PrusaSlicer-NonPlainar/src/slic3r/GUI/3DBed.cpp
2019-08-19 15:44:22 +02:00

645 lines
19 KiB
C++

#include "libslic3r/libslic3r.h"
#include "3DBed.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "GUI_App.hpp"
#include "PresetBundle.hpp"
#include "Gizmos/GLGizmoBase.hpp"
#include "GLCanvas3D.hpp"
#include <GL/glew.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/filesystem/operations.hpp>
static const float GROUND_Z = -0.02f;
namespace Slic3r {
namespace GUI {
bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool generate_tex_coords)
{
m_vertices.clear();
unsigned int v_size = 3 * (unsigned int)triangles.size();
if (v_size == 0)
return false;
m_vertices = std::vector<Vertex>(v_size, Vertex());
float min_x = unscale<float>(triangles[0].points[0](0));
float min_y = unscale<float>(triangles[0].points[0](1));
float max_x = min_x;
float max_y = min_y;
unsigned int v_count = 0;
for (const Polygon& t : triangles)
{
for (unsigned int i = 0; i < 3; ++i)
{
Vertex& v = m_vertices[v_count];
const Point& p = t.points[i];
float x = unscale<float>(p(0));
float y = unscale<float>(p(1));
v.position[0] = x;
v.position[1] = y;
v.position[2] = z;
if (generate_tex_coords)
{
v.tex_coords[0] = x;
v.tex_coords[1] = y;
min_x = std::min(min_x, x);
max_x = std::max(max_x, x);
min_y = std::min(min_y, y);
max_y = std::max(max_y, y);
}
++v_count;
}
}
if (generate_tex_coords)
{
float size_x = max_x - min_x;
float size_y = max_y - min_y;
if ((size_x != 0.0f) && (size_y != 0.0f))
{
float inv_size_x = 1.0f / size_x;
float inv_size_y = -1.0f / size_y;
for (Vertex& v : m_vertices)
{
v.tex_coords[0] = (v.tex_coords[0] - min_x) * inv_size_x;
v.tex_coords[1] = (v.tex_coords[1] - min_y) * inv_size_y;
}
}
}
return true;
}
bool GeometryBuffer::set_from_lines(const Lines& lines, float z)
{
m_vertices.clear();
unsigned int v_size = 2 * (unsigned int)lines.size();
if (v_size == 0)
return false;
m_vertices = std::vector<Vertex>(v_size, Vertex());
unsigned int v_count = 0;
for (const Line& l : lines)
{
Vertex& v1 = m_vertices[v_count];
v1.position[0] = unscale<float>(l.a(0));
v1.position[1] = unscale<float>(l.a(1));
v1.position[2] = z;
++v_count;
Vertex& v2 = m_vertices[v_count];
v2.position[0] = unscale<float>(l.b(0));
v2.position[1] = unscale<float>(l.b(1));
v2.position[2] = z;
++v_count;
}
return true;
}
const float* GeometryBuffer::get_vertices_data() const
{
return (m_vertices.size() > 0) ? (const float*)m_vertices.data() : nullptr;
}
const double Bed3D::Axes::Radius = 0.5;
const double Bed3D::Axes::ArrowBaseRadius = 2.5 * Bed3D::Axes::Radius;
const double Bed3D::Axes::ArrowLength = 5.0;
Bed3D::Axes::Axes()
: origin(Vec3d::Zero())
, length(25.0 * Vec3d::Ones())
{
m_quadric = ::gluNewQuadric();
if (m_quadric != nullptr)
::gluQuadricDrawStyle(m_quadric, GLU_FILL);
}
Bed3D::Axes::~Axes()
{
if (m_quadric != nullptr)
::gluDeleteQuadric(m_quadric);
}
void Bed3D::Axes::render() const
{
if (m_quadric == nullptr)
return;
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_LIGHTING));
// x axis
glsafe(::glColor3fv(AXES_COLOR[0]));
glsafe(::glPushMatrix());
glsafe(::glTranslated(origin(0), origin(1), origin(2)));
glsafe(::glRotated(90.0, 0.0, 1.0, 0.0));
render_axis(length(0));
glsafe(::glPopMatrix());
// y axis
glsafe(::glColor3fv(AXES_COLOR[1]));
glsafe(::glPushMatrix());
glsafe(::glTranslated(origin(0), origin(1), origin(2)));
glsafe(::glRotated(-90.0, 1.0, 0.0, 0.0));
render_axis(length(1));
glsafe(::glPopMatrix());
// z axis
glsafe(::glColor3fv(AXES_COLOR[2]));
glsafe(::glPushMatrix());
glsafe(::glTranslated(origin(0), origin(1), origin(2)));
render_axis(length(2));
glsafe(::glPopMatrix());
glsafe(::glDisable(GL_LIGHTING));
}
void Bed3D::Axes::render_axis(double length) const
{
::gluQuadricOrientation(m_quadric, GLU_OUTSIDE);
::gluCylinder(m_quadric, Radius, Radius, length, 32, 1);
::gluQuadricOrientation(m_quadric, GLU_INSIDE);
