME_TRANSFORM
m_transformed_convex_hull_bounding_box_dirty = false;
}
return m_transformed_convex_hull_bounding_box;
}
void GLVolume::set_range(double min_z, double max_z)
{
this->qverts_range.first = 0;
this->qverts_range.second = this->indexed_vertex_array.quad_indices_size;
this->tverts_range.first = 0;
this->tverts_range.second = this->indexed_vertex_array.triangle_indices_size;
if (! this->print_zs.empty()) {
// The Z layer range is specified.
// First test whether the Z span of this object is not out of (min_z, max_z) completely.
if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) {
this->qverts_range.second = 0;
this->tverts_range.second = 0;
} else {
// Then find the lowest layer to be displayed.
size_t i = 0;
for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i);
if (i == this->print_zs.size()) {
// This shall not happen.
this->qverts_range.second = 0;
this->tverts_range.second = 0;
} else {
// Remember start of the layer.
this->qverts_range.first = this->offsets[i * 2];
this->tverts_range.first = this->offsets[i * 2 + 1];
// Some layers are above $min_z. Which?
for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i);
if (i < this->print_zs.size()) {
this->qverts_range.second = this->offsets[i * 2];
this->tverts_range.second = this->offsets[i * 2 + 1];
}
}
}
}
}
void GLVolume::render() const
{
if (!is_active)
return;
::glCullFace(GL_BACK);
::glPushMatrix();
#if ENABLE_MODELVOLUME_TRANSFORM
::glMultMatrixd(world_matrix().data());
#else
::glMultMatrixf(world_matrix().data());
#endif // ENABLE_MODELVOLUME_TRANSFORM
if (this->indexed_vertex_array.indexed())
this->indexed_vertex_array.render(this->tverts_range, this->qverts_range);
else
this->indexed_vertex_array.render();
::glPopMatrix();
}
void GLVolume::render_using_layer_height() const
{
if (!is_active)
return;
GLint current_program_id;
glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id);
if ((layer_height_texture_data.shader_id > 0) && (layer_height_texture_data.shader_id != current_program_id))
glUseProgram(layer_height_texture_data.shader_id);
GLint z_to_texture_row_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_to_texture_row") : -1;
GLint z_texture_row_to_normalized_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_texture_row_to_normalized") : -1;
GLint z_cursor_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_cursor") : -1;
GLint z_cursor_band_width_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_cursor_band_width") : -1;
GLint world_matrix_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "volume_world_matrix") : -1;
if (z_to_texture_row_id >= 0)
glUniform1f(z_to_texture_row_id, (GLfloat)layer_height_texture_z_to_row_id());
if (z_texture_row_to_normalized_id >= 0)
glUniform1f(z_texture_row_to_normalized_id, (GLfloat)(1.0f / layer_height_texture_height()));
if (z_cursor_id >= 0)
glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max(2) * layer_height_texture_data.z_cursor_relative));
if (z_cursor_band_width_id >= 0)
glUniform1f(z_cursor_band_width_id, (GLfloat)layer_height_texture_data.edit_band_width);
if (world_matrix_id >= 0)
#if ENABLE_MODELVOLUME_TRANSFORM
::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().cast<float>().data());
#else
::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().data());
#endif // ENABLE_MODELVOLUME_TRANSFORM
GLsizei w = (GLsizei)layer_height_texture_width();
GLsizei h = (GLsizei)layer_height_texture_height();
GLsizei half_w = w / 2;
GLsizei half_h = h / 2;
::glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glBindTexture(GL_TEXTURE_2D, layer_height_texture_data.texture_id);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, layer_height_texture_data_ptr_level0());
glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, layer_height_texture_data_ptr_level1());
render();
glBindTexture(GL_TEXTURE_2D, 0);
if ((current_program_id > 0) && (layer_height_texture_data.shader_id != current_program_id))
glUseProgram(current_program_id);
}
void GLVolume::render_VBOs(int color_id, int detection_id, int worldmatrix_id) const
{
if (!is_active)
return;
if (!indexed_vertex_array.vertices_and_normals_interleaved_VBO_id)
return;
if (layer_height_texture_data.can_use())
{
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
render_using_layer_height();
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
return;
}
GLsizei n_triangles = GLsizei(std::min(indexed_vertex_array.triangle_indices_size, tverts_range.second - tverts_range.first));
GLsizei n_quads = GLsizei(std::min(indexed_vertex_array.quad_indices_size, qverts_range.second - qverts_range.first));
if (n_triangles + n_quads == 0)
{
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
if (color_id >= 0)
{
float color[4];
::memcpy((void*)color, (const void*)render_color, 4 * sizeof(float));
::glUniform4fv(color_id, 1, (const GLfloat*)color);
}
else
::glColor4fv(render_color);
if (detection_id != -1)
::glUniform1i(detection_id, shader_outside_printer_detection_enabled ? 1 : 0);
if (worldmatrix_id != -1)
#if ENABLE_MODELVOLUME_TRANSFORM
::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().cast<float>().data());
#else
::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().data());
#endif // ENABLE_MODELVOLUME_TRANSFORM
render();
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
return;
}
if (color_id >= 0)
::glUniform4fv(color_id, 1, (const GLfloat*)render_color);
else
::glColor4fv(render_color);
if (detection_id != -1)
::glUniform1i(detection_id, shader_outside_printer_detection_enabled ? 1 : 0);
if (worldmatrix_id != -1)
#if ENABLE_MODELVOLUME_TRANSFORM
::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().cast<float>().data());
#else
::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().data());
#endif // ENABLE_MODELVOLUME_TRANSFORM
::glBindBuffer(GL_ARRAY_BUFFER, indexed_vertex_array.vertices_and_normals_interleaved_VBO_id);
::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
::glPushMatrix();
#if ENABLE_MODELVOLUME_TRANSFORM
::glMultMatrixd(world_matrix().data());
#else
::glMultMatrixf(world_matrix().data());
#endif // ENABLE_MODELVOLUME_TRANSFORM
if (n_triangles > 0)
{
::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexed_vertex_array.triangle_indices_VBO_id);
::glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4));
}
if (n_quads > 0)
{
::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexed_vertex_array.quad_indices_VBO_id);
::glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4));
}
::glPopMatrix();
}
void GLVolume::render_legacy() const
{
assert(!indexed_vertex_array.vertices_and_normals_interleaved_VBO_id);
if (!is_active)
return;
GLsizei n_triangles = GLsizei(std::min(indexed_vertex_array.triangle_indices_size, tverts_range.second - tverts_range.first));
GLsizei n_quads = GLsizei(std::min(indexed_vertex_array.quad_indices_size, qverts_range.second - qverts_range.first));
if (n_triangles + n_quads == 0)
{
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
::glColor4fv(render_color);
render();
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
return;
}
::glColor4fv(render_color);
::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), indexed_vertex_array.vertices_and_normals_interleaved.data() + 3);
::glNormalPointer(GL_FLOAT, 6 * sizeof(float), indexed_vertex_array.vertices_and_normals_interleaved.data());
::glPushMatrix();
#if ENABLE_MODELVOLUME_TRANSFORM
::glMultMatrixd(world_matrix().data());
#else
::glMultMatrixf(world_matrix().data());
#endif // ENABLE_MODELVOLUME_TRANSFORM
if (n_triangles > 0)
::glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, indexed_vertex_array.triangle_indices.data() + tverts_range.first);
if (n_quads > 0)
::glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, indexed_vertex_array.quad_indices.data() + qverts_range.first);
::glPopMatrix();
}
double GLVolume::layer_height_texture_z_to_row_id() const
{
return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max(2));
}
void GLVolume::generate_layer_height_texture(const PrintObject *print_object, bool force)
{
LayersTexture *tex = this->layer_height_texture.get();
if (tex == nullptr)
// No layer_height_texture is assigned to this GLVolume, therefore the layer height texture cannot be filled.
