119 lines
3.6 KiB
Perl
119 lines
3.6 KiB
Perl
package Slic3r::Geometry;
|
|
use strict;
|
|
use warnings;
|
|
|
|
use XXX;
|
|
|
|
use constant A => 0;
|
|
use constant B => 1;
|
|
use constant X => 0;
|
|
use constant Y => 1;
|
|
use constant epsilon => 1E-8;
|
|
use constant epsilon2 => epsilon**2;
|
|
|
|
sub slope {
|
|
my ($line) = @_;
|
|
return undef if abs($line->[B][X] - $line->[A][X]) < epsilon; # line is vertical
|
|
return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]);
|
|
}
|
|
|
|
sub lines_parallel {
|
|
my ($line1, $line2) = @_;
|
|
|
|
my @slopes = map slope($_), $line1, $line2;
|
|
return 1 if !defined $slopes[0] && !defined $slopes[1];
|
|
return 0 if grep !defined, @slopes;
|
|
return 1 if abs($slopes[0] - $slopes[1]) < epsilon;
|
|
return 0;
|
|
}
|
|
|
|
# this subroutine checks whether a given point may belong to a given
|
|
# segment given the hypothesis that it belongs to the line containing
|
|
# the segment
|
|
sub line_point_belongs_to_segment {
|
|
my ($point, $segment) = @_;
|
|
|
|
#printf " checking whether %f,%f may belong to segment %f,%f - %f,%f\n",
|
|
# @$point, map @$_, @$segment;
|
|
|
|
my @segment_extents = (
|
|
[ sort { $a <=> $b } map $_->[X], @$segment ],
|
|
[ sort { $a <=> $b } map $_->[Y], @$segment ],
|
|
);
|
|
|
|
return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon);
|
|
return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon);
|
|
return 1;
|
|
}
|
|
|
|
sub points_coincide {
|
|
my ($p1, $p2) = @_;
|
|
return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon;
|
|
return 0;
|
|
}
|
|
|
|
sub distance_between_points {
|
|
my ($p1, $p2) = @_;
|
|
return sqrt(($p1->[X] - $p2->[X])**2 + ($p1->[Y] - $p2->[Y])**2);
|
|
}
|
|
|
|
sub point_in_polygon {
|
|
my ($point, $polygon) = @_;
|
|
|
|
my ($x, $y) = @$point;
|
|
my @xy = map @$_, @$polygon;
|
|
|
|
# Derived from the comp.graphics.algorithms FAQ,
|
|
# courtesy of Wm. Randolph Franklin
|
|
my $n = @xy / 2; # Number of points in polygon
|
|
my @i = map { 2*$_ } 0..(@xy/2); # The even indices of @xy
|
|
my @x = map { $xy[$_] } @i; # Even indices: x-coordinates
|
|
my @y = map { $xy[$_ + 1] } @i; # Odd indices: y-coordinates
|
|
|
|
my ($i, $j);
|
|
my $side = 0; # 0 = outside; 1 = inside
|
|
for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) {
|
|
if (
|
|
# If the y is between the (y-) borders...
|
|
($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i])
|
|
and
|
|
# ...the (x,y) to infinity line crosses the edge
|
|
# from the ith point to the jth point...
|
|
($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i])
|
|
) {
|
|
$side = not $side; # Jump the fence
|
|
}
|
|
}
|
|
|
|
# if point is not in polygon, let's check whether it belongs to the contour
|
|
if (!$side) {
|
|
foreach my $line (polygon_lines($polygon)) {
|
|
# calculate the Y in line at X of the point
|
|
if ($line->[A][X] == $line->[B][X]) {
|
|
return 1 if abs($x - $line->[A][X]) < epsilon;
|
|
next;
|
|
}
|
|
my $y3 = $line->[A][Y] + ($line->[B][Y] - $line->[A][Y])
|
|
* ($x - $line->[A][X]) / ($line->[B][X] - $line->[A][X]);
|
|
return 1 if abs($y3 - $y) < epsilon2;
|
|
}
|
|
}
|
|
|
|
return $side;
|
|
}
|
|
|
|
sub polygon_lines {
|
|
my ($polygon) = @_;
|
|
|
|
my @lines = ();
|
|
my $last_point = $polygon->[-1];
|
|
foreach my $point (@$polygon) {
|
|
push @lines, [ $last_point, $point ];
|
|
$last_point = $point;
|
|
}
|
|
|
|
return @lines;
|
|
}
|
|
|
|
1;
|