PrusaSlicer-NonPlainar/tests/libslic3r/test_geometry.cpp
Vojtech Bubnik 239d588c5d 1) Implemented anchoring of infill lines to perimeters with length
limited anchors, while before a full perimeter segment was always
   taken if possible.
2) Adapted the line infills (grid, stars, triangles, cubic) to 1).
   This also solves a long standing issue of these infills producing
   anchors for each sweep direction independently, thus possibly
   overlapping and overextruding, which was quite detrimental
   in narrow areas.
3) Refactored cubic adaptive infill anchroing algorithm
   for performance and clarity.
2020-11-05 17:32:40 +01:00

454 lines
19 KiB
C++

#include <catch2/catch.hpp>
#include "libslic3r/Point.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"
using namespace Slic3r;
TEST_CASE("Polygon::contains works properly", "[Geometry]"){
// this test was failing on Windows (GH #1950)
Slic3r::Polygon polygon(std::vector<Point>({
Point(207802834,-57084522),
Point(196528149,-37556190),
Point(173626821,-25420928),
Point(171285751,-21366123),
Point(118673592,-21366123),
Point(116332562,-25420928),
Point(93431208,-37556191),
Point(82156517,-57084523),
Point(129714478,-84542120),
Point(160244873,-84542120)
}));
Point point(95706562, -57294774);
REQUIRE(polygon.contains(point));
}
SCENARIO("Intersections of line segments", "[Geometry]"){
GIVEN("Integer coordinates"){
Line line1(Point(5,15),Point(30,15));
Line line2(Point(10,20), Point(10,10));
THEN("The intersection is valid"){
Point point;
line1.intersection(line2,&point);
REQUIRE(Point(10,15) == point);
}
}
GIVEN("Scaled coordinates"){
Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
THEN("There is still an intersection"){
Point point;
REQUIRE(line1.intersection(line2,&point));
}
}
}
/*
Tests for unused methods still written in perl
{
my $polygon = Slic3r::Polygon->new(
[45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800],
[43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600],
[75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500],
[107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300],
[82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500],
[285273900, 461246400], [254081000, 515273900],
);
# this points belongs to $polyline
# note: it's actually a vertex, while we should better check an intermediate point
my $point = Slic3r::Point->new(104577600, 327748400);
local $Slic3r::Geometry::epsilon = 1E-5;
is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp,
[ [107014700, 340000000], [104577600, 327748400] ],
'polygon_segment_having_point';
}
{
auto point = Point(736310778.185108, 5017423926.8924);
auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000));
//is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
}
// Possible to delete
{
//my $p1 = [10, 10];
//my $p2 = [10, 20];
//my $p3 = [10, 30];
//my $p4 = [20, 20];
//my $p5 = [0, 20];
THEN("Points in a line give the correct angles"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
}
THEN("Left turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points';
}
THEN("Right turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points';
}
//my $p1 = [30, 30];
//my $p2 = [20, 20];
//my $p3 = [10, 10];
//my $p4 = [30, 10];
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points';
}
SCENARIO("polygon_is_convex works"){
GIVEN("A square of dimension 10"){
//my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
THEN("It is not convex clockwise"){
//is polygon_is_convex($cw_square), 0, 'cw square is not convex';
}
THEN("It is convex counter-clockwise"){
//is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
}
}
GIVEN("A concave polygon"){
//my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
THEN("It is concave"){
//is polygon_is_convex($convex1), 0, 'concave polygon';
}
}
}*/
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
Slic3r::Polyline polyline;
polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
REQUIRE(polyline.lines().at(0).a == Point(0,0));
REQUIRE(polyline.lines().at(0).b == Point(10,0));
REQUIRE(polyline.lines().at(1).a == Point(10,0));
REQUIRE(polyline.lines().at(1).b == Point(20,0));
}
TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
Slic3r::Polyline split = polygon.split_at_index(1);
REQUIRE(split.points[0]==Point(10,0));
REQUIRE(split.points[1]==Point(5,5));
REQUIRE(split.points[2]==Point(0,0));
REQUIRE(split.points[3]==Point(10,0));
}
TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
bb.scale(2);
REQUIRE(bb.min == Point(0,2));
REQUIRE(bb.max == Point(40,4));
}
TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
Slic3r::Polygon area = offset(tmp,5).at(0);
REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
}
SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-6, 0);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-3, 9);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
Vec2d(0, 6.0),
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
Point expected_center { Point::new_scale(-3, 9)};
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
Point::new_scale(0, 6.0),
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
}
SCENARIO("Path chaining", "[Geometry]") {