return;
// Always try to update the layer height profile.
bool update = print_object->update_layer_height_profile(const_cast<ModelObject*>(print_object->model_object())->layer_height_profile) || force;
// Update if the layer height profile was changed, or when the texture is not valid.
if (! update && ! tex->data.empty() && tex->cells > 0)
// Texture is valid, don't update.
return;
if (tex->data.empty()) {
tex->width = 1024;
tex->height = 1024;
tex->levels = 2;
tex->data.assign(tex->width * tex->height * 5, 0);
}
SlicingParameters slicing_params = print_object->slicing_parameters();
bool level_of_detail_2nd_level = true;
tex->cells = Slic3r::generate_layer_height_texture(
slicing_params,
Slic3r::generate_object_layers(slicing_params, print_object->model_object()->layer_height_profile),
tex->data.data(), tex->height, tex->width, level_of_detail_2nd_level);
}
// 512x512 bitmaps are supported everywhere, but that may not be sufficent for super large print volumes.
#define LAYER_HEIGHT_TEXTURE_WIDTH 1024
#define LAYER_HEIGHT_TEXTURE_HEIGHT 1024
std::vector<int> GLVolumeCollection::load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
bool use_VBOs)
{
// Object will share a single common layer height texture between all printable volumes.
std::shared_ptr<LayersTexture> layer_height_texture = std::make_shared<LayersTexture>();
std::vector<int> volumes_idx;
for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++ volume_idx)
for (int instance_idx : instance_idxs)
volumes_idx.emplace_back(this->GLVolumeCollection::load_object_volume(model_object, layer_height_texture, obj_idx, volume_idx, instance_idx, color_by, use_VBOs));
return volumes_idx;
}
int GLVolumeCollection::load_object_volume(
const ModelObject *model_object,
// Layer height texture is shared between all printable volumes of a single ModelObject.
std::shared_ptr<LayersTexture> &layer_height_texture,
int obj_idx,
int volume_idx,
int instance_idx,
const std::string &color_by,
bool use_VBOs)
{
static float colors[4][4] = {
{ 1.0f, 1.0f, 0.0f, 1.f },
{ 1.0f, 0.5f, 0.5f, 1.f },
{ 0.5f, 1.0f, 0.5f, 1.f },
{ 0.5f, 0.5f, 1.0f, 1.f }
};
const ModelVolume *model_volume = model_object->volumes[volume_idx];
int extruder_id = -1;
if (model_volume->is_model_part())
{
const ConfigOption *opt = model_volume->config.option("extruder");
if (opt == nullptr)
opt = model_object->config.option("extruder");
extruder_id = (opt == nullptr) ? 0 : opt->getInt();
}
const ModelInstance *instance = model_object->instances[instance_idx];
#if ENABLE_MODELVOLUME_TRANSFORM
const TriangleMesh& mesh = model_volume->mesh;
#else
TriangleMesh mesh = model_volume->mesh;
#endif // ENABLE_MODELVOLUME_TRANSFORM
float color[4];
memcpy(color, colors[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3);
if (model_volume->is_support_blocker()) {
color[0] = 1.0f;
color[1] = 0.2f;
color[2] = 0.2f;
} else if (model_volume->is_support_enforcer()) {
color[0] = 0.2f;
color[1] = 0.2f;
color[2] = 1.0f;
}
color[3] = model_volume->is_model_part() ? 1.f : 0.5f;
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
if (use_VBOs)
v.indexed_vertex_array.load_mesh_full_shading(mesh);
else
v.indexed_vertex_array.load_mesh_flat_shading(mesh);
// finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry().
v.bounding_box = v.indexed_vertex_array.bounding_box();
v.indexed_vertex_array.finalize_geometry(use_VBOs);
v.composite_id = GLVolume::CompositeID(obj_idx, volume_idx, instance_idx);
if (model_volume->is_model_part())
{
// GLVolume will reference a convex hull from model_volume!
v.set_convex_hull(&model_volume->get_convex_hull(), false);
if (extruder_id != -1)
v.extruder_id = extruder_id;
v.layer_height_texture = layer_height_texture;
}
v.is_modifier = ! model_volume->is_model_part();
v.shader_outside_printer_detection_enabled = model_volume->is_model_part();
#if ENABLE_MODELVOLUME_TRANSFORM
v.set_instance_transformation(instance->get_transformation());
v.set_volume_transformation(model_volume->get_transformation());
#else
v.set_offset(instance->get_offset());
v.set_rotation(instance->get_rotation());
v.set_scaling_factor(instance->get_scaling_factor());
v.set_mirror(instance->get_mirror());
#endif // ENABLE_MODELVOLUME_TRANSFORM
return int(this->volumes.size() - 1);
}
// Load SLA auxiliary GLVolumes (for support trees or pad).
