PrusaSlicer-NonPlainar/tests/fff_print/test_support_material.cpp

235 lines
8.6 KiB
C++

#include <catch2/catch.hpp>
#include "libslic3r/GCodeReader.hpp"
#include "libslic3r/Layer.hpp"
#include "test_data.hpp" // get access to init_print, etc
using namespace Slic3r::Test;
using namespace Slic3r;
TEST_CASE("SupportMaterial: Three raft layers created", "[SupportMaterial]")
{
Slic3r::Print print;
Slic3r::Test::init_and_process_print({ TestMesh::cube_20x20x20 }, print, {
{ "support_material", 1 },
{ "raft_layers", 3 }
});
REQUIRE(print.objects().front()->support_layers().size() == 3);
}
SCENARIO("SupportMaterial: support_layers_z and contact_distance", "[SupportMaterial]")
{
// Box h = 20mm, hole bottom at 5mm, hole height 10mm (top edge at 15mm).
TriangleMesh mesh = Slic3r::Test::mesh(Slic3r::Test::TestMesh::cube_with_hole);
mesh.rotate_x(float(M_PI / 2));
auto check = [](Slic3r::Print &print, bool &first_support_layer_height_ok, bool &layer_height_minimum_ok, bool &layer_height_maximum_ok, bool &top_spacing_ok)
{
const std::vector<Slic3r::SupportLayer*> &support_layers = print.objects().front()->support_layers();
first_support_layer_height_ok = support_layers.front()->print_z == print.default_object_config().first_layer_height.value;
layer_height_minimum_ok = true;
layer_height_maximum_ok = true;
double min_layer_height = print.config().min_layer_height.values.front();
double max_layer_height = print.config().nozzle_diameter.values.front();
if (print.config().max_layer_height.values.front() > EPSILON)
max_layer_height = std::min(max_layer_height, print.config().max_layer_height.values.front());
for (size_t i = 1; i < support_layers.size(); ++ i) {
if (support_layers[i]->print_z - support_layers[i - 1]->print_z < min_layer_height - EPSILON)
layer_height_minimum_ok = false;
if (support_layers[i]->print_z - support_layers[i - 1]->print_z > max_layer_height + EPSILON)
layer_height_maximum_ok = false;
}
#if 0
double expected_top_spacing = print.default_object_config().layer_height + print.config().nozzle_diameter.get_at(0);
bool wrong_top_spacing = 0;
std::vector<coordf_t> top_z { 1.1 };
for (coordf_t top_z_el : top_z) {
// find layer index of this top surface.
size_t layer_id = -1;
for (size_t i = 0; i < support_z.size(); ++ i) {
if (abs(support_z[i] - top_z_el) < EPSILON) {
layer_id = i;
i = static_cast<int>(support_z.size());
}
}
// check that first support layer above this top surface (or the next one) is spaced with nozzle diameter
if (abs(support_z[layer_id + 1] - support_z[layer_id] - expected_top_spacing) > EPSILON &&
abs(support_z[layer_id + 2] - support_z[layer_id] - expected_top_spacing) > EPSILON) {
wrong_top_spacing = 1;
}
}
d = ! wrong_top_spacing;
#else
top_spacing_ok = true;
#endif
};
GIVEN("A print object having one modelObject") {
WHEN("First layer height = 0.4") {
Slic3r::Print print;
Slic3r::Test::init_and_process_print({ mesh }, print, {
{ "support_material", 1 },
{ "layer_height", 0.2 },
{ "first_layer_height", 0.4 },
});
bool a, b, c, d;
check(print, a, b, c, d);
THEN("First layer height is honored") { REQUIRE(a == true); }
THEN("No null or negative support layers") { REQUIRE(b == true); }
THEN("No layers thicker than nozzle diameter") { REQUIRE(c == true); }
// THEN("Layers above top surfaces are spaced correctly") { REQUIRE(d == true); }
}
WHEN("Layer height = 0.2 and, first layer height = 0.3") {
Slic3r::Print print;
Slic3r::Test::init_and_process_print({ mesh }, print, {
{ "support_material", 1 },
{ "layer_height", 0.2 },
{ "first_layer_height", 0.3 },
});
bool a, b, c, d;
check(print, a, b, c, d);
THEN("First layer height is honored") { REQUIRE(a == true); }
THEN("No null or negative support layers") { REQUIRE(b == true); }
THEN("No layers thicker than nozzle diameter") { REQUIRE(c == true); }
// THEN("Layers above top surfaces are spaced correctly") { REQUIRE(d == true); }
}
WHEN("Layer height = nozzle_diameter[0]") {
Slic3r::Print print;
Slic3r::Test::init_and_process_print({ mesh }, print, {
{ "support_material", 1 },
{ "layer_height", 0.2 },
{ "first_layer_height", 0.3 },
});
bool a, b, c, d;
check(print, a, b, c, d);
THEN("First layer height is honored") { REQUIRE(a == true); }
THEN("No null or negative support layers") { REQUIRE(b == true); }
THEN("No layers thicker than nozzle diameter") { REQUIRE(c == true); }
// THEN("Layers above top surfaces are spaced correctly") { REQUIRE(d == true); }
}
}
}
#if 0
// Test 8.