::gluDisk(m_quadric, 0.0, Radius, 32, 1);
glsafe(::glTranslated(0.0, 0.0, length));
::gluQuadricOrientation(m_quadric, GLU_OUTSIDE);
::gluCylinder(m_quadric, ArrowBaseRadius, 0.0, ArrowLength, 32, 1);
::gluQuadricOrientation(m_quadric, GLU_INSIDE);
::gluDisk(m_quadric, 0.0, ArrowBaseRadius, 32, 1);
}
Bed3D::Bed3D()
: m_type(Custom)
, m_custom_texture("")
, m_custom_model("")
, m_requires_canvas_update(false)
, m_vbo_id(0)
, m_scale_factor(1.0f)
{
}
bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model)
{
EType new_type = detect_type(shape);
// check that the passed custom texture filename is valid
std::string cst_texture(custom_texture);
if (!cst_texture.empty())
{
if ((!boost::algorithm::iends_with(custom_texture, ".png") && !boost::algorithm::iends_with(custom_texture, ".svg")) || !boost::filesystem::exists(custom_texture))
cst_texture = "";
}
// check that the passed custom texture filename is valid
std::string cst_model(custom_model);
if (!cst_model.empty())
{
if (!boost::algorithm::iends_with(custom_model, ".stl") || !boost::filesystem::exists(custom_model))
cst_model = "";
}
if ((m_shape == shape) && (m_type == new_type) && (m_custom_texture == cst_texture) && (m_custom_model == cst_model))
// No change, no need to update the UI.
return false;
m_shape = shape;
m_custom_texture = cst_texture;
m_custom_model = cst_model;
m_type = new_type;
calc_bounding_boxes();
ExPolygon poly;
for (const Vec2d& p : m_shape)
{
poly.contour.append(Point(scale_(p(0)), scale_(p(1))));
}
calc_triangles(poly);
const BoundingBox& bed_bbox = poly.contour.bounding_box();
calc_gridlines(poly, bed_bbox);
m_polygon = offset_ex(poly.contour, (float)bed_bbox.radius() * 1.7f, jtRound, scale_(0.5))[0].contour;
reset();
m_texture.reset();
m_model.reset();
// Set the origin and size for painting of the coordinate system axes.
m_axes.origin = Vec3d(0.0, 0.0, (double)GROUND_Z);
m_axes.length = 0.1 * m_bounding_box.max_size() * Vec3d::Ones();
// Let the calee to update the UI.
return true;
}
bool Bed3D::contains(const Point& point) const
{
return m_polygon.contains(point);
}
Point Bed3D::point_projection(const Point& point) const
{
return m_polygon.point_projection(point);
}
void Bed3D::render(GLCanvas3D& canvas, float theta, float scale_factor) const
{
m_scale_factor = scale_factor;
render_axes();
switch (m_type)
{
case MK2:
{
render_prusa(canvas, "mk2", theta > 90.0f);
break;
}
case MK3:
{
render_prusa(canvas, "mk3", theta > 90.0f);
break;
}
case SL1:
{
render_prusa(canvas, "sl1", theta > 90.0f);
break;
}
default:
case Custom:
{
render_custom(canvas, theta > 90.0f);
break;
}
}
}
void Bed3D::calc_bounding_boxes() const
{
m_bounding_box = BoundingBoxf3();
for (const Vec2d& p : m_shape)
{
m_bounding_box.merge(Vec3d(p(0), p(1), 0.0));
}
m_extended_bounding_box = m_bounding_box;
// extend to contain axes
m_extended_bounding_box.merge(m_axes.length + Axes::ArrowLength * Vec3d::Ones());
// extend to contain model, if any
if (!m_model.get_filename().empty())
m_extended_bounding_box.merge(m_model.get_transformed_bounding_box());
}
void Bed3D::calc_triangles(const ExPolygon& poly)
{
Polygons triangles;
poly.triangulate(&triangles);
if (!m_triangles.set_from_triangles(triangles, GROUND_Z, true))
printf("Unable to create bed triangles\n");
}
void Bed3D::calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox)
{
Polylines axes_lines;
for (coord_t x = bed_bbox.min(0); x <= bed_bbox.max(0); x += scale_(10.0))
{
Polyline line;
line.append(Point(x, bed_bbox.min(1)));
line.append(Point(x, bed_bbox.max(1)));
axes_lines.push_back(line);
}
for (coord_t y = bed_bbox.min(1); y <= bed_bbox.max(1); y += scale_(10.0))
{
Polyline line;
line.append(Point(bed_bbox.min(0), y));
line.append(Point(bed_bbox.max(0), y));
axes_lines.push_back(line);
}
// clip with a slightly grown expolygon because our lines lay on the contours and may get erroneously clipped