// This function produces volumes for multiple instances in a single shot,
// as some object specific mesh conversions may be expensive.
void GLVolumeCollection::load_object_auxiliary(
const SLAPrintObject *print_object,
int obj_idx,
// pairs of <instance_idx, print_instance_idx>
const std::vector<std::pair<size_t, size_t>> &instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp,
bool use_VBOs)
{
assert(print_object->is_step_done(milestone));
// Get the support mesh.
TriangleMesh mesh;
switch (milestone) {
case slaposSupportTree: mesh = print_object->support_mesh(); break;
case slaposBasePool: mesh = print_object->pad_mesh(); break;
default:
assert(false);
}
// Convex hull is required for out of print bed detection.
TriangleMesh convex_hull = mesh.convex_hull_3d();
for (const std::pair<size_t, size_t> &instance_idx : instances) {
const ModelInstance &model_instance = *print_object->model_object()->instances[instance_idx.first];
const SLAPrintObject::Instance &print_instance = print_object->instances()[instance_idx.second];
float color[4] { 0.f, 0.f, 1.f, 1.f };
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
if (use_VBOs)
v.indexed_vertex_array.load_mesh_full_shading(mesh);
else
v.indexed_vertex_array.load_mesh_flat_shading(mesh);
// finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry().
v.bounding_box = v.indexed_vertex_array.bounding_box();
v.indexed_vertex_array.finalize_geometry(use_VBOs);
v.composite_id = GLVolume::CompositeID(obj_idx, -1, (int)instance_idx.first);
v.geometry_id = std::pair<size_t, size_t>(timestamp, model_instance.id().id);
// Create a copy of the convex hull mesh for each instance. Use a move operator on the last instance.
v.set_convex_hull((&instance_idx == &instances.back()) ? new TriangleMesh(std::move(convex_hull)) : new TriangleMesh(convex_hull), true);
v.is_modifier = false;
v.shader_outside_printer_detection_enabled = true;
//FIXME adjust with print_instance?
v.set_instance_transformation(model_instance.get_transformation());
// Leave the volume transformation at identity.
// v.set_volume_transformation(model_volume->get_transformation());
}
}
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width)
{
if (depth < 0.01f)
return int(this->volumes.size() - 1);
if (height == 0.0f)
height = 0.1f;
Point origin_of_rotation(0.f, 0.f);
TriangleMesh mesh;
float color[4] = { 0.5f, 0.5f, 0.0f, 1.f };
// In case we don't know precise dimensions of the wipe tower yet, we'll draw the box with different color with one side jagged:
if (size_unknown) {
color[0] = 0.9f;
color[1] = 0.6f;
depth = std::max(depth, 10.f); // Too narrow tower would interfere with the teeth. The estimate is not precise anyway.
float min_width = 30.f;
// We'll now create the box with jagged edge. y-coordinates of the pre-generated model are shifted so that the front
// edge has y=0 and centerline of the back edge has y=depth:
Pointf3s points;
std::vector<Vec3crd> facets;
float out_points_idx[][3] = { { 0, -depth, 0 }, { 0, 0, 0 }, { 38.453f, 0, 0 }, { 61.547f, 0, 0 }, { 100.0f, 0, 0 }, { 100.0f, -depth, 0 }, { 55.7735f, -10.0f, 0 }, { 44.2265f, 10.0f, 0 },
{ 38.453f, 0, 1 }, { 0, 0, 1 }, { 0, -depth, 1 }, { 100.0f, -depth, 1 }, { 100.0f, 0, 1 }, { 61.547f, 0, 1 }, { 55.7735f, -10.0f, 1 }, { 44.2265f, 10.0f, 1 } };
int out_facets_idx[][3] = { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 5, 0 }, { 3, 5, 6 }, { 6, 2, 7 }, { 6, 0, 2 }, { 8, 9, 10 }, { 11, 12, 13 }, { 10, 11, 14 }, { 14, 11, 13 }, { 15, 8, 14 },
{8, 10, 14}, {3, 12, 4}, {3, 13, 12}, {6, 13, 3}, {6, 14, 13}, {7, 14, 6}, {7, 15, 14}, {2, 15, 7}, {2, 8, 15}, {1, 8, 2}, {1, 9, 8},
{0, 9, 1}, {0, 10, 9}, {5, 10, 0}, {5, 11, 10}, {4, 11, 5}, {4, 12, 11}};
for (int i=0;i<16;++i)
points.push_back(Vec3d(out_points_idx[i][0] / (100.f/min_width), out_points_idx[i][1] + depth, out_points_idx[i][2]));
for (int i=0;i<28;++i)
facets.push_back(Vec3crd(out_facets_idx[i][0], out_facets_idx[i][1], out_facets_idx[i][2]));
TriangleMesh tooth_mesh(points, facets);
// We have the mesh ready. It has one tooth and width of min_width. We will now append several of these together until we are close to
// the required width of the block. Than we can scale it precisely.
size_t n = std::max(1, int(width/min_width)); // How many shall be merged?
for (size_t i=0;i<n;++i) {
mesh.merge(tooth_mesh);
tooth_mesh.translate(min_width, 0.f, 0.f);
}
mesh.scale(Vec3d(width/(n*min_width), 1.f, height)); // Scaling to proper width
}
else
mesh = make_cube(width, depth, height);
// We'll make another mesh to show the brim (fixed layer height):
TriangleMesh brim_mesh = make_cube(width+2.f*brim_width, depth+2.f*brim_width, 0.2f);
brim_mesh.translate(-brim_width, -brim_width, 0.f);
mesh.merge(brim_mesh);
mesh.rotate(rotation_angle, &origin_of_rotation); // rotates the box according to the config rotation setting
this->volumes.emplace_back(new GLVolume(color));
GLVolume &v = *this->volumes.back();
if (use_VBOs)
v.indexed_vertex_array.load_mesh_full_shading(mesh);
else
v.indexed_vertex_array.load_mesh_flat_shading(mesh);
#if ENABLE_MODELVOLUME_TRANSFORM
v.set_volume_offset(Vec3d(pos_x, pos_y, 0.0));
#else
v.set_offset(Vec3d(pos_x, pos_y, 0.0));
#endif // ENABLE_MODELVOLUME_TRANSFORM
// finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry().