GIVEN("A path") {
std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
THEN("Chained with no diagonals (thus 26 units long)") {
std::vector<Points::size_type> indices = chain_points(points);
for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
REQUIRE(std::abs(dist-26) <= EPSILON);
}
}
}
GIVEN("Gyroid infill end points") {
Polylines polylines = {
{ {28122608, 3221037}, {27919139, 56036027} },
{ {33642863, 3400772}, {30875220, 56450360} },
{ {34579315, 3599827}, {35049758, 55971572} },
{ {26483070, 3374004}, {23971830, 55763598} },
{ {38931405, 4678879}, {38740053, 55077714} },
{ {20311895, 5015778}, {20079051, 54551952} },
{ {16463068, 6773342}, {18823514, 53992958} },
{ {44433771, 7424951}, {42629462, 53346059} },
{ {15697614, 7329492}, {15350896, 52089991} },
{ {48085792, 10147132}, {46435427, 50792118} },
{ {48828819, 10972330}, {49126582, 48368374} },
{ {9654526, 12656711}, {10264020, 47691584} },
{ {5726905, 18648632}, {8070762, 45082416} },
{ {54818187, 39579970}, {52974912, 43271272} },
{ {4464342, 37371742}, {5027890, 39106220} },
{ {54139746, 18417661}, {55177987, 38472580} },
{ {56527590, 32058461}, {56316456, 34067185} },
{ {3303988, 29215290}, {3569863, 32985633} },
{ {56255666, 25025857}, {56478310, 27144087} },
{ {4300034, 22805361}, {3667946, 25752601} },
{ {8266122, 14250611}, {6244813, 17751595} },
{ {12177955, 9886741}, {10703348, 11491900} }
};
Polylines chained = chain_polylines(polylines);
THEN("Chained taking the shortest path") {
double connection_length = 0.;
for (size_t i = 1; i < chained.size(); ++i) {
const Polyline &pl1 = chained[i - 1];
const Polyline &pl2 = chained[i];
connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
}
REQUIRE(connection_length < 85206000.);
}
}
GIVEN("Loop pieces") {
Point a { 2185796, 19058485 };
Point b { 3957902, 18149382 };
Point c { 2912841, 18790564 };
Point d { 2831848, 18832390 };
Point e { 3179601, 18627769 };
Point f { 3137952, 18653370 };
Polylines polylines = { { a, b },
{ c, d },
{ e, f },
{ d, a },
{ f, c },
{ b, e } };
Polylines chained = chain_polylines(polylines, &a);
THEN("Connected without a gap") {
for (size_t i = 0; i < chained.size(); ++i) {
const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
const Polyline &pl2 = chained[i];
REQUIRE(pl1.points.back() == pl2.points.front());
}
}
}
}
SCENARIO("Line distances", "[Geometry]"){
GIVEN("A line"){
Line line(Point(0, 0), Point(20, 0));
THEN("Points on the line segment have 0 distance"){
REQUIRE(line.distance_to(Point(0, 0)) == 0);
REQUIRE(line.distance_to(Point(20, 0)) == 0);
REQUIRE(line.distance_to(Point(10, 0)) == 0);
}
THEN("Points off the line have the appropriate distance"){
REQUIRE(line.distance_to(Point(10, 10)) == 10);
REQUIRE(line.distance_to(Point(50, 0)) == 30);
}
}
}
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
GIVEN(("A Square with dimension 100")){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(100,100),
Point(200,100),
Point(200,200),
Point(100,200)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
THEN("It has 4 concave points clockwise"){
square.make_clockwise();
REQUIRE(square.concave_points(PI*4/3).size() == 4);
REQUIRE(square.convex_points(PI*2/3).size() == 0);
}
}
GIVEN("A Square with an extra colinearvertex"){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(150,100),
Point(200,100),
Point(200,200),
Point(100,200),
Point(100,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A Square with an extra collinear vertex in different order"){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(200,200),
Point(100,200),
Point(100,100),
Point(150,100),
Point(200,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A triangle"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364),
Point(714223,461012),
Point(31286371,461008)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A triangle with an extra collinear point"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364),
Point(714223,461012),
Point(20000000,461012),
Point(31286371,461012)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
// if epsilon is not used.
auto polygon = Slic3r::Polygon(std::vector<Point>({
Point(60246458,14802768),Point(64477191,12360001),
Point(63727343,11060995),Point(64086449,10853608),
Point(66393722,14850069),Point(66034704,15057334),
Point(65284646,13758387),Point(61053864,16200839),
Point(69200258,30310849),Point(62172547,42483120),
Point(61137680,41850279),Point(67799985,30310848),
Point(51399866,1905506),Point(38092663,1905506),
Point(38092663,692699),Point(52100125,692699)
}));
THEN("the correct number of points are detected"){
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
}
}
}
TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
}));
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}
SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
GIVEN(("square")){
Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
}
SECTION("arrange returns expected number of positions") {
Pointfs positions;
Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
REQUIRE(positions.size() == 4);
}
SECTION("directions_parallel") {
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
}
}