Lines gridlines = to_lines(intersection_pl(axes_lines, offset(poly, (float)SCALED_EPSILON)));
// append bed contours
Lines contour_lines = to_lines(poly);
std::copy(contour_lines.begin(), contour_lines.end(), std::back_inserter(gridlines));
if (!m_gridlines.set_from_lines(gridlines, GROUND_Z))
printf("Unable to create bed grid lines\n");
}
Bed3D::EType Bed3D::detect_type(const Pointfs& shape) const
{
EType type = Custom;
auto bundle = wxGetApp().preset_bundle;
if (bundle != nullptr)
{
const Preset* curr = &bundle->printers.get_selected_preset();
while (curr != nullptr)
{
if (curr->config.has("bed_shape"))
{
if ((curr->vendor != nullptr) && (curr->vendor->name == "Prusa Research") && (shape == dynamic_cast<const ConfigOptionPoints*>(curr->config.option("bed_shape"))->values))
{
if (boost::contains(curr->name, "SL1"))
{
type = SL1;
break;
}
else if (boost::contains(curr->name, "MK3") || boost::contains(curr->name, "MK2.5"))
{
type = MK3;
break;
}
else if (boost::contains(curr->name, "MK2"))
{
type = MK2;
break;
}
}
}
curr = bundle->printers.get_preset_parent(*curr);
}
}
return type;
}
void Bed3D::render_axes() const
{
if (!m_shape.empty())
m_axes.render();
}
void Bed3D::render_prusa(GLCanvas3D& canvas, const std::string& key, bool bottom) const
{
if (!bottom)
render_model(m_custom_model.empty() ? resources_dir() + "/models/" + key + "_bed.stl" : m_custom_model);
render_texture(m_custom_texture.empty() ? resources_dir() + "/icons/bed/" + key + ".svg" : m_custom_texture, bottom, canvas);
}
void Bed3D::render_texture(const std::string& filename, bool bottom, GLCanvas3D& canvas) const
{
if (filename.empty())
{
m_texture.reset();
render_default(bottom);
return;
}
if ((m_texture.get_id() == 0) || (m_texture.get_source() != filename))
{
m_texture.reset();
if (boost::algorithm::iends_with(filename, ".svg"))
{
// use higher resolution images if graphic card and opengl version allow
GLint max_tex_size = GLCanvas3DManager::get_gl_info().get_max_tex_size();
if ((m_temp_texture.get_id() == 0) || (m_temp_texture.get_source() != filename))
{
// generate a temporary lower resolution texture to show while no main texture levels have been compressed
if (!m_temp_texture.load_from_svg_file(filename, false, false, false, max_tex_size / 8))
{
render_default(bottom);
return;
}
}
// starts generating the main texture, compression will run asynchronously
if (!m_texture.load_from_svg_file(filename, true, true, true, max_tex_size))
{
render_default(bottom);
return;
}
}
else if (boost::algorithm::iends_with(filename, ".png"))
{
// generate a temporary lower resolution texture to show while no main texture levels have been compressed
if ((m_temp_texture.get_id() == 0) || (m_temp_texture.get_source() != filename))
{
if (!m_temp_texture.load_from_file(filename, false, GLTexture::None, false))
{
render_default(bottom);
return;
}
}
// starts generating the main texture, compression will run asynchronously
if (!m_texture.load_from_file(filename, true, GLTexture::MultiThreaded, true))
{
render_default(bottom);
return;
}
}
else
{
render_default(bottom);
return;
}
}
else if (m_texture.unsent_compressed_data_available())
{
// sends to gpu the already available compressed levels of the main texture
m_texture.send_compressed_data_to_gpu();
// the temporary texture is not needed anymore, reset it
if (m_temp_texture.get_id() != 0)
m_temp_texture.reset();
m_requires_canvas_update = true;
}
else if (m_requires_canvas_update && m_texture.all_compressed_data_sent_to_gpu())
{
canvas.stop_keeping_dirty();
m_requires_canvas_update = false;
}
if (m_triangles.get_vertices_count() > 0)
{
if (m_shader.get_shader_program_id() == 0)
m_shader.init("printbed.vs", "printbed.fs");
if (m_shader.is_initialized())
{
m_shader.start_using();
m_shader.set_uniform("transparent_background", bottom);
m_shader.set_uniform("svg_source", boost::algorithm::iends_with(m_texture.get_source(), ".svg"));