v.bounding_box = v.indexed_vertex_array.bounding_box();
v.indexed_vertex_array.finalize_geometry(use_VBOs);
v.composite_id = GLVolume::CompositeID(obj_idx, 0, 0);
v.is_wipe_tower = true;
v.shader_outside_printer_detection_enabled = ! size_unknown;
return int(this->volumes.size() - 1);
}
void GLVolumeCollection::render_VBOs() const
{
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
::glCullFace(GL_BACK);
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
GLint current_program_id;
::glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id);
GLint color_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "uniform_color") : -1;
GLint print_box_min_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.min") : -1;
GLint print_box_max_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.max") : -1;
GLint print_box_detection_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.volume_detection") : -1;
GLint print_box_worldmatrix_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.volume_world_matrix") : -1;
if (print_box_min_id != -1)
::glUniform3fv(print_box_min_id, 1, (const GLfloat*)print_box_min);
if (print_box_max_id != -1)
::glUniform3fv(print_box_max_id, 1, (const GLfloat*)print_box_max);
for (GLVolume *volume : this->volumes)
{
if (volume->layer_height_texture_data.can_use())
volume->generate_layer_height_texture(volume->layer_height_texture_data.print_object, false);
else
volume->set_render_color();
volume->render_VBOs(color_id, print_box_detection_id, print_box_worldmatrix_id);
}
::glBindBuffer(GL_ARRAY_BUFFER, 0);
::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisableClientState(GL_NORMAL_ARRAY);
::glDisable(GL_BLEND);
}
void GLVolumeCollection::render_legacy() const
{
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glCullFace(GL_BACK);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
for (GLVolume *volume : this->volumes)
{
volume->set_render_color();
volume->render_legacy();
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisable(GL_BLEND);
}
bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, ModelInstance::EPrintVolumeState* out_state)
{
if (config == nullptr)
return false;
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config->option("bed_shape"));
if (opt == nullptr)
return false;
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
BoundingBoxf3 print_volume(Vec3d(unscale<double>(bed_box_2D.min(0)), unscale<double>(bed_box_2D.min(1)), 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)), unscale<double>(bed_box_2D.max(1)), config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min(2) = -1e10;
ModelInstance::EPrintVolumeState state = ModelInstance::PVS_Inside;
bool all_contained = true;
for (GLVolume* volume : this->volumes)
{
if ((volume != nullptr) && !volume->is_modifier && (!volume->is_wipe_tower || (volume->is_wipe_tower && volume->shader_outside_printer_detection_enabled)))
{
const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box();
bool contained = print_volume.contains(bb);
all_contained &= contained;
volume->is_outside = !contained;
if ((state == ModelInstance::PVS_Inside) && volume->is_outside)
state = ModelInstance::PVS_Fully_Outside;
if ((state == ModelInstance::PVS_Fully_Outside) && volume->is_outside && print_volume.intersects(bb))
state = ModelInstance::PVS_Partly_Outside;
}
}
if (out_state != nullptr)
*out_state = state;
return all_contained;
}
void GLVolumeCollection::reset_outside_state()
{
for (GLVolume* volume : this->volumes)
{
if (volume != nullptr)
volume->is_outside = false;
}
}
void GLVolumeCollection::update_colors_by_extruder(const DynamicPrintConfig* config)
{
static const float inv_255 = 1.0f / 255.0f;
struct Color
{
std::string text;
unsigned char rgb[3];
Color()
: text("")
{
rgb[0] = 255;
rgb[1] = 255;
rgb[2] = 255;
}
void set(const std::string& text, unsigned char* rgb)
{
this->text = text;
::memcpy((void*)this->rgb, (const void*)rgb, 3 * sizeof(unsigned char));
}
};
if (config == nullptr)
return;
const ConfigOptionStrings* extruders_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("extruder_colour"));
if (extruders_opt == nullptr)
return;
const ConfigOptionStrings* filamemts_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("filament_colour"));
if (filamemts_opt == nullptr)
return;
unsigned int colors_count = std::max((unsigned int)extruders_opt->values.size(), (unsigned int)filamemts_opt->values.size());
if (colors_count == 0)
return;
std::vector<Color> colors(colors_count);
unsigned char rgb[3];
for (unsigned int i = 0; i < colors_count; ++i)
{
const std::string& txt_color = config->opt_string("extruder_colour", i);
if (PresetBundle::parse_color(txt_color, rgb))
{
colors[i].set(txt_color, rgb);
}
else
{
const std::string& txt_color = config->opt_string("filament_colour", i);
if (PresetBundle::parse_color(txt_color, rgb))
colors[i].set(txt_color, rgb);
}
}
for (GLVolume* volume : volumes)
{
if ((volume == nullptr) || volume->is_modifier || volume->is_wipe_tower)
continue;
int extruder_id = volume->extruder_id - 1;
if ((extruder_id < 0) || ((int)colors.size() <= extruder_id))
extruder_id = 0;
const Color& color = colors[extruder_id];
if (!color.text.empty())
{
for (int i = 0; i < 3; ++i)
{
volume->color[i] = (float)color.rgb[i] * inv_255;
}
}
}
}
std::vector<double> GLVolumeCollection::get_current_print_zs(bool active_only) const
{
// Collect layer top positions of all volumes.
std::vector<double> print_zs;
for (GLVolume *vol : this->volumes)
{
if (!active_only || vol->is_active)
append(print_zs, vol->print_zs);
}
std::sort(print_zs.begin(), print_zs.end());
// Replace intervals of layers with similar top positions with their average value.