TEST_CASE("SupportMaterial: forced support is generated", "[SupportMaterial]")
{
// Create a mesh & modelObject.
TriangleMesh mesh = TriangleMesh::make_cube(20, 20, 20);
Model model = Model();
ModelObject *object = model.add_object();
object->add_volume(mesh);
model.add_default_instances();
model.align_instances_to_origin();
Print print = Print();
std::vector<coordf_t> contact_z = {1.9};
std::vector<coordf_t> top_z = {1.1};
print.default_object_config.support_material_enforce_layers = 100;
print.default_object_config.support_material = 0;
print.default_object_config.layer_height = 0.2;
print.default_object_config.set_deserialize("first_layer_height", "0.3");
print.add_model_object(model.objects[0]);
print.objects.front()->_slice();
SupportMaterial *support = print.objects.front()->_support_material();
auto support_z = support->support_layers_z(contact_z, top_z, print.default_object_config.layer_height);
bool check = true;
for (size_t i = 1; i < support_z.size(); i++) {
if (support_z[i] - support_z[i - 1] <= 0)
check = false;
}
REQUIRE(check == true);
}
// TODO
bool test_6_checks(Print& print)
{
bool has_bridge_speed = true;
// Pre-Processing.
PrintObject* print_object = print.objects.front();
print_object->infill();
SupportMaterial* support_material = print.objects.front()->_support_material();
support_material->generate(print_object);
// TODO but not needed in test 6 (make brims and make skirts).
// Exporting gcode.
// TODO validation found in Simple.pm
return has_bridge_speed;
}
// Test 6.
SCENARIO("SupportMaterial: Checking bridge speed", "[SupportMaterial]")
{
GIVEN("Print object") {
// Create a mesh & modelObject.
TriangleMesh mesh = TriangleMesh::make_cube(20, 20, 20);
Model model = Model();
ModelObject *object = model.add_object();
object->add_volume(mesh);
model.add_default_instances();
model.align_instances_to_origin();
Print print = Print();
print.config.brim_width = 0;
print.config.skirts = 0;
print.config.skirts = 0;
print.default_object_config.support_material = 1;
print.default_region_config.top_solid_layers = 0; // so that we don't have the internal bridge over infill.
print.default_region_config.bridge_speed = 99;
print.config.cooling = 0;
print.config.set_deserialize("first_layer_speed", "100%");
WHEN("support_material_contact_distance = 0.2") {
print.default_object_config.support_material_contact_distance = 0.2;
print.add_model_object(model.objects[0]);
bool check = test_6_checks(print);
REQUIRE(check == true); // bridge speed is used.
}
WHEN("support_material_contact_distance = 0") {
print.default_object_config.support_material_contact_distance = 0;
print.add_model_object(model.objects[0]);
bool check = test_6_checks(print);
REQUIRE(check == true); // bridge speed is not used.
}
WHEN("support_material_contact_distance = 0.2 & raft_layers = 5") {
print.default_object_config.support_material_contact_distance = 0.2;
print.default_object_config.raft_layers = 5;
print.add_model_object(model.objects[0]);
bool check = test_6_checks(print);
REQUIRE(check == true); // bridge speed is used.
}
WHEN("support_material_contact_distance = 0 & raft_layers = 5") {
print.default_object_config.support_material_contact_distance = 0;
print.default_object_config.raft_layers = 5;
print.add_model_object(model.objects[0]);
bool check = test_6_checks(print);
REQUIRE(check == true); // bridge speed is not used.
}
}
}
#endif