if (m_vbo_id == 0)
{
glsafe(::glGenBuffers(1, &m_vbo_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_vbo_id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, (GLsizeiptr)m_triangles.get_vertices_data_size(), (const GLvoid*)m_triangles.get_vertices_data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glDepthMask(GL_FALSE));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
if (bottom)
glsafe(::glFrontFace(GL_CW));
unsigned int stride = m_triangles.get_vertex_data_size();
GLint position_id = m_shader.get_attrib_location("v_position");
GLint tex_coords_id = m_shader.get_attrib_location("v_tex_coords");
// show the temporary texture while no compressed data is available
GLuint tex_id = (GLuint)m_temp_texture.get_id();
if (tex_id == 0)
tex_id = (GLuint)m_texture.get_id();
glsafe(::glBindTexture(GL_TEXTURE_2D, tex_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_vbo_id));
if (position_id != -1)
{
glsafe(::glEnableVertexAttribArray(position_id));
glsafe(::glVertexAttribPointer(position_id, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(intptr_t)m_triangles.get_position_offset()));
}
if (tex_coords_id != -1)
{
glsafe(::glEnableVertexAttribArray(tex_coords_id));
glsafe(::glVertexAttribPointer(tex_coords_id, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(intptr_t)m_triangles.get_tex_coords_offset()));
}
glsafe(::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)m_triangles.get_vertices_count()));
if (tex_coords_id != -1)
glsafe(::glDisableVertexAttribArray(tex_coords_id));
if (position_id != -1)
glsafe(::glDisableVertexAttribArray(position_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
if (bottom)
glsafe(::glFrontFace(GL_CCW));
glsafe(::glDisable(GL_BLEND));
glsafe(::glDepthMask(GL_TRUE));
m_shader.stop_using();
}
}
}
void Bed3D::render_model(const std::string& filename) const
{
if (filename.empty())
return;
if ((m_model.get_filename() != filename) && m_model.init_from_file(filename))
{
// move the model so that its origin (0.0, 0.0, 0.0) goes into the bed shape center and a bit down to avoid z-fighting with the texture quad
Vec3d shift = m_bounding_box.center();
shift(2) = -0.03;
m_model.set_offset(shift);
// update extended bounding box
calc_bounding_boxes();
}
if (!m_model.get_filename().empty())
{
glsafe(::glEnable(GL_LIGHTING));
m_model.render();
glsafe(::glDisable(GL_LIGHTING));
}
}
void Bed3D::render_custom(GLCanvas3D& canvas, bool bottom) const
{
if (m_custom_texture.empty() && m_custom_model.empty())
{
render_default(bottom);
return;
}
if (!bottom)
render_model(m_custom_model);
render_texture(m_custom_texture, bottom, canvas);
}
void Bed3D::render_default(bool bottom) const
{
m_texture.reset();
unsigned int triangles_vcount = m_triangles.get_vertices_count();
if (triangles_vcount > 0)
{
bool has_model = !m_model.get_filename().empty();
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
if (!has_model && !bottom)
{
// draw background
glsafe(::glDepthMask(GL_FALSE));
glsafe(::glColor4f(0.35f, 0.35f, 0.35f, 0.4f));
glsafe(::glNormal3d(0.0f, 0.0f, 1.0f));
glsafe(::glVertexPointer(3, GL_FLOAT, m_triangles.get_vertex_data_size(), (GLvoid*)m_triangles.get_vertices_data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount));
glsafe(::glDepthMask(GL_TRUE));
}
// draw grid
glsafe(::glLineWidth(3.0f * m_scale_factor));
if (has_model && !bottom)
glsafe(::glColor4f(0.75f, 0.75f, 0.75f, 1.0f));
else
glsafe(::glColor4f(0.2f, 0.2f, 0.2f, 0.4f));
glsafe(::glVertexPointer(3, GL_FLOAT, m_triangles.get_vertex_data_size(), (GLvoid*)m_gridlines.get_vertices_data()));
glsafe(::glDrawArrays(GL_LINES, 0, (GLsizei)m_gridlines.get_vertices_count()));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glDisable(GL_BLEND));
}
}
void Bed3D::reset()
{
if (m_vbo_id > 0)
{
glsafe(::glDeleteBuffers(1, &m_vbo_id));
m_vbo_id = 0;
}
}
} // GUI
} // Slic3r