int n = int(print_zs.size());
int k = 0;
for (int i = 0; i < n;) {
int j = i + 1;
coordf_t zmax = print_zs[i] + EPSILON;
for (; j < n && print_zs[j] <= zmax; ++ j) ;
print_zs[k ++] = (j > i + 1) ? (0.5 * (print_zs[i] + print_zs[j - 1])) : print_zs[i];
i = j;
}
if (k < n)
print_zs.erase(print_zs.begin() + k, print_zs.end());
return print_zs;
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
double top_z,
GLIndexedVertexArray &volume)
{
assert(! lines.empty());
if (lines.empty())
return;
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
// right, left, top, bottom
int idx_prev[4] = { -1, -1, -1, -1 };
double bottom_z_prev = 0.;
Vec2d b1_prev(Vec2d::Zero());
Vec2d v_prev(Vec2d::Zero());
int idx_initial[4] = { -1, -1, -1, -1 };
double width_initial = 0.;
double bottom_z_initial = 0.0;
// loop once more in case of closed loops
size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ ii) {
size_t i = (ii == lines.size()) ? 0 : ii;
const Line &line = lines[i];
double len = unscale<double>(line.length());
double inv_len = 1.0 / len;
double bottom_z = top_z - heights[i];
double middle_z = 0.5 * (top_z + bottom_z);
double width = widths[i];
bool is_first = (ii == 0);
bool is_last = (ii == lines_end - 1);
bool is_closing = closed && is_last;
Vec2d v = unscale(line.vector());
v *= inv_len;
Vec2d a = unscale(line.a);
Vec2d b = unscale(line.b);
Vec2d a1 = a;
Vec2d a2 = a;
Vec2d b1 = b;
Vec2d b2 = b;
{
double dist = 0.5 * width; // scaled
double dx = dist * v(0);
double dy = dist * v(1);
a1 += Vec2d(+dy, -dx);
a2 += Vec2d(-dy, +dx);
b1 += Vec2d(+dy, -dx);
b2 += Vec2d(-dy, +dx);
}
// calculate new XY normals
Vector n = line.normal();
Vec3d xy_right_normal = unscale(n(0), n(1), 0);
xy_right_normal *= inv_len;
int idx_a[4];
int idx_b[4];
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool bottom_z_different = bottom_z_prev != bottom_z;
bottom_z_prev = bottom_z;
if (!is_first && bottom_z_different)
{
// Found a change of the layer thickness -> Add a cap at the end of the previous segment.
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Share top / bottom vertices if possible.
if (is_first) {
idx_a[TOP] = idx_last++;
volume.push_geometry(a(0), a(1), top_z , 0., 0., 1.);
} else {
idx_a[TOP] = idx_prev[TOP];
}
if (is_first || bottom_z_different) {
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last ++;
volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.);
idx_a[LEFT ] = idx_last ++;
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2));
idx_a[RIGHT] = idx_last ++;
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2));
}
else {
idx_a[BOTTOM] = idx_prev[BOTTOM];
}
if (is_first) {
// Start of the 1st line segment.
width_initial = width;
bottom_z_initial = bottom_z;
memcpy(idx_initial, idx_a, sizeof(int) * 4);
} else {
// Continuing a previous segment.
// Share left / right vertices if possible.
double v_dot = v_prev.dot(v);
bool sharp = v_dot < 0.707; // sin(45 degrees)
if (sharp) {
if (!bottom_z_different)
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2));
idx_a[LEFT] = idx_last++;
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2));
}
}
if (v_dot > 0.9) {
if (!bottom_z_different)
{
// The two successive segments are nearly collinear.
idx_a[LEFT ] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
}
else if (!sharp) {
if (!bottom_z_different)
{
// Create a sharp corner with an overshot and average the left / right normals.
// At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
Vec2d intersection(Vec2d::Zero());
Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection);
a1 = intersection;
a2 = 2. * a - intersection;
assert((a - a1).norm() < width);
assert((a - a2).norm() < width);
float *n_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6;
float *p_left_prev = n_left_prev + 3;
float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
float *p_right_prev = n_right_prev + 3;
p_left_prev [0] = float(a2(0));
p_left_prev [1] = float(a2(1));
p_right_prev[0] = float(a1(0));
p_right_prev[1] = float(a1(1));
xy_right_normal(0) += n_right_prev[0];
xy_right_normal(1) += n_right_prev[1];
xy_right_normal *= 1. / xy_right_normal.norm();
n_left_prev [0] = float(-xy_right_normal(0));
n_left_prev [1] = float(-xy_right_normal(1));
n_right_prev[0] = float( xy_right_normal(0));
n_right_prev[1] = float( xy_right_normal(1));
idx_a[LEFT ] = idx_prev[LEFT ];
idx_a[RIGHT] = idx_prev[RIGHT];
}
}
else if (cross2(v_prev, v) > 0.) {
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a [RIGHT], idx_prev[TOP] );
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a [RIGHT] );
} else {
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a [LEFT] );
volume.push_triangle(idx_prev[LEFT], idx_a [LEFT], idx_prev[BOTTOM]);
}
if (is_closing) {
if (!sharp) {
if (!bottom_z_different)
{
// Closing a loop with smooth transition. Unify the closing left / right vertices.
memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6);
memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
// Replace the left / right vertex indices to point to the start of the loop.
for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) {
if (volume.quad_indices[u] == idx_prev[LEFT])
volume.quad_indices[u] = idx_initial[LEFT];
else if (volume.quad_indices[u] == idx_prev[RIGHT])
volume.quad_indices[u] = idx_initial[RIGHT];
}
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (is_closing) {
idx_b[TOP] = idx_initial[TOP];
} else {
idx_b[TOP] = idx_last ++;
volume.push_geometry(b(0), b(1), top_z , 0., 0., 1.);
}
if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) {
idx_b[BOTTOM] = idx_initial[BOTTOM];
} else {
idx_b[BOTTOM] = idx_last ++;
volume.push_geometry(b(0), b(1), bottom_z, 0., 0., -1.);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT ] = idx_last ++;
volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2));
idx_b[RIGHT ] = idx_last ++;
volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2));
memcpy(idx_prev, idx_b, 4 * sizeof(int));
bottom_z_prev = bottom_z;
b1_prev = b1;
v_prev = v;
if (bottom_z_different && (closed || (!is_first && !is_last)))
{
// Found a change of the layer thickness -> Add a cap at the beginning of this segment.
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
}
if (! closed) {
// Terminate open paths with caps.
if (is_first)
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
// We don't use 'else' because both cases are true if we have only one line.
if (is_last)
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
// top-right face
volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
// top-left face
volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
// bottom-left face
volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
}
#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GLIndexedVertexArray& volume)
{
assert(!lines.empty());
if (lines.empty())
return;
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
// left, right, top, bottom
int idx_initial[4] = { -1, -1, -1, -1 };
int idx_prev[4] = { -1, -1, -1, -1 };
double z_prev = 0.0;
Vec3d n_right_prev = Vec3d::Zero();
Vec3d n_top_prev = Vec3d::Zero();
Vec3d unit_v_prev = Vec3d::Zero();
double width_initial = 0.0;
// new vertices around the line endpoints
// left, right, top, bottom
Vec3d a[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
Vec3d b[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
// loop once more in case of closed loops
size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ii)
{
size_t i = (ii == lines.size()) ? 0 : ii;
const Line3& line = lines[i];
double height = heights[i];
double width = widths[i];
Vec3d unit_v = unscale(line.vector()).normalized();
Vec3d n_top = Vec3d::Zero();
Vec3d n_right = Vec3d::Zero();
Vec3d unit_positive_z(0.0, 0.0, 1.0);
if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1)))
{
// vertical segment
n_right = (line.a(2) < line.b(2)) ? Vec3d(-1.0, 0.0, 0.0) : Vec3d(1.0, 0.0, 0.0);
n_top = Vec3d(0.0, 1.0, 0.0);
}
else
{
// generic segment
n_right = unit_v.cross(unit_positive_z).normalized();
n_top = n_right.cross(unit_v).normalized();
}
Vec3d rl_displacement = 0.5 * width * n_right;
Vec3d tb_displacement = 0.5 * height * n_top;
Vec3d l_a = unscale(line.a);
Vec3d l_b = unscale(line.b);
a[RIGHT] = l_a + rl_displacement;
a[LEFT] = l_a - rl_displacement;
a[TOP] = l_a + tb_displacement;
a[BOTTOM] = l_a - tb_displacement;
b[RIGHT] = l_b + rl_displacement;
b[LEFT] = l_b - rl_displacement;
b[TOP] = l_b + tb_displacement;
b[BOTTOM] = l_b - tb_displacement;
Vec3d n_bottom = -n_top;
Vec3d n_left = -n_right;
int idx_a[4];
int idx_b[4];
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool z_different = (z_prev != l_a(2));
z_prev = l_b(2);
// Share top / bottom vertices if possible.
if (ii == 0)
{
idx_a[TOP] = idx_last++;
volume.push_geometry(a[TOP], n_top);
}
else
idx_a[TOP] = idx_prev[TOP];
if ((ii == 0) || z_different)
{
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last++;
volume.push_geometry(a[BOTTOM], n_bottom);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left);
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a[RIGHT], n_right);
}
else
idx_a[BOTTOM] = idx_prev[BOTTOM];
if (ii == 0)
{
// Start of the 1st line segment.
width_initial = width;
::memcpy(idx_initial, idx_a, sizeof(int) * 4);
}
else
{
// Continuing a previous segment.
// Share left / right vertices if possible.
double v_dot = unit_v_prev.dot(unit_v);
bool is_sharp = v_dot < 0.707; // sin(45 degrees)
bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0;
if (is_sharp)
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a[RIGHT], n_right);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left);
}
if (v_dot > 0.9)
{
// The two successive segments are nearly collinear.
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
else if (!is_sharp)
{
// Create a sharp corner with an overshot and average the left / right normals.
// At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
// averages normals
Vec3d average_n_right = 0.5 * (n_right + n_right_prev).normalized();
Vec3d average_n_left = -average_n_right;
Vec3d average_rl_displacement = 0.5 * width * average_n_right;
// updates vertices around a
a[RIGHT] = l_a + average_rl_displacement;
a[LEFT] = l_a - average_rl_displacement;
// updates previous line normals
float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6;
normal_left_prev[0] = float(average_n_left(0));
normal_left_prev[1] = float(average_n_left(1));
normal_left_prev[2] = float(average_n_left(2));
float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
normal_right_prev[0] = float(average_n_right(0));
normal_right_prev[1] = float(average_n_right(1));
normal_right_prev[2] = float(average_n_right(2));
// updates previous line's vertices around b
float* b_left_prev = normal_left_prev + 3;
b_left_prev[0] = float(a[LEFT](0));
b_left_prev[1] = float(a[LEFT](1));
b_left_prev[2] = float(a[LEFT](2));
float* b_right_prev = normal_right_prev + 3;
b_right_prev[0] = float(a[RIGHT](0));
b_right_prev[1] = float(a[RIGHT](1));
b_right_prev[2] = float(a[RIGHT](2));
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
else if (is_right_turn)
{
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
}
else
{
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
}
if (ii == lines.size())
{
if (!is_sharp)
{
// Closing a loop with smooth transition. Unify the closing left / right vertices.
::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6, sizeof(float) * 6);
::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
// Replace the left / right vertex indices to point to the start of the loop.
for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++u)
{
if (volume.quad_indices[u] == idx_prev[LEFT])
volume.quad_indices[u] = idx_initial[LEFT];
else if (volume.quad_indices[u] == idx_prev[RIGHT])
volume.quad_indices[u] = idx_initial[RIGHT];
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (closed && (ii + 1 == lines.size()))
idx_b[TOP] = idx_initial[TOP];
else
{
idx_b[TOP] = idx_last++;
volume.push_geometry(b[TOP], n_top);
}
if (closed && (ii + 1 == lines.size()) && (width == width_initial))
idx_b[BOTTOM] = idx_initial[BOTTOM];
else
{
idx_b[BOTTOM] = idx_last++;
volume.push_geometry(b[BOTTOM], n_bottom);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT] = idx_last++;
volume.push_geometry(b[LEFT], n_left);
idx_b[RIGHT] = idx_last++;
volume.push_geometry(b[RIGHT], n_right);
::memcpy(idx_prev, idx_b, 4 * sizeof(int));
n_right_prev = n_right;
n_top_prev = n_top;
unit_v_prev = unit_v;
if (!closed)
{
// Terminate open paths with caps.
if (i == 0)
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
// We don't use 'else' because both cases are true if we have only one line.
if (i + 1 == lines.size())
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
// top-right face
volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
// top-left face
volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
// bottom-left face
volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
}
#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}
static void point_to_indexed_vertex_array(const Vec3crd& point,
double width,
double height,
GLIndexedVertexArray& volume)
{
// builds a double piramid, with vertices on the local axes, around the point
Vec3d center = unscale(point);
double scale_factor = 1.0;
double w = scale_factor * width;
double h = scale_factor * height;
// new vertices ids
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
int idxs[6];
for (int i = 0; i < 6; ++i)
{
idxs[i] = idx_last + i;
}
Vec3d displacement_x(w, 0.0, 0.0);
Vec3d displacement_y(0.0, w, 0.0);
Vec3d displacement_z(0.0, 0.0, h);
Vec3d unit_x(1.0, 0.0, 0.0);
Vec3d unit_y(0.0, 1.0, 0.0);
Vec3d unit_z(0.0, 0.0, 1.0);
// vertices
volume.push_geometry(center - displacement_x, -unit_x); // idxs[0]
volume.push_geometry(center + displacement_x, unit_x); // idxs[1]
volume.push_geometry(center - displacement_y, -unit_y); // idxs[2]
volume.push_geometry(center + displacement_y, unit_y); // idxs[3]
volume.push_geometry(center - displacement_z, -unit_z); // idxs[4]
volume.push_geometry(center + displacement_z, unit_z); // idxs[5]
// top piramid faces
volume.push_triangle(idxs[0], idxs[2], idxs[5]);
volume.push_triangle(idxs[2], idxs[1], idxs[5]);
volume.push_triangle(idxs[1], idxs[3], idxs[5]);
volume.push_triangle(idxs[3], idxs[0], idxs[5]);
// bottom piramid faces
volume.push_triangle(idxs[2], idxs[0], idxs[4]);
volume.push_triangle(idxs[1], idxs[2], idxs[4]);
volume.push_triangle(idxs[3], idxs[1], idxs[4]);
volume.push_triangle(idxs[0], idxs[3], idxs[4]);
}
void _3DScene::thick_lines_to_verts(
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
double top_z,
GLVolume &volume)
{
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array);
}
void _3DScene::thick_lines_to_verts(const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GLVolume& volume)
{
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, volume.indexed_vertex_array);
}
static void thick_point_to_verts(const Vec3crd& point,
double width,
double height,
GLVolume& volume)
{
point_to_indexed_vertex_array(point, width, height, volume.indexed_vertex_array);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, GLVolume &volume)
{
Lines lines = extrusion_path.polyline.lines();
std::vector<double> widths(lines.size(), extrusion_path.width);
std::vector<double> heights(lines.size(), extrusion_path.height);
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point &copy, GLVolume &volume)
{
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines = polyline.lines();
std::vector<double> widths(lines.size(), extrusion_path.width);
std::vector<double> heights(lines.size(), extrusion_path.height);
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_loop.
void _3DScene::extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point &copy, GLVolume &volume)
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, true, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume)
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point &copy, GLVolume &volume)
{
for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities)
extrusionentity_to_verts(extrusion_entity, print_z, copy, volume);
}
void _3DScene::extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume)
{
if (extrusion_entity != nullptr) {
auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
if (extrusion_path != nullptr)
extrusionentity_to_verts(*extrusion_path, print_z, copy, volume);
else {
auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
if (extrusion_loop != nullptr)
extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume);
else {
auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
if (extrusion_multi_path != nullptr)
extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume);
else {
auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
if (extrusion_entity_collection != nullptr)
extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume);
else {
throw std::runtime_error("Unexpected extrusion_entity type in to_verts()");
}
}
}
}
}
}
void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume)
{
Lines3 lines = polyline.lines();
std::vector<double> widths(lines.size(), width);
std::vector<double> heights(lines.size(), height);
thick_lines_to_verts(lines, widths, heights, false, volume);
}
void _3DScene::point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume)
{
thick_point_to_verts(point, width, height, volume);
}
GUI::GLCanvas3DManager _3DScene::s_canvas_mgr;
void _3DScene::init_gl()
{
s_canvas_mgr.init_gl();
}
std::string _3DScene::get_gl_info(bool format_as_html, bool extensions)
{
return s_canvas_mgr.get_gl_info(format_as_html, extensions);
}
bool _3DScene::use_VBOs()
{
return s_canvas_mgr.use_VBOs();
}
bool _3DScene::add_canvas(wxGLCanvas* canvas)
{
return s_canvas_mgr.add(canvas);
}
bool _3DScene::remove_canvas(wxGLCanvas* canvas)
{
return s_canvas_mgr.remove(canvas);
}
void _3DScene::remove_all_canvases()
{
s_canvas_mgr.remove_all();
}
bool _3DScene::init(wxGLCanvas* canvas)
{
return s_canvas_mgr.init(canvas);
}
void _3DScene::set_as_dirty(wxGLCanvas* canvas)
{
s_canvas_mgr.set_as_dirty(canvas);
}
unsigned int _3DScene::get_volumes_count(wxGLCanvas* canvas)
{
return s_canvas_mgr.get_volumes_count(canvas);
}
void _3DScene::reset_volumes(wxGLCanvas* canvas)
{
s_canvas_mgr.reset_volumes(canvas);
}
int _3DScene::check_volumes_outside_state(wxGLCanvas* canvas, const DynamicPrintConfig* config)
{
return s_canvas_mgr.check_volumes_outside_state(canvas, config);
}
GUI::GLCanvas3D* _3DScene::get_canvas(wxGLCanvas* canvas)
{
return s_canvas_mgr.get_canvas(canvas);
}
void _3DScene::set_config(wxGLCanvas* canvas, DynamicPrintConfig* config)
{
s_canvas_mgr.set_config(canvas, config);
}
void _3DScene::set_print(wxGLCanvas* canvas, Print* print)
{
s_canvas_mgr.set_print(canvas, print);
}
void _3DScene::set_SLA_print(wxGLCanvas* canvas, SLAPrint* print)
{
s_canvas_mgr.set_SLA_print(canvas, print);
}
void _3DScene::set_model(wxGLCanvas* canvas, Model* model)
{
s_canvas_mgr.set_model(canvas, model);
}
void _3DScene::set_bed_shape(wxGLCanvas* canvas, const Pointfs& shape)
{
s_canvas_mgr.set_bed_shape(canvas, shape);
}
void _3DScene::set_color_by(wxGLCanvas* canvas, const std::string& value)
{
s_canvas_mgr.set_color_by(canvas, value);
}
bool _3DScene::is_layers_editing_enabled(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_layers_editing_enabled(canvas);
}
bool _3DScene::is_layers_editing_allowed(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_layers_editing_allowed(canvas);
}
bool _3DScene::is_reload_delayed(wxGLCanvas* canvas)
{
return s_canvas_mgr.is_reload_delayed(canvas);
}
void _3DScene::enable_layers_editing(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_layers_editing(canvas, enable);
}
void _3DScene::enable_warning_texture(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_warning_texture(canvas, enable);
}
void _3DScene::enable_legend_texture(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_legend_texture(canvas, enable);
}
void _3DScene::enable_picking(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_picking(canvas, enable);
}
void _3DScene::enable_moving(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_moving(canvas, enable);
}
void _3DScene::enable_gizmos(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_gizmos(canvas, enable);
}
void _3DScene::enable_toolbar(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_toolbar(canvas, enable);
}
void _3DScene::enable_shader(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_shader(canvas, enable);
}
void _3DScene::enable_force_zoom_to_bed(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_force_zoom_to_bed(canvas, enable);
}
void _3DScene::enable_dynamic_background(wxGLCanvas* canvas, bool enable)
{
s_canvas_mgr.enable_dynamic_background(canvas, enable);
}
void _3DScene::allow_multisample(wxGLCanvas* canvas, bool allow)
{
s_canvas_mgr.allow_multisample(canvas, allow);
}
void _3DScene::enable_toolbar_item(wxGLCanvas* canvas, const std::string& name, bool enable)
{
s_canvas_mgr.enable_toolbar_item(canvas, name, enable);
}
bool _3DScene::is_toolbar_item_pressed(wxGLCanvas* canvas, const std::string& name)
{
return s_canvas_mgr.is_toolbar_item_pressed(canvas, name);
}
void _3DScene::zoom_to_bed(wxGLCanvas* canvas)
{
s_canvas_mgr.zoom_to_bed(canvas);
}
void _3DScene::zoom_to_volumes(wxGLCanvas* canvas)
{
s_canvas_mgr.zoom_to_volumes(canvas);
}
void _3DScene::select_view(wxGLCanvas* canvas, const std::string& direction)
{
s_canvas_mgr.select_view(canvas, direction);
}
void _3DScene::set_viewport_from_scene(wxGLCanvas* canvas, wxGLCanvas* other)
{
s_canvas_mgr.set_viewport_from_scene(canvas, other);
}
void _3DScene::update_volumes_colors_by_extruder(wxGLCanvas* canvas)
{
s_canvas_mgr.update_volumes_colors_by_extruder(canvas);
}
void _3DScene::render(wxGLCanvas* canvas)
{
s_canvas_mgr.render(canvas);
}
void _3DScene::delete_selected(wxGLCanvas* canvas)
{
s_canvas_mgr.delete_selected(canvas);
}
void _3DScene::ensure_on_bed(wxGLCanvas* canvas, unsigned int object_idx)
{
s_canvas_mgr.ensure_on_bed(canvas, object_idx);
}
std::vector<double> _3DScene::get_current_print_zs(wxGLCanvas* canvas, bool active_only)
{
return s_canvas_mgr.get_current_print_zs(canvas, active_only);
}
void _3DScene::set_toolpaths_range(wxGLCanvas* canvas, double low, double high)
{
s_canvas_mgr.set_toolpaths_range(canvas, low, high);
}
static inline int hex_digit_to_int(const char c)
{
return
(c >= '0' && c <= '9') ? int(c - '0') :
(c >= 'A' && c <= 'F') ? int(c - 'A') + 10 :
(c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1;
}
static inline std::vector<float> parse_colors(const std::vector<std::string> &scolors)
{
std::vector<float> output(scolors.size() * 4, 1.f);
for (size_t i = 0; i < scolors.size(); ++ i) {
const std::string &scolor = scolors[i];
const char *c = scolor.data() + 1;
if (scolor.size() == 7 && scolor.front() == '#') {
for (size_t j = 0; j < 3; ++j) {
int digit1 = hex_digit_to_int(*c ++);
int digit2 = hex_digit_to_int(*c ++);
if (digit1 == -1 || digit2 == -1)
break;
output[i * 4 + j] = float(digit1 * 16 + digit2) / 255.f;
}
}
}
return output;
}
std::vector<int> _3DScene::load_object(wxGLCanvas* canvas, const ModelObject* model_object, int obj_idx, std::vector<int> instance_idxs)
{
return s_canvas_mgr.load_object(canvas, model_object, obj_idx, instance_idxs);
}
std::vector<int> _3DScene::load_object(wxGLCanvas* canvas, const Model* model, int obj_idx)
{
return s_canvas_mgr.load_object(canvas, model, obj_idx);
}
void _3DScene::mirror_selection(wxGLCanvas* canvas, Axis axis)
{
s_canvas_mgr.mirror_selection(canvas, axis);
}
void _3DScene::reload_scene(wxGLCanvas* canvas, bool force)
{
s_canvas_mgr.reload_scene(canvas, force);
}
void _3DScene::load_gcode_preview(wxGLCanvas* canvas, const GCodePreviewData* preview_data, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_gcode_preview(canvas, preview_data, str_tool_colors);
}
void _3DScene::load_preview(wxGLCanvas* canvas, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_preview(canvas, str_tool_colors);
}
void _3DScene::reset_legend_texture(wxGLCanvas* canvas)
{
s_canvas_mgr.reset_legend_texture(canvas);
}
} // namespace Slic3r